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It has been observed by Assmus and Key as a result of the complete
classification of Hadamard matrices of order 24, that the extreInality of the
binary code of a Hadamard matrix $H$ of order 24 is equivalent to the ex-
tremality of the ternary code of $H^{T}$ . In this note, we present two proofs
of this fact, neither of which depends on the classification. One is a conse-
quence of a more general result on the minimum weight of the dual of the
code of a Hadamard matrix. The other relates the lattices obtained from the
binary code and from the ternary code. Both proofs are presented in greater
generality to include higher orders. In particular, the latter method is also
used to show the equivalence of (i) the extremality of the ternary code, (ii)
the extremality of the $\mathbb{Z}_{4}$-code, and (iii) the extremality of a lattice obtained
from a Hadamard matrix of order 48.

1 Minimum weights of codes of Hadamard
matrices

We denote the all-ones matrix by $J$ , and the all-ones vector by 1. A Hadamard
matrix $H$ is said to be normalized if its first row is 1. We also denote by $e_{i}$

the vector with a 1 in the i-th coordinate and $0$ elsewhere.

Lemma 1. Let $H$ be a Hadamard matrix of order $n,$ $m$ an integer such that
$\prime n|n$ and $(m, n/m)=1$ . Then the row vectors of $H$ genemte a self-dual code
of length $n$ over $\mathbb{Z}/m\mathbb{Z}$ .

Let $m$ be a positive integer, and set $V=\mathbb{Z}/m\mathbb{Z}$ . We regard an element
$u\in V$ as an element of $tI\iota e$ set of iIitegers $\{0,1, \ldots , m-1\}$ , and define $tl_{1}\epsilon^{1}$,
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Lee weight and the Euclidean norm of an element $u\in V$ by

Lee $(u)= \min\{u, m-u\}$ ,
Norm$(u)=(Lee(u))^{2}$ .

For a vector $u=(u_{1}, \ldots, u_{n})\in V^{n}$ , we set

Norm$(u)= \sum_{i=1}^{n}Norm(u_{i})$ .

Alternatively, the Euclidean norm can be defined as

Norm$(u)= \min$ { $\Vert v\Vert^{2}|v\in \mathbb{Z}^{n},$ $v$ mod $m=u$}.
Recall that a self-dual code over $\mathbb{Z}/2m\mathbb{Z}$ is type II if it contains 1 and the

Euclidean norm of every codeword is divisible by $4m$ .
Lemma 2. Let $H$ be a normalized Hadamard matrix of order $n,$ $B= \frac{1}{2}(H+$

$J)$ the binary Hadamard mat$r\dot{\tau}x$ associated to H. Let $m$ be an integer such
that $8m|n$ and $(2m, n/8m)=1$ . Then the row vectors of $B$ generate a type
II self-dual code over $\mathbb{Z}/2m\mathbb{Z}$ of length $n$ .

We introduce two types of pair of norms of a vector over $V=\mathbb{Z}/mZ$ .
When $m$ is odd, we define the odd norm and the even norm by

$Norm_{o}(u)=\min$ ( $\{||v||^{2}|v\in \mathbb{Z}^{n},$ $v$ mod $m=u\}\cap(1+2\mathbb{Z})$),
$Norm_{e}(u)=\min$ ( $\{\Vert v\Vert^{2}|v\in \mathbb{Z}^{n},$ $v$ mod $m=u\}\cap 2\mathbb{Z}$).

We also define type I norm and type II norm for an integer $m$ and $u\in 1^{\perp}\subset$

$V^{n}$ by

$Norm_{I}(u)=\min$ { $||v\Vert^{2}|v\in \mathbb{Z}^{n},$ $v$ mod $m=u,$ $v\cdot 1\equiv m$ $(mod 2m)$ },
$Norm_{II}(u)=\min$ { $\Vert v\Vert^{2}|v\in \mathbb{Z}^{n},$ $v$ mod $m=u,$ $v\cdot 1\equiv 0$ $(mod 2m)$ }.

When $m$ is odd, type I (resp. type II) norm coincide with odd (resp. even)
norln. Note that if $u=v$ mod $m$ and Norm$(u)=\Vert v||^{2}$ , then

$\{Norm_{o}(u), Norm_{e}(u)\}$ , {Norm$I(u)$ , Norm$II(u)$ }
$= \{||v||^{2}, \min_{i}\{||v\pm me_{i}||^{2}\}\}$

$= \{Norm(u), Norm(u)+m(m-2\max_{i}\{Lee(u_{i})\})\}$ .

Let $H$ be a normalized Hadamard matrix of order $n$ , and let $B$ be the
binary Hadamard matrix associated to $H$ . Let $C_{m}$ be the code over $\mathbb{Z}/m\mathbb{Z}$

generated by the rows of $H^{T}$ , and $C_{l}’$ the code over $\mathbb{Z}/l\mathbb{Z}$ generated by the
rows of $B$ , where $m\geq 3$ is an odd integer and $l\geq 2$ is an integer.
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Lemma 3. (i) $C_{m}^{\perp}has$ no codeword of odd norm less than $m_{f}^{2}$

(ii) $C_{l}^{;\perp}has$ no codeword of type I norm less than $l_{f}^{2}$

$Proof\cdot$. (i) Let $vl$)( $\backslash$, a voctor in $\mathbb{Z}^{n}$ such that $v$ Inod $m=u\in C_{n\iota}^{\perp}c\iota\iota 1t1$

$||v\Vert^{2}=Norm_{o}(u)$ . Then we have $vH^{T}\equiv 0(mod m)$ and $vH^{T}\equiv v1^{T}1\equiv 1$

(lnod 2) and thus $vH^{T}\equiv m1(mod 2m)$ . So we have
$||v||^{2}=vH^{T}Hv^{T}/n=\square$

$||vH^{T}\Vert^{2}/n\geq m^{2}$ . (ii) is similar.

Theorem 4. If $l$ and $m$ satisfy $(l, m)=1$ and $n\equiv 0(mod 4lm)$ , then the
following statements hold.

(i) If $C_{m}^{\perp}has$ a codeword of even norm $d$ and odd nom $m^{2}+k$ , then $C_{l}’$ has
a nonzero codeword of type II norm at most $dn/4m^{2}$ when $d<2lm$ or
$k<d(l-1)/l$ , and exactly $dn/4m^{2}$ , which is also the Euclidean norm,
when $d<2\lfloor(l+2)/2\rfloor m$ or $k=0$ .

(ii) If $C_{\iota^{\perp}}’has$ a codeword of type II no$rmd$ and type I norm $l^{2}+k$ , then
$C_{m}$ has a nonzero codeword of even norm at most $dn/4l^{2}$ when $d<2lm$
or $k<d(m-1)/m$ , and exactly $dn/4l^{2}$ , which is also the Euclidean
$no77n$, when $d<l(m+1)$ or $k=0$ .

Proof. (sketch) (i) If $C_{m}^{\perp}$ hae such a codeword, then there exists a vector $v\in$

$\mathbb{Z}^{n}$ satisfying $vH\equiv 0(mod 2\prime m),$ $\Vert v\Vert^{2}=d$ and $||v-me_{i}||^{2}=m^{2}+k$ for some
$i$ . Since $(l, m)=1$ , there exists an integer $t$ such that $mt\equiv 1(mod l)$ , and
$(1/2m)vH\equiv t(vB-(v\cdot 1/2)1)(mod l)$ . Thus $(1/2m)vH$ mod $l$ is a codeword
of $C_{l}’$ which has Euclidean norm at most il $(1/2m)vH\Vert^{2}=(1/2m)^{2},vHH^{T}v^{t}=$

$dn/4m^{2}$ , and since $(1/2m)vH1^{T}=(n/2m)v_{1}\equiv 0(mod 2l)$ , type II norm
also. Under the given conditions, we have $(1/2m)vH$ mod $l\neq 0$ . (ii) is
shown by the similar argument as (i). $\square$

In particular, when $m=3,$ $l=2$ and $n=24$ , we have the following.

Corollary 5. Let $H$ be a normalized Hadamard matrix of order 24. Then
$C_{3}$ is an extremal self-dual [24, 12, 9] code if and only if $C_{2}’$ is an extremal
doubly even self-dual binary [24, 12, 8] code.

Proof. By Lemmas 1 and 2, $C_{3}$ is self-dual while $C_{2}’$ is doubly even self-dual.
Theorem 4 implies that $C_{\delta}$ has a codeword of weight 6 if and only if $C_{2}’$ has
a codeword of weight 4, or equivalently, $C_{2}’$ is non-extremal. Since $C_{3}$ has no
codeword of weight 3 by Lemma 3 (ii), the former condition is equivalent to
$C_{3}$ being non-extremal. $\square$

When $m=3,$ $l=4$ and $n=48$ , we have:
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Corollary 6. Let $H$ be a normalized Hadamard matrix of order 48. Then
$C_{3}$ is an extremal self-dual [48, 24, 15] code if and only if $C_{4}’$ has minimum
type II norm 24.

In fact, $C_{4}’$ with minimum type II norm 24 has minimum Euclidean norm
24. This will be shown in later.

It is known that there are at least two inequivalent extremal ternary self-
dual code of length 48, the quadratic residue code and the Pless symmetry
code. The codewords of weight 48 in these codes constitute the rows and
their negatives of a Hadamard matrix. ([4, \S 2.8, \S 2.10 of Chap. 3]).

2 Lattices
Let $C$ be a code of length $n$ over $\mathbb{Z}/m\mathbb{Z}$ with generator matrix $M$ . We regard
the entries of $H$ as integers, and let $\mathbb{Z}^{k}M$ denote the row Zmodule of $M$ ,
that is, the set of $\mathbb{Z}$-linear combinations of the row vectors of $\Lambda l$ , where $k$

is the number of rows of $M$ . The lattice $A(C)$ of the code $C$ is defined
as $A(C)= \frac{1}{\sqrt{m}}\mathbb{Z}^{k+n}\{\begin{array}{l}MmI\end{array}\}$ , and $A(C)$ is integral (resp. unimodular, even
unimodular) if and only if $C$ is self-orthogonal (resp. self-dual, type II).

Let $m\geq 3$ be an odd integer, $l$ an integer such that $(l, m)=1,$ $H$ a
normalized $Ha(la\iota I)a\iota\cdot dIllat_{I}\cdot ix$ of order $n=4lm$ . Then by Lemmas 1 and 2,
the code $C_{m}$ over $\mathbb{Z}/m\mathbb{Z}$ and the code $C_{l}’$ over $\mathbb{Z}/l\mathbb{Z}$ are self-dual, and thus
$A(C_{m})= \frac{1}{\sqrt{m}}\mathbb{Z}^{2n}\{\begin{array}{l}H^{T}mI\end{array}\}$ and $A(C_{l}’)= \frac{1}{\sqrt{l}}\mathbb{Z}^{2n}\{\begin{array}{l}BlI\end{array}\}$ are both unimodular, the

former is odd, and the latter is even if and only if $l$ is even.
In the following, we assume $H$ and $H^{T}$ are both normalized. Then we

have

$A(C_{m})= \frac{1}{\sqrt{m}}\mathbb{Z}^{2n}\{\begin{array}{l}B^{\prime\tau}mI\end{array}\}$ ,

so the even sublattice of $A(C_{n\iota})$ is

$B(C_{rr\iota})= \frac{1}{\sqrt{m}}\mathbb{Z}^{2n}\{\begin{array}{ll} B^{T}m(I +1^{T}e_{l})\end{array}\}$ .

There are two unimodular lattices containing $B(C_{m})$ , other than $A(C_{m})$ .
One is the copy of $A(C_{l}’)$ , and we denote the other by $\Lambda(C_{m})$ . Observe that
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$\cross\frac{1}{\sqrt{n}}H$

–
$A(C_{n\iota})=$ $\frac{1}{\sqrt{m}}\mathbb{Z}^{2n}\{\begin{array}{l}B^{T}mI\end{array}\}$

$\frac{1}{\sqrt{m}}\mathbb{Z}^{2n+1}\{\begin{array}{l}B^{T}m(Il^{T}e_{l})\frac{+l}{2}1\end{array}\}$

$B(C_{m})=$ $\frac{1}{\sqrt{m}}\mathbb{Z}^{2n}\{\begin{array}{ll} B^{T}m(I +l^{T}e_{l})\end{array}\}$

$\Lambda(C_{m})=$
$\frac{1}{\sqrt{m}}\mathbb{Z}^{2n+1}\{\begin{array}{l}B^{T}+m(Il^{T}e_{l})me_{l}+\frac{l}{2}1\end{array}\}$

$\sim$

$\frac{1}{\int l}\mathbb{Z}^{2n+1}\{\begin{array}{ll} Bl(I +1^{T}e_{l})\frac{l}{2}1\end{array}\}$

$\frac{1}{\sqrt{l}}\mathbb{Z}^{2n}\{\begin{array}{l}BlI\end{array}\}$ $=A(C_{l}’)$

$\frac{1}{\sqrt{l}}\mathbb{Z}^{2n}\{\begin{array}{ll} Bl(I +1^{T}e_{l})\end{array}\}$ $=B(C_{l}’)$

$\frac{1}{\sqrt{l}}\mathbb{Z}^{2n+1}\{\begin{array}{l}B+l(Il^{T}e_{l})le_{1}+\frac{l}{2}l\end{array}\}$ $=\Lambda(C_{l}’)$

$arrow$

$\cross\frac{1}{\sqrt{n}}H^{T}$

The relation between $A(C_{m}),$ $A(C_{l}’)$ and $B(C_{m}),$ $B(C_{l}’)$ is given as

$B(C_{m})=\{x\in A(C_{m})|\Vert x\Vert^{2}\equiv 0 (mod 2)\}$

$B(C_{l}’)= \{x\in A(C_{l}’)|\frac{1}{\sqrt{l}}x\cdot 1\equiv 0 (mod 2)\}$ .

Since $\min(\frac{1}{\sqrt{m}}\mathbb{Z}^{n}[m(I+1^{T}e_{1})])=2m$ and $\min(\frac{1}{\sqrt{l}}\mathbb{Z}^{n}[l(I+1^{T}e_{1})])=2l$ ,

we have

min $B(C_{n\iota})= \min\{2m, \frac{1}{\prime m}\min_{u\in C_{m}\backslash \{0\}}Norm_{e}(u)\}$

$= \min$ { $2l,$ $\frac{1}{l}\min_{u\in C_{l}\backslash \{0\}}$ Norm$II(u)$ }.

We also have $\Lambda(C_{m})\backslash B(C_{m})\subset\frac{1}{2\sqrt{m}}(1+2\mathbb{Z})^{n}$ and $\Lambda(C_{l}’)\backslash B(C_{l}’)\subset$

$\frac{1}{2\sqrt{/}}(1^{\cdot}+2\mathbb{Z})^{n}$ , and thus $\min(\Lambda(C_{m})\backslash B(C_{m}))\geq\max\{l, m\}$ . If $l\equiv 0(mod 2)$ ,

$\Lambda(C_{m})$ is an even lattice, so $\min(\Lambda(C_{m})\backslash B(C_{m}))\geq\max\{l, m+1\}$ .
Thus we have the following.

Theorem 7. Let $d= \min\{2l, 2m\}$ , then the following statements $(i)-(iii)$ are
equivalent, moreover if $d \leq\max\{l, m+\delta_{lmod2,0}\}$ , (iii) and (iv) are equivalent:
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(i) $C_{m}$ has minimum even norm at least $dm$ ,

(ii) $C_{l}’$ has minimum type $\Pi$ norm at least $dl$ ,

(iii) $B(C_{m})$ has minimum norm $d$ ,

(iv) $\Lambda(C_{n\iota})$ has minimum norm $d$ .
Note that the minimum even norm of $C_{m}$ and minimum type II norm of

$C_{l}’$ are both at most $n/2$ , as the binary Hadamard matrix has a row of weight
?1/2.

Let $(l, m)=(2,3)$ and $(4, 3)$ . Then we have another proofs of Corollaries 5
and 6.

Corollary 8. Let $H$ be a normalized Hadamard matri of order 24. The
following statements are equivalent:

(i) $C_{3}$ has minimum weight 9,

(ii) $C_{2}’$ has minimum weight 8,

(iii) $\Lambda(C_{3})$ has minimum norm 4 (hence is isomomhic to the Leech lattice).

Corollary 9. Let $H$ be a no$7malized$ Hadamard matrix of order 48. The
following statements are equivalent:

(i) $C_{3}$ has minimum weight 15,

(ii) $C_{4}’$ has minimum type $\Pi$ no$rm24_{f}$

(iii) $B(C_{3})$ has $mini_{7}num$ norm, 6.
As a matter of fact, we have stronger result by the following argument.

Lemma 10. The number of vectors of $\Lambda(C_{m})\backslash B(C_{m})$ and $A(C_{l}’)\backslash B(C_{l}’)$

of minimum norm $l$ is equal to the number of codewords of $C_{m}$ of odd (resp.
even) weight whose nonzero entri es are all equal to 1. The latter is at least
$2n$ and exactly $2n$ if and only if the minimum type I norm of $c;\backslash \{0\}$ is
larger than $l^{2}$ .

Proof. We have $A(C_{l}’)\backslash B(C_{l}’)\cong B(C_{m})-(1/2\sqrt{m})1$ and $\Lambda(C_{m})\backslash B(C_{m})=$

$B(C_{m}.)-(1/ \sqrt{m})(me_{\iota}+\frac{1}{2}1)$ . Their norm $l$ vectors are of the form $v’=$

$(1/2\sqrt{m})(\pm 1, \ldots , \pm 1)$ , and $v’+(1/2\sqrt{m})1=(1/\sqrt{m})v,$ $v\in\{0,1\}^{n}$ is ob-
tained from a codeword of $C_{m}$ . If the weight of $v$ mod $m$ is even, $(1/\sqrt{m})v$

belongs to $B(C_{m})$ and thus $v’$ belongs to the copy of $A(C_{l}’)\backslash B(C_{l}’)$ , otherwise
belongs to $\Lambda(C_{m})\backslash B(C_{m})$ . A codeword of $C_{l}’$ with type I norm $l^{2}$ gives norm
$l$ vectors of $A(C_{l}’)\backslash B(C_{l}’)$ and in particular, $0\in C_{l}’$ gives the $2n$ vectors
$\pm\sqrt{l}e_{i}$ $(i=1, . . . , n)$ . 口

159



Lemma 11. Codewords of extremal temary self-dual codes of length 48 with
all-ones vector whose nonzero entries are all equal to 1 are exactly 1 codeword
of weight $0_{i}94$ of weight 24 and 1 of weight 48.

Proof. By [10], the complete weight enumerator $W_{c}(x, y, z)$ of a ternary self-
dual code $C$ with all-ones vector lies in the ring $\mathbb{C}[\alpha_{12}, \beta_{6}^{2}, \pi_{9}^{4}]\oplus\beta_{6}\pi_{9}^{2}\mathbb{C}[\alpha_{12}, \beta_{6}^{2}, \pi_{9}^{4}]$

where

$\beta_{6}=x^{6}+?1^{6}+z^{(}-10(x^{\backslash }t’y^{\iota}\+y^{\backslash }z^{t}+z^{is\prime}x^{\backslash \})$ ,
$\pi_{9}=(x^{3d}’-y’)(y^{3}-z^{3})(z^{3}-x^{3})$ ,

$\alpha_{12}=\sum x^{12}+4\sum x^{9}(y^{3}+z^{3})+6\sum x^{6}y^{6}+228\sum x^{6}y^{3}z^{3}$ ,

where the sums are to be taken over the cyclic permutations of $x,$ $y,$ $z$ . Under
the assumption that the coefficients of the terms $x^{48-i-j}y^{i}z^{j}(0<i+j\leq 12)$

are $0$ , and $t1_{1}at$ all $t1_{1}e$ coefficients $r\prime u\cdot e$ non-negative, in particular of $t\}_{1}\backslash$ ,
$x^{S3}y^{15}$ and $x^{30}y^{18}$ , the complete weight enumerator of an extremal ternary
self-dual [48, 24, 15] code is uniquely determined to

$\sum x^{48}+94\sum x^{24}y^{24}+(xyz)^{3}\sum a_{ijk}x^{i}y^{j}z^{k}$

given in [8, Table 1]. 口

A type II self-dual code over $\mathbb{Z}/4\mathbb{Z}$ of length 48 has minimum Euclidean
norm at most 24 ([3] Corollary 13), and an 48-dimensional even unimodular
lattice has minimum norm at most 6. Recall that an extremal ternary self-
dual code of length 48 has minimum 15. By Corollary 9 and Lemmas 10 and
11, we have the following.

Theorem 12. Let $H$ be a no$7malized$ Hadamard matrix of order 48. The
following statements are equivalent;

(i) $C_{3}$ is extremal,

(ii) $C_{4}’$ is norm-extremal,

(iii) $\Lambda(C_{3})$ is extremal.

The following is an analogue of [9, Theorem 5].

Theorem 13. Every extremal temary self-dual code of length 48 is genemted
by a Hadamard matrix.
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Proof. It is enough to show that the 96 codewords of weight 48 of a ternary
se - ual [48, 24, 15] code $C$ constitute the rows and their negatives of a
Hadamard matrix of order 48. Define $u*v$ where $u=(\prime u_{1}, \ldots, \prime u_{48})$ and
$v=$ $(v_{1}, \ldots , v_{48})$ by $(u_{1}v_{1}, \ldots, u_{48}v_{48})$ , and define $C*v$ $:=\{u*v|u\in C\}$ .
If $v_{\rangle}v’\in C$ are codewords of weight 48 such that $v\neq\pm v’$ , then $C*v$ is a
ternary self-dual [48, 24, 15] code with all-ones vector and $v’*v\neq\pm 1$ has
weight 48. Thus $v’*v-1$ , and hence $v’-v$ , has weight 24 by Lemma 11. $\square$
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