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On an equation over finite fields of characteristic 2 and
differentially 4-uniform functions

EEeARE I #K (Nobuo Nakagawa)

1 Introduction

I try to get conditions related to a and S that the following equation over GF (2%¢) have
just two solutions z = 0 and z = 1 in GF(2%).

2" + ag® + B+ (a+B+1)z =0 (1)

Remark: £ = 0 and z = 1 are solutions of the equation (1)

For example,if we take e = 3,
% + az® + B2 + (a+ B+ 1)z =0.

if we take e = 4,
2 + az'® + Bz + (a+ B+ 1)z =0.

It is my motivation to reseach the equation (1) above that we would like to construct
APN functions or differentially 4-uniform functions coming from cubic functions of Albert
commutative semifields of characteristic 2.

The definitions of APN functions and differentially 4-uniform functions are given as
the following.

(The definition of APN functions )
A function f(z) over GF(2") is called a APN(almost perfect nonlinear) function if

fa(z) := f(z +a) + f(2)

is a two to one mapping from GF(2") to Im(f,) for any a # 0, in other wards the
equation '

f(z +a) + f(@) + f(a) = 0

has at most two solutions for any nonzero element a of GF(2") if f(x) is quadratic.
Thus APN functions are the characteristic 2 version of planar functions over GF(p")
for an odd prime p. There exist many APN functions, for example Gold functions,Kasami
functions and Dobbertin functions (see [1],[4],(5], [6] and [8]). Until two years ago, known
functions as APN functions on GF(2"), all of them were power functions. However
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recently (these two years) several quadratic APN functions which are not power functions
and infinite series of quadratic APN functions which are not power functions have been
constructed ([1},(2],(7]). It is known that a part of them are CCZ-inequivqlent to any
function of known power functions([1]).

(The definition of differentially 4-uniform functions )
A function f(x) over GF(2") is called a
differentially 4-uniform function if

fo(z) := f(z + a) + f(z)
satisfies | f;(c)| < 4 for Ve € GF(2") and any a # 0, in other wards the equation

flz+a)+ f(z) + fla) =c

has at most four solutions for any nonzero element a of GF(2") and any element c €
GF(2™).

APN functions and differentially 4-uniform functions do important roles in recent
applications to cryptgraphy.

Albert commutative pre-semifields of characterristic 2 are the following. Let E be the
additve group GF'(2") and the multiplication ’o’ is defined in E as

zoy :=zy+ a(ry)’
where 0 € Gal(GF(2")/GF(2)) and o € {z°! | z € GF(2")}. Then the cubic mapping
f(zg)=(zox)o0

becomes to )
f(x) — z3 + a‘,r2¢r+1 + ax + ad+1 20 +cr

Now we put n = 2e,t = 2° and z° = z!, namely o is the involution of the Galois
automorphism group of the extention GF(22¢)/GF(2).

Theorem 1. (N.Nakagawa and S.Yoshiara,[9])

f(x) = 2 + az®! + oz + o2t is o differentially 4-unifrom function on GF(2%)
for a primitive element a.

We will a little modify the above functions as the following.

9(z) = ° + 22 + 0z + o'z,
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It seems that the functions of this form are mountains of treasure of APN functions,
by computer calculations of Lilya Budaghyan and Claude Carlet for 3 < e < 8.
Take any a € GF(2%¢)(a # 0). Then

g(z + a) + g(z) + 9(z) = (az? + a’z) + (a’z" + a'z?) + o(az® + a”'7) + o’ (a'z® + a*z").

Put y := z/a, then g(z + a) + g(x) + g(z) = 0 iff a3(1® +y) + a*2(y* + 3?) + a2 (y* +
y) + o®a?(y® + y*) = 0. Now multiple a~3 both of the equation above and put b := a*~!
and change y to z again. Then we obtain

(22 + z) + b(z* + 2?) + ab?(z* + 2) + o*b*(z* + &) = 0.
Thus
2% + (b + 0°b)/(ab® + o°b®))at + [(1 + b)/(ab® + o'b*)}z? + [(1 + ab®) /(ab® + a*b®)]x = 0
if ab? + a*b?) # 0.

Namely g(z) is a APN on GF(2?%) if the equation above has just two solutions z =0
and z = 1 in GF(2%) for any b such that b'*! = 1.

2 A solution of the equation (1)

We consider the equation (1) on GF(2%).
% + axt + B2? +yx =0 ' (1)

where v = a + 8+ 1 and ¢t = 2¢. The following theorem holds.

Theorem 2. If one of the following conditions is satisfied then the equation (1) has ezactly
two solusions z =0 and z = 1 in GF(2%).

(la): @ =1 and B! # 1

(22): a(1+B) ' =at+ B+ 1 and B #11

(8a): B =1, 8#1 and Bla+ 1) #1

(4): Q+ Q>+ Q'+ + Q2 # (Q' + BQ)/(a + 1)
where Q = (vt + Bla) (et + 4+1)) /(1 + B2+2).

Proof
We have the following equation taking t-power to (1).

2% + o'z + Biz* +4'zt =0 (2)
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By taking /4 multiple of (1),
Btz* + Brazt + B + flyz = 0 (3)

Add (2) to (3) We obtain
(v + Bla)zt + (1 + B2 + (of + Biy)z =0 (4)

First of all, we consider the case (i) v* + f'a = 0. Then we have (1 + )8 = (1+a)".
If « =1 and S'*! # 1 then the equation (4) become quadratic and since solusions of (1)
are also solusion of (4), the equation (1) has exactly two solusions z = 0, 1.

If o # 1, then 8 = (1 + a)¢~V/t, Therefore f**' = 1. Thus (4) become the trivial
equation. Multiple 8* to (1) We have Sz + aftzt + 2% + (Bla+ B+ + B)z =0
namely

(@+1)"12% + a(a+ 1)1zt + 22 + o'z = 0.

Take 0 € GF(2%) such that 6* = a. Then if we substitute z = @ it satisfies (1) because
0% + aft = a® + o = 0 and 6% + a'f = 6% + 6? = 0. Thus if (1 + )8 = (1 + a)* and
a # 1 the equation (1) has at least 4 solusions.

(i1):The case of (1 + @)B* # (1 + o)t and B**! = 1. Then Sz* + Sz = 0 where
S =9+ pa=(1+a)+ (1+a)t. Therefore z* = z because S # 0. We have
(1 + B)(z? + z) = 0 by substituting this to (1). Hence if 1 + 3 # 0, the equation (1) has
exactly two solusions z = 0, 1. '

If B =1, then we have (z* + z)(z* + z + @) = 0 by (1) Hence any element of GF(2°)
are solusions of (1) ‘
(iii):The case of o + Bty = 0 and B*+! + 1 # 0. This case corresponds to (2a) of the
theorem and is contained in (4a) of the theoem.

(iv): The case (1 + a)Bt # (1 + a)t and S+ # 1.

In this case from (4),

zt = Az? + Bz (5)

where A = (%! +1)/(y* + Bta) and B = (o + Bty)/(7! + Bta).
By taking 2-power to this equation we have

22 = A% 4 B242 (6)
Substitute (5) and (6) to (1). Then we obtain

A’z + (B*+ adA + B)2* + (@B +7)z =0 (7
Because A # 0, it follows that

'+ P’ +Qz =0 (8)
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where P = (B% + aA + f3)/A? and
Q = (@B +7)/A* = (a(a’ + B9) (vt + Bla) + v(¥* + B¥a?))/(B*12 + 1)
= ((v' + Bra) (@ ++"1)) /(8% + 1)

Here 1 + P+ Q = 0 holds and
P= (o™ +f%9)/(B**" + 1) + {a(y' + B'0)}/ (B! +1) + {B(V* + B*”)}/ (87" + 1).

We claim that Tr(P) = 0, therefore Tr(Q) = 0 because @ = P + 1, and Tr(1) = 0. Note
that y=a+ 8+ 1.

Because Tr(a?) = Tr(a), the trace value of the sum of the first part and the second
part of P is

Tr([(ef + B) + {e(v + Ba)}]/ (8! + 1))
= Tr((af + a + B! + ot + (B + o?BY)) /(B + 1)).

Now (of + a + B! + a'*!) € Fix(r) and (B**! + 1) € Fix(r) where 7 is a Galois
automorphism of GF(2%¢) such that 2™ := 2*.

Moreover Tr(b) = 0 for b € Fix(r)
since Tr(b) = (b+ b2 + b + -+ - + b2) + (b+ b2 + b* + - - - + b*/2) = 0. Therefore

Tr(P) = Tr((B* + o?8")/(B**" + 1)) + Te({B(y* + B¥a?)}/(B*** + 1))

= Tr({(8' + &*B)(B™*" + 1) + B(Y" + p¥0?)}/ (B**+* + 1))
= Tr({(8" + B) + (8'a® + Ba™)} /(64 + 1)) =,
since {(B¢ + B) + (Bta? + Ba?)} € Fix(r).
Thus Tr(P) = Tr(Q) = 0.
Therefore there is an element a € GF(22%¢) such that
+a=Q. 9)
From (8) we obtain the following equation.
(z? +z)(z’+z+ Q) =0.
Suppose that a is a solusion of (1). Then it holds that
o® +aat + Ba’ +va =0 | (10)
and

a2t + at = Qt. (11)
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Substitute (9) and (11) to (10). Then we have
(e+1)a* + (a+1)a = Q'+ BQ.

Thus a*+a = (Q*+5Q)/(a+1). On the other hand it is clear that Q+Q?+Q*+- - -+Q¥2 =
a + at. Hence we obtain

Q+Q*+Q* +---+ Q" = (@' + 8Q)/(a + 1).

Therefore if Q + Q*+ Q* +- - - + Q%2 # (Q* + 8Q)/(a+ 1), then the equation (1) has just
two solusion z = 0 and z = 1. Q.E.D

We note (Q+Q*+Q*+:- - -+Q?) € Fix(r) = GF(2°) because Tr(Q) = 0. I calculated
the equation of this form on GF(64) = GF(2)(6) where 8° = 6 + 1. Only in the cases of
« = 6 and § runs on GF(64).

In the case of (4a) of the theorem, roughly speaking about a half cases satisfy the
condition Q + Q* + Q% + .- + Q*? # (Q* + Q) /(a + 1).

For example the equation z'® + §z® + #2% = 0 has juat two solutions and 6 + 68 +
%22 + 0%z = 0 has four solutions in GF(64).

3 Some results using the theorem in section 2

We constructed several APN functions and differentially 4-uniform functions as the ap-
plications of Theorem 2.

Theorem 3.1(N.Nakagawa,[3])

is a 4-differentially uniform function over GF(2%) where t = 2¢ and GF(2%)* =< a > .

Theorem 3.2(L.Budaghyan and C.Carlet,[3])
(1): f(z) =2 + 22! 4 4t +2
is a APN function over GF(2%) where t = 2°, 4 | ¢, 25 |[/(22¢ — 1) and GF(4)* =<7 > .
2): f(z) =23 + 22! 4 ygtt?

is a APN function over GF'(2%) where ¢t = 2¢, 6 | e, 81 |/(2% — 1) and GF(8)* =< v > .
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Theorem 3.3(L.Budaghyan,[3])

f(z) = 2° + 2?1 4 ygtt?
is a APN function over GF(2%¢) where ¢ = 2%, e = 6k and GF(2%)* =< a >, v = ot
APN functions given in Theorem 3.2 and Theorem 3.3 are EA-equivalent to known

power functions. In general a function f is EA-equivalent to a function g if g(z) =
(A1 fAz)(z) + As(z) for affine permutations A;, A; and an affine function A; (see [1]).
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