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1 Introduction
I try to get conditions related to $\alpha$ and $\beta$ that the following equation over $GF(2^{2e})$ have
just two solutions $x=0$ and $x=1$ in $GF(2^{2e})$ .

$x^{2^{+1}}+\alpha x^{2^{e}}+\beta x^{2}+(\alpha+\beta+1)x=0$ (1)

Remark: $x=0$ and $x=1$ are solutions of the equation (1)

For example,if we take $e=3$ ,

$x^{16}+\alpha x^{8}+\beta x^{2}+(\alpha+\beta+1)x=0$ .

lf we take $e=4$ ,
$x^{32}+\alpha x^{16}+\beta x^{2}+(\alpha+\beta+1)x=0$.

It is my motivation to reseach the equation (1) above that we would like to construct
APN functions or differentially 4-uniform functions coming from cubic functions of Albert
commutative semifields of characteristic 2.

The definitions of APN functions and differentially 4-uniform functions are given as
the following.

(The definition of APN functions)
A function $f(x)$ over $GF(2^{n})$ is called a APN(almost perfect nonlinear) function if

$f_{a}(x)$ $:=f(x+a)+f(x)$

is a two to one mapping from $GF(2^{n})$ to ${\rm Im}(f_{a})$ for any $a\neq 0$ , in other wards the

equation
$f(x+a)+f(x)+f(a)=0$

has at most two solutions for any nonzero element $a$ of $GF(2^{\mathfrak{n}})$ if $f(x)$ is quadratic.
Thus APN functions are the characteristic 2 version of planar functions over $GF(p^{n})$

for an odd prime $p$ . There exist many APN functions, for example Gold functions,Kasami
functions and Dobbertin functions (see $[1],[4],[5],$ $[6]$ and [8]). Until two years ago, known
functions as APN functions on $GF(2^{n})$ , all of them were power functions. However
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recently (these two years) several quadratic APN functIons which are not power functions
and infinite series of quadratic APN functions which are not power functions have been
constructed ([1],[2],[7]). It is known that a part of them are CCZ-inequivqlent to any
function of known power functions([l]).

(The definition of differentially 4-uniform functions)
A function $f(x)$ over $GF(2^{n})$ is called a
differentially 4-uniform function if

$f_{a}(x)$ $:=f(x+a)+f(x)$

satisfies $|f_{a}^{-1}(c)|\leq 4$ for $\forall c\in GF(2^{n})$ and any $a\neq 0$ , In other wards the equation

$f(x+a)+f(x)+f(a)=c$

has at most four solutions for any nonzero element $a$ of $GF(2^{\mathfrak{n}})$ and any element $c\in$

$GF(2^{n})$ .
APN functions and differentially 4-uniform functions do important roles in recent

applications to cryptgraphy.

Albert commutative pre-semifields of characterristic 2 are the following. Let $E$ be the
additve group $GF(2^{n})$ and the multiplication $0$ is defined in $E$ as

$xoy$ $:=xy+\alpha(xy)^{\sigma}$

where $\sigma\in Ga1(GF(2^{n})/GF(2))$ and $\alpha\not\in\{x^{\sigma-1}|x\in GF(2^{n})\}$ . Then the cubic mapping

$f(x)=(xox)ox$

becomes to
$f(x)=x^{3}+\alpha x^{2\sigma+1}+\alpha x^{3\sigma}+\alpha^{\sigma+1}x^{2\sigma^{2}+\sigma}$.

Now we put $n=2e,$ $t=2^{e}$ and $x^{\sigma}=x^{t}$ , namely $\sigma$ is the involution of the Galois
automorphism group of the extention $GF(2^{2e})/GF(2)$ .

Theorem 1. (N.Nakagawa and S. $Yoshiara,[9J$)
$f(x)=x^{3}+\alpha x^{2t+1}+\alpha x^{3t}+\alpha^{t+1}x^{t+2}$ is a differentially 4-unifrom function on $GF(2^{2e})$

for a primitive element $\alpha$ .
We will a little modify the above functions as the following.

$g(x)=x^{3}+x^{t+2}+\alpha x^{2t+1}+\alpha x^{3t}$ .
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It seems that the functions of this form are mountains of treasure of APN functions,
by computer calculations of Lilya Budaghyan and Claude Carlet for $3\leq e\leq 8$ .
Take any $a\in GF(2^{2e})(a\neq 0)$ . Then

$g(x+a)+g(x)+g(x)=(ax^{2}+a^{2}x)+(a^{2}x^{t}+a^{t}x^{2})+\alpha(ax^{2t}+a^{2t}x)+\alpha^{s}(a^{t}x^{2t}+a^{2t}x^{t})$ .

Put $y:=x/a$ , then $g(x+a)+g(x)+g(x)=0$ iff $a^{3}(y^{2}+y)+a^{t+2}(y^{t}+y^{2})+\alpha a^{2t+1}(y^{2t}+$

$y)+\alpha^{\epsilon}a^{2t}(y^{2t}+y^{t})=0$ . Now multiple $a^{-3}$ both of the equation above and put $b:=a^{t-1}$

and change $y$ to $x$ again. Then we obtain

$(x^{2}+x)+b(x^{t}+x^{2})+\alpha b^{2}(x^{2t}+x)+\alpha^{\epsilon}b^{3}(x^{2t}+x^{t})=0$.

Thus

$x^{2t}+[(b+\alpha^{s}b^{3})/(\alpha b^{2}+\alpha^{s}b^{3})]x^{t}+[(1+b)/(\alpha b^{2}+\alpha^{\theta}b^{3})]x^{2}+[(1+\alpha b^{2})/(\alpha b^{2}+\alpha^{s}b^{3})]x=0$

if $ab^{2}+\alpha^{s}b^{3}$ ) $\neq 0$ .
Namely $g(x)$ is a APN on $GF(2^{2e})$ if the equation above has just two solutions $x=0$

and $x=1$ in $GF(2^{2e})$ for any $b$ such that $b^{t+1}=1$ .

2 A solution of the equation (1)

We consider the equation (1) on $GF(2^{2e})$ .
$x^{2t}+\alpha x^{t}+\beta x^{2}+\gamma x=0$ (1)

where $\gamma=a+\beta+1$ and $t=2^{e}$ . The following theorem holds.

Theorem 2. If one of the following conditions is satisfied then the equation (1) has exactly
two solusions $x=0$ and $x=1$ in $GF(2^{2e})$ .

$(1a):a=1$ and $\beta^{t+1}\neq 1$

$(2a):\alpha(1+\beta)^{t-1}=a^{t}+\beta^{t}+1$ and $\beta^{t+1}\neq 1$

$(3a):\beta^{t+1}=1,$ $\beta\neq 1$ and $\beta(\alpha+1)^{t-1}\neq 1$

$(4a):Q+Q^{2}+Q^{4}+\cdots+Q^{t/2}\neq(Q^{t}+\beta Q)/(\alpha+1)$

where $Q=((\gamma^{t}+\beta^{t}\alpha)(\alpha^{t+1}+\gamma^{t+1}))/(1+\beta^{2t+2})$.

Proof
We have the following equation taking t-power to (1).

$x^{2}+a^{t}x+\beta^{t}x^{2t}+\gamma^{t}x^{t}=0$ (2)
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Bv taking $\beta^{t}$ multiple of (1),

$\beta^{t}x^{2t}+\beta^{t}ax^{t}+\beta^{t+1}x^{2}+\beta^{t}\gamma x=0$ (3)

Add (2) to (3) We obtain

$(\gamma^{t}+\beta^{t}\alpha)x^{t}+(1+\beta^{t+1})x^{2}+(a^{t}+\beta^{t}\gamma)x=0$ (4)

First of all, we consider the case (i) $\gamma^{t}+\beta^{t}a=0$ . Then we have $(1+a)\beta^{t}=(1+\alpha)^{t}$ .
If $\alpha=1$ and $\beta^{t+1}\neq 1$ then the equation (4) become quadratic and since solusions of (1)
are also solusion of (4), the equation (1) has exactly two solusions $x=0,1$ .

If $a\neq 1$ , then $\beta=(1+a)^{(t-1)/t}$ . Therefore $\beta^{t+1}=1$ . Thus (4) become the trivial
equation. Multiple $\beta^{t}$ to (1) We have $\beta^{t}x^{2t}+\alpha\beta^{t}x^{t}+\beta^{t+1}x^{2}+(\beta^{t}\alpha+\beta^{t+1}+\beta^{t})x=0$

namely
$(a+1)^{t-1}x^{2t}+\alpha(\alpha+1)^{t-1}x^{t}+x^{2}+\alpha^{t}x=0$ .

Take $\theta\in GF(2^{2e})$ such that $\theta^{t}=\alpha$ . Then if we substitute $x=\theta$ it satisfies (1) because
$\theta^{2t}+\alpha\theta^{t}=a^{2}+\alpha^{2}=0$ and $\theta^{2}+\alpha^{t}\theta=\theta^{2}+\theta^{2}=0$ . Thus if $(1+\alpha)\beta^{t}=(1+a)^{t}$ and
$\alpha\neq 1$ the equation (1) has at least 4 solusions.

(ii):The case of $(1 +\alpha)\beta^{t}\neq(1+a)^{t}$ and $\beta^{t+1}=1$ . Then $Sx^{t}+Sx=0$ where
$S=\gamma^{t}+\beta^{t}a=(1+\alpha)\beta^{t}+(1+\alpha)^{t}$ . Therefore $x^{t}=x$ because $S\neq 0$ . We have
$(1+\beta)(x^{2}+x)=0$ by substituting this to (1). Hence if $1+\beta\neq 0$ , the equation (1) has
exactly two solusions $x=0,1$ .

If $\beta=1$ , then we have $(x^{t}+x)(x^{t}+x+a)=0$ by (1) Hence any element of $GF(2^{e})$

are solusions of (1)
(iii):The case of $a^{t}+\beta^{t}\gamma=0$ and $\beta^{t+1}+1\neq 0$ . This case corresponds to $(2a)$ of the
theorem and is contained in $(4a)$ of the theoem.

(iv): The case $(1+a)\beta^{t}\neq(1+\alpha)^{t}$ and $\beta^{t+1}\neq 1$ .
In this case from (4),

$x^{t}=Ax^{2}+Bx$ (5)

where $A=(\beta^{t+1}+1)/(\gamma^{t}+\beta^{t}a)$ and $B=(\alpha^{t}+\beta^{t}\gamma)/(\gamma^{t}+\beta^{t}\alpha)$ .
By taking 2-power to this equation we have

$x^{2t}=A^{2}x^{4}+B^{2}x^{2}$ (6)

Substitute (5) and (6) to (1). Then we obtain

$A^{2}x^{4}+(B^{2}+aA+\beta)x^{2}+(\alpha B+\gamma)x=0$ (7)

Because $A\neq 0$ , it follows that

$x^{4}+Px^{2}+Qx=0$ (8)
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where $P=(B^{2}+aA+\beta)/A^{2}$ and

$Q=(\alpha B+\gamma)/A^{2}=(a(\alpha^{t}+\beta^{t}\gamma)(\gamma^{t}+\beta^{t}\alpha)+\gamma(\gamma^{2t}+\beta^{2t}\alpha^{2}))/(\beta^{2t+2}+1)$

$=((\gamma^{t}+\beta^{t}\alpha)(\alpha^{t+1}+\gamma^{t+1}))/(\beta^{2t+2}+1)$

Here $1+P+Q=0$ holds and

$P=(\alpha^{2t}+\beta^{2t}\gamma^{2})/(\beta^{2t+2}+1)+\{\alpha(\gamma^{t}+\beta^{t}\alpha)\}/(\beta^{t+1}+1)+\{\beta(\gamma^{2t}+\beta^{2t}a^{2})\}/(\beta^{2t+2}+1)$ .

We claim that $?Y(P)=0$ , therefore $R(Q)=0$ because $Q=P+1$ , and $h(1)=0$. Note
that $\gamma=a+\beta+1$ .

Because $h(a^{2})=R(a)$ , the trace value of the sum of the first part and the second
part of $P$ is

$b([(a^{t}+\beta^{t}\gamma)+\{a(\gamma^{t}+\beta^{t}\alpha)\}]/(\beta^{t+1}+1))$

$=Tr((a^{t}+\alpha+\beta^{t+1}+\alpha^{t+1}+(\beta^{t}+\alpha^{2}\beta^{t}))/(\beta^{t+1}+1))$ .
Now $(a^{t}+\alpha+\beta^{t+1}+a^{t+1})\in Fix(\tau)$ and $(\beta^{t+1}+1)\in Fix(\tau)$ where $\tau$ is a Galois
automorphism of $GF(2^{2e})$ such that $x^{\tau}$ $:=x^{t}$ .

Moreover $R(b)=0$ for $b\in Fix(\tau)$

since $h(b)=(b+b^{2}+b^{4}+\cdots+b^{t/2})+(b+b^{2}+b^{4}+\cdots+b^{t/2})=0$ . Therefore

$Tr(P)=b((\beta^{t}+\alpha^{2}\beta^{t})/(\beta^{t+1}+1))+Tr(\{\beta(\gamma^{2t}+\beta^{2t}\alpha^{2})\}/(\beta^{2t+2}+1))$

$=b(\{(\beta^{t}+\alpha^{2}\beta^{t})(\beta^{t+1}+1)+\beta(\gamma^{2t}+\beta^{2t}\alpha^{2})\}/(\beta^{2t+2}+1))$

$=Tr(\{(\beta^{t}+\beta)+(\beta^{t}\alpha^{2}+\beta\alpha^{2t})\}/(\beta^{2t+2}+1))=0$ ,

since $\{(\beta^{t}+\beta)+(\beta^{t}\alpha^{2}+\beta\alpha^{2t})\}\in Fix(\tau)$ .
Thus $?Y(P)=Tr(Q)=0$ .
Therefore there is an element $a\in GF(2^{2e})$ such that

$a^{2}+a=Q$ . (9)

From (8) we obtain the following equation.

$(x^{2}+x)(x^{2}+x+Q)=0$ .

Suppose that $a$ is a solusion of (1). Then it holds that

$a^{2t}+\alpha a^{t}+\beta a^{2}+\gamma a=0$ (10)

and

$a^{2t}+a^{t}=Q^{t}$ . (11)
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Substitute (9) and (11) to (10). Then we have

$(a+1)a^{t}+(a+1)a=Q^{t}+\beta Q$ .

Thus $a^{t}+a=(Q^{t}+\beta Q)/(a+1)$ . On the other hand it is clear that $Q+Q^{2}+Q^{4}+\cdots+Q^{t/2}=$

$a+a^{t}$ . Hence we obtain

$Q+Q^{2}+Q^{4}+\cdots+Q^{t/2}=(Q^{t}+\beta Q)/(\alpha+1)$ .

Therefore if $Q+Q^{2}+Q^{4}+\cdots+Q^{t/2}\neq(Q^{t}+\beta Q)/(\alpha+1)$ , then the equation (1) has just
two solusion $x=0$ and $x=1$ . Q.E.D

We note $(Q+Q^{2}+Q^{4}+\cdots+Q^{t/2})\in Fix(\tau)=GF(2^{e})$ because $h(Q)=0$. I calculated
the equation of this form on $GF(64)=GF(2)(\theta)$ where $\theta^{6}=\theta+1$ . Only in the cases of
$\alpha=\theta$ and $\beta$ runs on $GF(64)$ .

In the case of $(4a)$ of the theorem, roughly speaking about a half cases satisfy the
condition $Q+Q^{2}+Q^{4}+\cdots+Q^{t/2}\neq(Q^{t}+\beta Q)/(a+1)$ .

For example the equation $x^{16}+\theta x^{8}+\theta^{6}x^{2}=0$ has juat two solutions and $x^{16}+\theta x^{8}+$

$\theta^{2}x^{2}+\theta^{26}x=0$ has four solutions in $GF(64)$ .

3 Some results using the theorem in section 2
We constructed several APN functions and differentially 4-uniform functions as the ap-
plications of Theorem 2.

Theorem 3.1 (N.Nakagawa,[3])

$f(x)=x^{3}+x^{2t+1}+\alpha x^{t+2}+\alpha^{t}x^{3t}$

is a 4-differentially uniform function over $GF(2^{2e})$ where $t=2^{e}$ and $GF(2^{2e})^{x}=<\alpha>$ .

Theorem 3.2(L.Budaghyan and C.Carlet,[3])

(1) : $f(x)=x^{3}+x^{2t+1}+\gamma x^{t+2}$

is a APN function over $GF(2^{2\epsilon})$ where $t=2^{\epsilon},$ $4|e,$ $25\psi(2^{2e}-1)$ and $GF(4)^{x}=<\gamma>$ .

(2) : $f(x)=x^{3}+x^{2t+1}+\gamma x^{t+2}$

is a APN function over $GF(2^{2e})$ where $t=2^{e},$ $61e,$ $81V(2^{2e}-1)$ and $GF(8)^{x}=<\gamma>$ .
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Theorem 3.3(L.Budaghyan,[3])

$f(x)=x^{3}+x^{2t+1}+\gamma x^{t+2}$

is a APN function over $GF(2^{2e})$ where $t=2^{e},$ $e=6k$ and $GF(2^{2e})^{x}=<a>,$ $\gamma=a^{\frac{2^{2c}-1}{9}}$ .

APN functions given in Theorem 3.2 and Theorem 3.3 are EA-equivalent to known
power functions. In general a function $f$ is EA-equivalent to a function $g$ if $g(x)=$
$(A_{1}fA_{2})(x)+A_{3}(x)$ for affine permutations $A_{1},$ $A_{2}$ and an affine function $A_{3}$ (see [1]).
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