Partitions of the reals and models of ZF

Carlos Augusto Di Prisco Instituto Venezolano de Investigaciones Científicas

February 29, 2008

Abstract

We consider several partition relations and describe models of ZF which can be used to distinguish between them. This is an extended abstract of a talk delivered in the RIMS Symposium on Axiomatic Set Theory and Set Theoretic Topology, held at RIMS University of Kyoto, 28-30 November 2008.

1 Introduction.

We consider partitions of the Baire space ω^{ω} of all infinite sequences of natural numbers with the product topology obtained giving to ω the discrete topolgy, and also partitions of its closed subspace $[\omega]^{\omega}$ of all infinite subsets of ω , which can be identified with the strictly increasing sequences of natural numbers. If A is an infinite set of natural numbers, we use $[A]^{\omega}$ to denote the set of infinite subsets of A.

Definition 1 Given $n \in \omega$, we say that a partition $c : [\omega]^{\omega} \to n$ is Ramsey if there is $H \in [\omega]^{\omega}$ such that c is constant on $[H]^{\omega}$. Such a set H is said to be homogeneous for c.

One of the emblematic results in this area is the following theorem of F. Galvin and K. Prikry

Theorem 2 [5] For every $n \in \omega$, every Borel measurable partition $c : [\omega]^{\omega} \to n$ is Ramsey.

The notation

$$\omega \xrightarrow[\Gamma]{} (\omega)_n^{\omega}$$

is used to express that for every Γ -measurable $c : [\omega]^{\omega} \to n$, there is $H \in [\omega]^{\omega}$ such that c is constant on $[H]^{\omega}$. So, the Galvin-Prikry theorem is

$$\forall n \ (\omega \ \underset{\text{Borel}}{\longrightarrow} \ (\omega)_n^{\omega}).$$

If no class Γ is mentioned, the partition symbol refers to all functions $c: [\omega]^{\omega} \to n$. Also, if n = 2, the subindex is usually omitted.

It is well known that $\omega \to (\omega)^{\omega}$ implies that there are no non-principal ultrafilters on ω ; so, ZFC proves that this partition relation is false. Nevertheless, a celebrated result of Mathias [7] shows that this partition relation is consistent with ZF + DC, provided that the existence of an inaccessible cardinal is consistent.

2 Infinite partitions.

It is easy to find a clopen non-Ramsey partition of $[\omega]^{\omega}$ into infinitely many pieces. Namely, $h : [\omega]^{\omega} \to \omega$ defined by $h(A) = \min(A)$. Thus, ZF proves $\omega \neq (\omega)^{\omega}_{\omega}$

It is interesting to consider a version of $\omega \to (\omega)^{\omega}_{\omega}$ that requires only the existence of a set of the form $[H]^{\omega}$ which avoids a piece of the partition, instead of requiring that it is contained in a single piece. For this type of partition relation it is customary to use the following notation. The expression

$$\omega \xrightarrow[\Gamma]{\Gamma} [\omega]_K^{\omega}$$

means that for every Γ -measurable $c : [\omega]^{\omega} \to K$, there is $H \in [\omega]^{\omega}$ such that $c^{\alpha}[H]^{\omega} \subseteq K$.

It is straightforward to verify that this partition relation holds for Borel partitions, but again, the Axiom of Choice implies that there are partitions of $[\omega]^{\omega}$ into infinitely many pieces for which every set of the form $[H]^{\omega}$ meets every piece. In fact, we have the following.

Proposition 3 If there is a non-principal ultrafilter on ω , then

$$\omega \not\rightarrow [\omega]_{2^{\omega}}^{\omega}$$

Actually, a weaker hypothesis is enough to refute the partition relation

$$\omega
ightarrow [\omega]_{2^{\omega}}^{\omega},$$

namely, the existence of a non-principal non-meager filter on ω . This result is part of ongoing work done jointly with S. Todorcevic and will appear elsewhere.

3 Homogeneous sublattices and perfect sets.

We now turn to a different type of partition property, which was first considered in [4].

We use the symbol

$$\omega \xrightarrow[\Gamma]{\Gamma} ((\omega))_n^{\omega}$$

to express that for every Γ -measurable function $c : [\omega]^{\omega} \to n$, there are $A, B \in [\omega]^{\omega}$, with $A \subseteq B$ and $B \setminus A \in [\omega]^{\omega}$, such that c is constant on the sublattice of subsets of B given by $[A, B] = \{X \subseteq B : A \subseteq X\}$.

It is easily seen that the relation

$$\omega \xrightarrow[]{\text{Borel}} ((\omega))_n^{\omega}$$

follows from

$$\omega \xrightarrow[\text{Borel}]{} (\omega)_n^{\omega}.$$

And just as in the case of $\omega \to (\omega)^{\omega}$, the existence of a non-principal ultrafilter on ω implies that $\omega \not\to ((\omega))^{\omega}$.

The third type of partition relation we consider here is denoted by

$$\omega \xrightarrow[\Gamma]{} (\operatorname{perfect})_n^{\omega}$$

meaning that for every Γ -measurable function $c : [\omega]^{\omega} \to n$, there is a perfect set $P \subseteq [\omega]^{\omega}$ on which c is constant.

A Bernstein set is just a counterexample to $\omega \to (\text{perfect})^{\omega}$, this is, a set B with the property that both B and its complement meet every perfect set. Such a set can be obtained from a well ordering of the reals.

In his article [8] Solovay, assuming the consistency of inaccesible cardinals, constructed a model of ZF where every set of reals is Lebesgue measurable, has the property of Baire, and if not countable, contains a perfect subset. Of course, the axiom of choice does not hold in this model, although the axiom of dependent choices does. In general, a model M of ZF is said to be a Solovay model if it is (elementary equivalent to) the model $L(\mathbb{R})$ computed in the Levy collapse of an inaccessible cardinal to \aleph_1 . The result of Mathias mentioned above ([7]), establishes that the partition property $\omega \to (\omega)^{\omega}$ holds in Solovay models; therefore the same is true for the properties $\omega \to ((\omega))^{\omega}$, $\omega \to [\omega]_{2\omega}^{\omega}$, and $\omega \to (\text{ perfect })^{\omega}$ which follow from it.

Consider now the model $L(\mathbb{R})[\mathcal{U}]$ obtained adding a selective ultrafilter to a Solovay model $L(\mathbb{R})$ using the poset of infinite subsets of ω ordered by the relation of almost containment.

It was shown in [2] that $\omega \to (\text{ perfect })^{\omega}$ holds in $L(\mathbb{R})[\mathcal{U}]$. This was done proving that in Solovay models, the following parameterized partition relation holds: for every $n \in \omega$ and every $c : [\omega]^{\omega} \times \omega^{\omega} \to n$, there is $H \in [\omega]^{\omega}$ and a perfect set $P \subseteq \omega^{\omega}$ such that c is constant on the product $[H]^{\omega} \times P$.

Therefore, the existence of a non-principal ultrafilter on ω is a consequence of the Axiom of Choice not strong enough to produce a Bernstein set. By our previous remarks about non-principal ultrafilters, none of the other properties hold in the model $L(\mathbb{R})[\mathcal{U}]$, since in it \mathcal{U} is non-principal ultrafilter on ω .

4 Cohen extensions

Adding Cohen generic reals to the constructuble universe L, we obtain a model in which

$$\stackrel{\omega}{\longrightarrow} \stackrel{\longrightarrow}{\text{Projective}} ((\omega))^{\omega}$$

holds but there is a Δ_2^1 counterexample for $\omega \to (\omega)^{\omega}$.

We start from L, and add ω_1 -many Cohen genric reals using the ω_1 product of Cohen forcing with finite support. In, [1] it is shown that in this extension the partition relation $\omega \to ((\omega))^{\omega}$ holds for projective partitions.

It follows from [6], 2.2, that in this model there is a Δ_2^1 counterexample for $\omega \to (\omega)^{\omega}$, i.e. there is a Δ_2^1 non-Ramsey set.

In fact, the relation $\omega \to ((\omega))^{\omega}$ holds in the extension for partitions definable with real parameters, and so, it also holds in the inner model $L(\mathbb{R})$ of all the sets in the extension that are constructible from reals. In this way we obtain a model in which $\omega \to ((\omega))^{\omega}$ holds but $\omega \to (\omega)^{\omega}$ does not.

The model obtained adding ω_2 -many Cohen generic reals to L offers additional features. For example, in this model there is a non-meager non-principal filter on ω . Taking the appropriate inner model we obtain a model in which $\omega \to ((\omega))^{\omega}$ holds, but $\omega \to [\omega]_{2\omega}^{\omega}$ fails.

5 Conclusion.

Sumarizing, we have that $\omega \to (\omega)^{\omega}$ implies both $\omega \to ((\omega))^{\omega}$ and $\omega \to [\omega]_{2\omega}^{\omega}$, the first implication being strict.

Each of the properties $\omega \to ((\omega))_2^{\omega}$ and $\omega \to [\omega]_{2\omega}^{\omega}$ imply $\omega \to (\text{ perfect })^{\omega}$, and both implications are strict. The partition relation $\omega \to [\omega]_{2\omega}^{\omega}$ is not implied by $\omega \to ((\omega))^{\omega}$.

Question: What is the exact relationship between the propereties $\omega \to (\omega)^{\omega}$ and $\omega \to [\omega]_{2\omega}^{\omega}$? (See [3]).

References

- Brendle, J., L. Halbeisen and B. Löwe, Silver measurability and and its relation to other regularity properties. *Math. Proc. Cambridge Philos.* Soc. 138 (2005), no. 1, 135–149
- [2] Di Prisco, C.A., Partition properties and perfect sets. Notas de Lógica Matemática (Proceedings of the IX Latin American Symposium on Mathematical Logic) 38 INMABB-CONICET. Universidad Nacional del Sur, Bahía Blanca, Argentina (1993), 119-127.

- [3] Di Prisco, C. A. and J. Henle, Partitions of the reals and choice. in: Models, Algebras and Proofs (Xavier Caicedo and Carlos H. Montenegro, Eds.) Lecture Notes in Pure and Applied Mathematics Vol. 203 Marcel Dekker (1999) pp 13-23.
- [4] Di Prisco, C. A. and J. Henle, Doughnuts, floating ordinals, square brackets and ultrafitters. *Journal of Symbolic Logic* 65 (2000) 461-473.
- [5] Galvin, F. and K. Prikry, Borel sets and Ramsey's theorem, Journal of Symbolic Logic 38 (1973), 193-198.
- [6] Ihoda, J. I., Σ_2^1 sets of reals. Journal of Symbolic Logic 53 (1988) 636-642.
- [7] Mathias, A.R.D., Happy families. Annals of Pure and Applied Logic 12 (1977) 59-111.
- [8] Solovay, R., A model of set theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 92 (1970) 1-56.