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On pair-splitting and pair-reaping pairs of w

Hiroaki Minami

Abstract

In this paper we investigate variations of splitting number and
reaping number, pair-splitting number sp4r, pair-reaping number tpgir.
We prove that it is consistent that sp.ir < 0. We also prove it is con-
sistent that tpair > b.

Introduction

The splitting number s and the reaping number v are cardinal invariants
related to the structure P(w)/ fin. |

For X,Y € [w]“ we say X splits Y if X NY and Y \ X are infinite. We
call S C [w]¥ a splitting family if for each Y € [w]¥, there exists X € [w]¥
such that X splits Y. The splitting number s is the least size of a splitting
family. .

We call R a reaping family if for each X € [w], there exists Y € [w]¥
such that Y is not split by X, that is, X NY is finite or Y \ X is finite. The
reaping number t is the least size of a reaping family.

We shall study variations of splitting number and reaping number, pair-
splitting number S,4r and pair-reaping number t,,;,. They are introduced
and investigated in [7] to analyze dual-reaping number v; and dual-splitting
number s4 which are reaping number and splitting number for the structure of
all infinite partitions of w ordered by “almost coarser” ((w)*, <*) respectively.

We call A C [w]? unbounded if for k € w, there exists a € A such that
aNk =0. For X € [w]* and unbounded A C [w]?, X pair-splits A if there
exist infinitely many a € A such that aNX # @ and a \ X # 0. We call
S C [w]“ a pair-splitting family if for each unbounded A C [w]?, there exists
X € 8 such that X pair-splits A. The pair-splitting number 8,4, is the least
size of a pair-splitting family.
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We call R C P([w]?) a pair-reaping family if for each A € R, A is
unbounded and for X € [w]*, there exists A € R such that X doesn’t pair-
split A. The pair-reaping number ty;, is the least size of a pair-reaping
family.

In [7] it is proved that there is the following relationship between tpe;r,
Spair and other cardinal invariants.

Proposition 0.1 1. $pgir < non(M), non(N).
2. tpair = cov(M), cov(N).

3. Spair = 8.

4. Tpair < ¥, 8.
It is not known that ty < Speir OF nOt.
Question 0.1 tg4 < Spqir ?

s < dandt > b hold (see in [2]). And Kamo proved the following
statement in [7]:

Theorem 0.1 t; <0 and s4 > b.

So we have the following diagram:
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cov(N) «‘—\non(M) - / )\47/ cof(M) <— cof(N)

-
€

L
/ .

add(./\/') — add(M)

§
An arrow Kk — A denotes the inequality x > ).

In [7] by using finite support iteration of Hechler forcing, the following
consistency results are proved.

Theorem 0.2 It is consistent that Speir < add(M). Dually it is consistent
that tpeir > cOiAM).

tpair is & lower bound of t and s and $pqy is an upper bound of s (and maybe
of tg). So it is natural to ask the following question.

Question 0.2 $p.ir < 97 Dually tpeir > b7

In the present paper we shall investigate the relation ship between t,., and
b and the relationship between s, and 9. In section 1 we shall prove the
consistency of spqir > 0. In section 2 we shall show the consistency of the
consistency of tpq;r < b. In section 3 we mention the development of results
in section 1 and 2.
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1 pair-splitting number and dominating num-
ber

Notation and Definition We present the related notions. We use standard
set theoretical conventions and notation. For a set X, X“ denotes the set of
all functions from w to X. For f,g € w¥, f dominates g, written f <* g, if
for all but finitely many n € w g(n) < f(n). We call F a dominating family
if for each g € w* there exists f € F such that g <* f. The dominating
number  is the least size of a dominating family.

We call G an unbounded family if for each f € w* there exists g € G such
that g £* f, i.e., there exist infinitely many n € w such that g(n) > f(n).
The unbounded number b is the least size of an unbounded family.

For a set X, X<« denote the set of all functions from natural numbers to
X. ,

We call partial ordering (T, <) a tree if the set {s € T : s < t} is well-
ordered by <. We say T is a tree on X if T is a subtree of (X<¥,C). For a
tree T and t € T, succr(t) is the set of all immediate successors of ¢ in T.
For a tree T, stem(T) is the first element of T" which has at least 2-many
immediate successors.

Theorem 1.1 It is consistent Spgir > 0.

To prove theorem 1.1, we shall construct a proper forcing notion which
enlarges Spqi and is w*-bounding to show 0 is preserved by the forcing notion.

Definition 1.1 [{, pp340] A forcing notion P is w*-bounding if
ke Vf€w’ NVI[G]3g e’ NV (f < g).
The w“-boundingness has the following good property.

Theorem 1.2 [4, pp841] The countable support iteration of proper w*-bounding
forcing notions is w*-bounding.

To prove theorem 1.1 we shall construct a forcing notion which consists
of finitely branching trees on [w]? such that the set of successors of any node
carries a norm as (8.

To present the desired forcing notion, we define “norm” for finite subsets
of [w]?. Let R(n) be a natural number such that if m > R(n), then for any
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function f : [m]? — 2 there exists H € [m|™ such that |f([H]?)| = 1. Then

recursively define Iy = 3, l,41 = max {2l,, R(l,)}. Then for a finite subset A

of [w]? norm(A) > n if A contains a complete graph with I,-many vertices.
This norm has the following properties:

Proposition 1.1 For a finite subset A of [w]?,

1. norm(A) > 1 implies for any X € [w]¥ there exists a € A such that
aNX=0oracCX.

2. Suppose norm(A) 2 n+1. For X € (w|* let Ay ={a€Ad:anX =0}
and Ay = {a € A:a C X}. Then norm(A%) = n or norm(A4%) > n.

8. Suppose norm(A) > n+ 1. If A = Ay U A, then norm(A4y) > n or
norm(A;) > n.

Proof of proposition 1.1
1. Since norm(A) > 1, A contains a complete graph A’ C A with 3-many
vertices. Then for any 2-coloring of the vertices of A’, there exists an edge
whose vertices have the same color. So there exists a € A’ C A such that
aCXoranX=40.
2. Since norm(A) > n + 1, A contain a complete graph A’ with l,,1-
many vertices. So for each X C w, X contains [,-many vertices of A’
or X doesn’t meet l,-many vertices of A’ because l,,; > 2l,. Anyway
AY = {a€A:anNX =0} or AL = {a € A:a C X} contains a complete
graph with [,-many vertices. Therefore norm(A%) > n or norm(4%) > n.
- 3. Since norm(A) > n+ 1, A contain a complete graph A’ with [, ,-many
vertices. Define f : A’ — 2by f(a) =iifa € A; fori < 2. Since l,41 > R(ly),
there exists a complete graph A* C A’ which has [,,-many vertices of A’ and
|F[A*]]| = 1. So A* C Apor A* C A;. Hence norm(Ap) = n or norm(A;) = n.
O

- Then let PP be the set of perfect trees such that
1. T is a finitely branching tree on [w]?,

2. for any branch of T' and n € w there exist m > n such that whenever
t € T with |t| > m, norm(sucer(t)) 2 n.

ForTand SinP, T<SifTCS.
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Lemma 1.1 Let G be a generic filter on P and Ag =\ {T : T € G}. Then
Ag C [w]? and for any X € [w]* NV, X doesn’t pair-split Ag.

Proof For X € [w]“ define a subset Dx of P by T' € Dx if for all ¢t €
T\ {s:sCstem(T)} and a € sucer(t), a C X or aN X = 0. Then for a
given S € P we can find T < S such that for all t € T'\ {s: s C stem(T)}
and a € sucer(t),a C X oranNX =0 by 1 and 2 in Proposition 1.1. So Dx
is dense. So X doesn’t pair-split Ag.

O

By this lemma, P adds an infinite subset of [w]? which is not pair-split
by any infinite subset of w in ground model. Therefore ws-stage countable
support iteration of P forces Spair = we.

From now on we shall prove P is w“-bounding and proper.

For T € P, let ess(T) = {t €T :stem(T)Ct}. For .S e P, T <* S'if
T < S and for all t € ess(T"), norm(sucer(t)) > norm(succg(t)) — 1. T < S
if T < S and for all t € T with norm(succg(t)) < m, we have succg(t) C T

As [8] we can prove the following lemmata.

Lemma 1.2 If S € P and W C S, then there is some T <* S such that
I every branch of T meets W, or else
II. T is disjoint from W.

Proof Let S¥ be the set of all s € S such that there exists §' <* S, such
that every branch of S’ meets W where S, is the set of t € S comparable to
S. A
If stem(S) € S, then (I) holds. Otherwise we will construct ' <* S
which satisfies (II).

Suppose stem(S) & SV. Recursively construct t € T Wlth It| = n. If
n < |stem(T)|, t € T with |t| = n if t € S with |t| = n. If n > |stem(T)],
assume ¢ € T with |t| < n are given and t € SV for t € T with |t| < n.
For t € T with |t| = n, let A = succs(t), 4§ = S N A* and A% = A*\ A},
By Proposition 1.1 (m) norm(A%) > norm(A*) — 1 for some ¢ < 2. Since
t & SW, there is no S' <* S; such that S’ holds I. So norm(A}) < n. Hence
norm(At) > norm(A?) — 1. Definet € T with |t| =n+1ift [n € T and
t(n) € A”" Then for any t € T with [t| =n+1,¢t & SV.

By construction T <* S and satisfies II. O
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Lemma 1.3 Let & be a P-name for an ordinal. Let S € P such that for
t € S\ {s:8C stem(S)}, norm(succg(t)) > m + 1 . Then there erists
T <m S and a finite subset w of ordinal such that T I+ & € w.

Proof Let W be the set of nodes s € S such that there exists S° <,, S,
which decides the value ¢&.

We shall prove that there exists S; <* S such that every branch of S;
meets W. Suppose S’ <* S and §” < & such that §” IF & = B for
some (. Then for some t € S” for each extension s of ¢ in S” satisfies
norm(succgr(s)) > m. Because S} <,, S; and S” decides &, t € W. Hence
by Lemma 1.2 there exists S; <* S which satisfies I in Lemma 1.2.

Let S, <* S such that every branch of S; meets W. Let W, be the
set of minimal elements of W in S;. Since S; is finitely branching, W, is
finite. (Otherwise, by Koning’s Lemma we can construct infinitely branch
which doesn’t meet W). For v € Wy choose T <,, S, and a, such that
T"IFa=ay Put T =,w, T’ and w = {ay :v€ Wo}. Then T <, S
and T I+ & € w.

a

Lemma 1.4 IfS € P, & be a P-name fo"r an ordinal and m < w. Then there
exists T <,, S and a finite set of ordinals w such that T I+ & € w.

Proof Choose k € w such that for any s € S with |s| > k norm(succg(s)) >
m + 1. For each s € S with |s| = k, apply Lemma 1.3 to S, pick T° <,, S,
and a finite set of ordinals w, so that T, IF & € w,. Put T = U,eg o=k Ts
and w = J,ggrur Ws- Then T <,, S and T I+ & € w. Since S is finitely
branching, w is a finite set. g

Proof of theorem 1.1 Lemma 1.4 implies that P is w“-bounding. Given a
P-name for & function f from w to w and S € P, we can construct a sequence
(Tn : n € w) of conditions of P such that Ty = S, Tp4+1 <, Tp, and for each
n € w, there exists some finite wy, of natural numbers such that T, I+ f(n) €
wy. Then there exists T € P such that T' <, T, and T' IF Vn € w(f(n) € wa).
Put g(n) = max{w,}. ThenT I+ Vn € w(f(n) < g(n)). So P is w¥-bounding,.
Also this claim say P satisfies Baumgartner’s Axiom A. Hence P is proper.
Hence the ws-stage countable support iteration of P is w*-bounding by
theorem 1.2. Therefore if V | CH, then the wy-stage countable support
iteration of P forces w*“ NV is a dominating family. So the w,-stage countable
support iteration of IP forces 9 = w;. Hence it is consistent that spe > 0. O
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Since s < 0 (see[2]), we have the following corollary.

Corollary 1.1 It is consistent that § < $pqir-

2 pair-reaping number and unbounded num-
ber

To show the consistency of tpeir < b, we shall use the Laver forcing L. L
is defined by T € L if T C w<¥ is a tree and for s € T with stem(T) C s,
|sucer(s)] = Ro. L is ordered by inclusion. Then L adds an unbounded real.

Proposition 2.1 Let G be a L-generic over V and fg = |J{stem(T) : T €
G}. Then fg € w¥ and fg dominates for allg e W’ NV.

Therefore if L, is wp-stage countable support iteration of Laver forcing,
then Viwa =b =c.

By using ws-stage countable support iteration of Laver forcing, we shall
construct ZFC model which satisfies tpair < b.

Theorem 2.1 It is consistent tpgir < b.

By proposition 2.1 it is enough L preserves tpqi,. We shall use the Laver
property.

Definition 2.1 [4] A forcing notion P have the Laver property if for every
Hiw-weV

IFVf € (HpewH(n)NV[G]FA : w — w<.“’ € VVn € w(f(n) € A(n) A |A(n)] < 27)

Theorem 2.2 (4] The Laver property is preserved under countable support
iteration of proper forcing notions.

Theorem 2.3 [1, pp858] The Laver forcing L. has the Laver property.

So L, has the Laver property. If forcing notion P has the Laver property,
then P has the following good property:

Lemma 2.1 Let P be a forcing notion satisfying the Laver property. Then
IFp VX € V[G]3A € V(X doesn’t pair-split A).
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Proof Let p € P. Let Il = (I, : n € w) be an interval partition of w such
that |I,| = 22" +1. Then (X | I, : n € w) € Mg, 2%. By the Laver property
there exists ¢ <p p such that (4, : n € w) € V such that A, C 2I, |4,| < 2"
and ¢ IFVn € w(X [ I, € Ay). Foreachn € w {(o(k): 0 € A,) : k€ A,}
is at most 2%"-many element. But |I,| = 22" + 1. So there exists k? and
k" in I, such that kg # k7 and (o(k3) : 0 € Ap) = (0(k}) : 0 € A,). Put

= {kg,k?} and A = {an.new} ev. Then g - X | I, Na, = 0 or
an C X | I,, for n € w. Therefore g IF X doesn’t pair-split A. a

Proof of theorem 2.1 Suppose V |= CH. By theorem 2.2 and 2.3 L,,
has the Laver property. By lemma 2.1 for each X € [w]“ N V1« there
exists an unbounded A C [w]? such that Vv = X doesn’t pair-split A.
So {A C [w]? : A unbounded} NV is pair-reaping family. Since V = CH,
{A C [w]? : A unbounded} NV has the cardinality at most w;,. Therefore
Vi, '= Cpair < b.

O

Since v > b (see[2]), we have the following corollary.
Corollary 2.1 It is consistent that v > tpar.

In [5] Masaru Kada introduces a cardinal invariant associated with the Laver
property.

Let S be the collection of functions ¢ from w to [w]<“ such that |¢(n)| <
n + 1. [ is the smallest cardinal « such that for every h € w* there is a set
® C S with cardinality « so that, for every f € w with f(n) < h(n) for all
n < w, there is ¢ € ® such that for all but finitely many n € w we have
f(n) € ¢(n).

As the proof of theorem 2.1 we can prove the following statement.
Corollary 2.2 tp.ir <L

Pawlikowski shows that the dual notion to the definition of [ is the charac-
terization of trans-add(/N), transitive additivity of null ideal (see [1, pp91]).
That is, trans-add(/N) is the smallest size of <*-bounded family F' C w* such
that for every ¢ € S there is f € F such that for infinitely many n € w such

that f(n) € é(n).
Then the dual inequality to the corollary 2.2 holds.

Proposition 2.2 $pir > trans-add(N).
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It is known the following relation between trans-add(AN) and 0.
Theorem 2.4 [6] It is consistent that trans-add(N) > 0.

By theorem 2.4 and proposition 2.2 it is consistent that spqir > 0.

3 Further results

In this section we mention the development of above results in the paper [3]
written by Hrusdk, Meza-Alcantara and the author.

Hrusék and Meza-Alcéntara study cardinal invariants of ideals on w and
they define the pair-splitting number and the pair-reaping number indepen-
dently of the author and they showed the pair-splitting number and the
pair-reaping number are described as cardinal invariants of an ideal on w.

Let 7 be an ideal on w. Define the cardinal invariants associate with Z
by

cov*(Z) = min{|A]|: ACTAVIe€ZIAec A(JANI| =)}
non*(Z) = min{|A|: ACw|*AVI€TI3Ac A(JANI| <No)}.

Theorem 3.1 [3] Let Grc be an ideal on [w]? defined by
Gre = {A C [w]* : x(w, 4) < Ro}

where x(w, A) = min{k € w : 3f : w — kVa € A(|fa]| = 2)}.
Then non*(Grc) = tpair and cov*(Grc) = Spair-

From now on we assume 2 is equipped with product topology and the topol-
ogy of P(w) is induced by identification of each subset of w with its charac-
teristic function.

Then Grc is an Fy-ideal on [w]?. As theorem 2.4, 1.1 and theorem 2.1 we
can show the following theorem.

Theorem 3.2 Suppose T is an F,-ideal on w.
1. [6] It is consistent that < cov*(Z).
2. [8] It is consistent that b > non*(Z).

Also the following statement holds as corollary 2.2 and proposition 2.2.
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Corollary 3.1 Suppose I is an Fy-ideal.
1. If non*(Z) # w, then non*(T) < L.
2. If non*(T) # w, then cov*(T) > trans-add(Z).

So many results in section 1 and 2 follows from theorem 3.2 and corollary
3.1.
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