Club guessing on the least uncountable cardinal and CH

宮元 忠敏 (Tadatoshi, MIYAMOTO)

南山大学, 数理情報学部

15th, January, 2008

Abstract

We consider a principle which not only negates weak club guessing but also codes every subset of the least uncountable cardinal. In particular, the continuum hypothesis must fail under this principle.

Introduction

By [Sh2] and [Sa], we know the following are all consistent.

(1) $2^{\omega} = \omega_1$ and club guessing fails.

(2) 2^{ω} is large and club guessing fails.

The argument in (1) is a combination of many ideas over a period of at least two decades and introduces new kinds of, say, appropriately proper notions of forcing. Please see [Sh2]. The construction in (2) is by Cohen forcing with a nice treatment of clubs and ladder systems. Please see [Sa]. Hence if we do nothing intentionally, then the continuum stays.

Now we may intentionally code the subsets of ω_1 to blow up the continuum. For example, we know a family of almost disjoint subsets of ω can be used for the purpose by c.c.c. forcing. However, we know that c.c.c. p. o. sets are ω -proper and that club guessing remains under ω -proper forcing ([I]).

We consider a principle, denoted by Code(even-odd), which intentionally codes the subsets of ω_1 using a ladder system by proper + σ -Baire forcing. This coding introduces a club in ω_1 so that the given ladder system fails to be weak club guessing.

This principle needs no large cardinals. We just iterate proper + σ -Baire forcing ω_2 -times. New reals are only created at limit stages. Code(even-odd) implies $2^{\omega} = 2^{\omega_1}$. However we do not know whether Code(even-odd) implies $2^{\omega} = \omega_2$.

We know there are coding principles, say, ψ_{AC} and v_{AC} which not only imply $2^{\omega} = 2^{\omega_1}$ but also $2^{\omega} = \omega_2$. These principles are related to large cardinals ([A], [W], [L-S], [D-D], [Mo] and [Mi]).

Preliminary

Definition 0.1. Let us denote $\Omega = \{\delta < \omega_1 \mid \delta \text{ is limit}\}$ in order to use a shorter notation. For $\delta \in \Omega$, A ladder A at δ means that A is a cofinal subset of δ and is of order-type ω . We write $\langle A(n) \mid n < \omega \rangle$ when we list the elements of A in the strict increasing order. A ladder system $\langle A_{\delta} \mid \delta \in \Omega \rangle$ means that for all $\delta \in \Omega$, A_{δ} is a ladder at δ .

For a club D in ω_1 and a ladder A at $\delta \in \Omega$, we write $A \subseteq^* D$, if there exists $n_0 < \omega$ such that for all $n \ge n_0$, we have $A(n) \in D$. Hence we may say that A is almost included in D.

For a club D in ω_1 , we denote the set of countable limit ordinals which are accumulation points of D by \overline{D} . Hence if $\delta \in \overline{D}$, then $\delta \in \Omega \cap D$ and $D \cap \delta$ is cofinal below δ .

Definition 0.2. Club guessing (CG) holds, if there exists a ladder system $\langle A_{\delta} | \delta \in \Omega \rangle$ such that for any club D in ω_1 , there exists $\delta \in \Omega$ with $A_{\delta} \subseteq^* D$.

Notice that there actually are stationary many δ 's as above.

Definition 0.3. Weak club guessing (WCG) holds, if there exists a ladder system $\langle A_{\delta} | \delta \in \Omega \rangle$ such that for any club D in ω_1 , there exists $\delta \in \Omega$ with $| A_{\delta} \cap D | = \omega$.

The following is trivial.

Proposition 0.4. CG implies WCG.

The converse does not hold due to [Sa]. Hence WCG is indeed weaker.

Theorem 0.5. ([Sa]) WCG does not entail CG.

Proof. (Out-line) First get \neg CG. Then add a Cohen real. We have WCG and \neg CG remains in the extension. For more on this, please consult [Sa].

§1. Good Parameters

We formulate an equivalent condition to the negation of the weak diamond of Shelah and Devlin.

Definition 1.1. Let θ be a regular cardinal with $\theta \geq \omega_2$. For any countable elementary substructure N of H_{θ} , we define

$$N^* = \{ f(N \cap \omega_1) \mid f \in N \}.$$

Lemma 1.2. Let θ and N be as above. Then N^* is the \subseteq -least countable elementary substructure M of H_{θ} with $N \cup \{N \cap \omega_1\} \subseteq M$.

Proof. Via Tarski's criterion.

Lemma 1.3. Let θ be a regular cardinal with $\theta \ge \omega_2$. For any countable elementary substructure N, we may associate a sequence $\langle N_i \mid i < \omega_1 \rangle$ of countable elementary substructures of H_{θ} such that

- $N_0 = N$,
- $N_{i+1} = N_i^* = \{ f(N_i \cap \omega_1) \mid f \in N_i \},\$
- For limit $i, N_i = \bigcup \{N_i \mid j < i\}.$

We may call $\langle N_i | i < \omega_1 \rangle$ the canonical sequence of extensions of N in H_{θ} .

Definition 1.4. Let θ be a regular cardinal with $\theta \ge \omega_2$. We say $p \in H_{\theta}$ is a good parameter in H_{θ} , if for any two countable elementary substructures N_1, N_2 of H_{θ} with $p \in N_1 \cap N_2$, if $\pi : N_1 \longrightarrow N_2$ is an \in -isomorphism with $\pi(p) = p$, then there exists an \in -isomorphism $\pi^* : N_1^* \longrightarrow N_2^*$ extending π .

The following is implicit in [W].

Lemma 1.5. (Good Parameter Lemma) The following are equivalent.

(1) There exists a good parameter p in some H_{θ} , where θ is a regular cardinal with $\theta \geq \omega_2$.

(2) $2^{\omega} = 2^{\omega_1}$.

Proof. (1) implies (2): Fix p and θ . Then let F consist of all $((\overline{N}, \overline{p}), \overline{N_{\omega_1}})$, where

- N is a countable elementary substructure of H_{θ} with $p \in N$,
- \overline{N} denotes the transitive collapse of N and \overline{p} denotes the image of p under the collapse,
- $\langle N_i \mid i < \omega_1 \rangle$ is the canonical sequence of extensions of N in H_{θ} and let $N_{\omega_1} = \bigcup \{N_i \mid i < \omega_1\},$
- $\overline{N_{\omega_1}}$ denotes the transitive collapse of N_{ω_1} .

By (1), F is a well-defined function from Dom = $\{(\overline{N}, \overline{p}) \mid N \text{ is a countable elementary substructure}$ of H_{θ} with $p \in N$ onto Ran = $\{\overline{N_{\omega_1}} \mid \text{there exists a canonical sequence } \langle N_i \mid i < \omega_1 \rangle$ of extensions of some countable elementary substructure N of H_{θ} with $p \in N$ and $N_{\omega_1} = \bigcup \{N_i \mid i < \omega_1\}$. Notice that Dom $\subseteq H_{\omega_1}$ and so Dom is of size 2^{ω} . On the other hand, $\mathcal{P}(\omega_1) = \{B \mid B \subseteq \omega_1\} \subseteq \bigcup$ Ran. Hence $2^{\omega_1} \leq 2^{\omega} \cdot \omega_1 = 2^{\omega}$.

(2) implies (1): Let $f : \mathcal{P}(\omega) \longrightarrow \mathcal{P}(\omega_1)$ be a bijection. Let θ be regular cardinal with $f \in H_{\theta}$. Then f is a good parameter in H_{θ} .

§2. The principle Code(even-odd)

We introduce our coding principle which requires no large cardinals.

Definition 2.1. Let $\langle A_{\delta} | \delta \in \Omega \rangle$ be a ladder system, we denote $Code(\langle A_{\delta} | \delta \in \Omega \rangle, even-odd)$, if for any $B \subseteq \omega_1$, there exists two clubs C and D in ω_1 such that for any $\delta \in \overline{C}$,

- If $\delta \in B$, then $|A_{\delta} \cap D| < \omega$ is odd,
- If $\delta \notin B$, then $|A_{\delta} \cap D| < \omega$ is even.

We denote *Code(even-odd)*, if for all ladder systems $\langle A_{\delta} \mid \delta \in \Omega \rangle$, Code($\langle A_{\delta} \mid \delta \in \Omega \rangle$, even-odd) hold.

Proposition 2.2. If Code($\langle A_{\delta} | \delta \in \Omega \rangle$, even-odd) holds, then $\langle A_{\delta} | \delta \in \Omega \rangle$ is a good parameter in H_{ω_2} and so $2^{\omega} = 2^{\omega_1}$ holds.

Proof. Let $\pi: N_1 \longrightarrow N_2$ with $\pi(p) = p$, where we set $p = \langle A_i \mid i \in \Omega \rangle$. If $\pi^*: N_1^* \longrightarrow N_2^*$ were to extend π , we would have

$$\pi^*(f(\delta)) = \pi^*(f)(\pi^*(\delta)) = \pi(f)(\delta),$$

where we denote $\delta = N_1 \cap \omega_1 = N_2 \cap \omega_1$.

Suppose $f, g \in N_1$ with $f(\delta) = g(\delta)$. We want to show $\pi(f)(\delta) = \pi(g)(\delta)$. Let $B = B(f,g) = \{\alpha < \omega_1 \mid f(\alpha) = g(\alpha)\}$. Then $\delta \in B \in N_1$. By Code(*p*, even-odd), we have two clubs *C* and *D*. We may assume $C, D \in N_1$. Then via π , for all $i \in \pi(C)$,

- If $i \in \pi(B)$, then $|\pi(p)(i) \cap \pi(D)| < \omega$ is odd,
- If $i \notin \pi(B)$, then $|\pi(p)(i) \cap \pi(D)| < \omega$ is even.

Since $\delta \in \overline{C}$, $\pi(C)$ is a club in ω_1 and $C \cap \delta = \pi(C) \cap \delta$, we have $\delta \in \overline{\pi(C)}$. Since $\delta \in B$, we have $|A_{\delta} \cap D| < \omega$ is odd. Since $\pi(p) = p$, we have $A_{\delta} = p(\delta) = \pi(p)(\delta)$. Hence $A_{\delta} \cap D = \pi(p)(\delta) \cap D = \pi(p)(\delta) \cap \pi(D)$ and so $|\pi(p)(\delta) \cap \pi(D)| < \omega$ is odd. Hence $\delta \in \pi(B) = B(\pi(f), \pi(g))$ and so $\pi(f)(\delta) = \pi(g)(\delta)$.

This establishes that $\pi^*(f(\delta)) = \pi(f)(\delta)$ is well-defined from N_1^* into N_2^* . We may show this π^* is an \in -isomophism in a similar manner.

Proposition 2.3. If Code(even-odd) holds, then weak club guessing gets negated.

Proof. For any ladder system $\langle A_{\delta} | \delta \in \Omega \rangle$, we have two clubs C and D such that for all $\delta \in \overline{C}$, $A_{\delta} \cap D$ is finite. Hence weak club guessing fails.

§3. Forcing Code(even-odd)

We first design a notion of forcing which is proper and σ -Baire.

Definition 3.1. Let $\langle A_{\delta} | \delta \in \Omega \rangle$ be a ladder system and $B \subseteq \omega_1$. We define a notion of forcing $P = P(\langle A_{\delta} | \delta \in \Omega \rangle, B)$ as follows;

$$p = (\alpha^p, C^p, D^p) \in P$$
, if

- (1) $\alpha^p < \omega_1$,
- (2) C^p and D^p are closed subsets of $\alpha^p + 1$ with $\alpha^p \in C^p \cap D^p$,
- (3) For each $\delta \in \overline{C^p}$ (= { $\alpha \le \alpha^p \mid \alpha \in \Omega, \ C^p \cap \alpha$ is cofinal below α }),
 - If $\delta \in B$, then $|A_{\delta} \cap D^p| < \omega$ is odd,
 - If $\delta \notin B$, then $|A_{\delta} \cap D^p| < \omega$ is even.

For $p, q \in P$, let $q \leq p$, if

- $\alpha^p \leq \alpha^q$,
- $C^p = C^q \cap (\alpha^p + 1)$ and $D^p = D^q \cap (\alpha^p + 1)$.

The following is from [Sh2]. Due to this, there is no need to deal with \in -chains $\langle N_n \mid n < \omega \rangle$ of countable elementary substructures of H_{θ} and a countable elementary substructure N of H_{χ} with P, $H_{\theta} \in N$ such that $\bigcup \{N_n \mid n < \omega\} = H_{\theta} \cap N$, where θ and χ are regular cardinals with $P \in H_{\theta} \in H_{\chi}$.

Lemma 3.2. Let $p \in P$ and D be a dense subset of P. Then consider $f = f_{pD} : (\alpha^p, \omega_1) \longrightarrow \omega_1$ such that $\xi < f(\xi) = \alpha^q$ for some $q \in D$ with $q \leq p' = (\xi, C^p \cup \{\xi\}, D^p \cup \{\xi\}) \leq p$. Let $D(f) = \{\beta < \omega_1 \mid \forall \xi \in (\alpha^p, \beta) \ f(\xi) < \beta\}$. Then D(f) is a club in ω_1 .

Lemma 3.3. P is proper and σ -Baire.

Proof. Let θ be a sufficiently large regular cardinal and let M be a countable elementary substructure of H_{θ} with $P \in M$. Given $p \in M \cap P$, we may construct a (P, M)-generic sequence $\langle p_n \mid n < \omega \rangle$ such that $p_0 = p$ and

- If $M \cap \omega_1 \in B$, then $|D^{p_1} \cap A_{M \cap \omega_1}| < \omega$ is odd and for all $n \ge 1$, $D^{p_n} \cap A_{M \cap \omega_1} = D^{p_1} \cap A_{M \cap \omega_1}$.
- If $M \cap \omega_1 \notin B$, then $|D^{p_1} \cap A_{M \cap \omega_1}| < \omega$ is even and for all $n \ge 1$, $D^{p_n} \cap A_{M \cap \omega_1} = D^{p_1} \cap A_{M \cap \omega_1}$.

This is possible by lemma 3.2. Now let,

- $\alpha^q = M \cap \omega_1$,
- $C^q = \bigcup \{ C^{p_n} \mid n < \omega \} \cup \{ M \cap \omega_1 \},$
- $D^q = \bigcup \{D^{p_n} \mid n < \omega\} \cup \{M \cap \omega_1\}.$

Then $q \in P$, $q \leq p$ and q is (P, M)-generic.

Note 3.4. (1) P can not be ω -proper, since ω -proper is iterable under countable support and ω -proper preserves club guessing ([Sh1]).

(2) P is not only σ -Baire but forces \diamond . In particular, we have CH in V^P . But when we iterate this type of p.o. sets, we must add new reals at some limit stages. This is because we have $2^{\omega} = 2^{\omega_1} > \omega_1$ in the end. The reals added are far from being, say, Cohen reals, since ω^{ω} -bounding + proper is iterable under countable support. And we are certainly iterating with ω^{ω} -bounding + proper notions of forcing.

Theorem 3.5. There exists a countable support iteration $\langle P_{\alpha} | \alpha \leq \omega_2 \rangle$ of length ω_2 such that Code(even-odd) holds in the generic extensions of V via P_{ω_2} .

Proof. Since we iterate notions of forcing of size ω_1 under CH, we have the ω_2 -c.c. as long as iteration is of length at most ω_2 ([Sh1]). Hence by suitable book-keeping, we may take care of every pair of a ladder system and a subset of ω_1 in ω_2 steps.

Question 3.6. (1) Code(even-odd) implies \neg weak club guessing and $2^{\omega} = 2^{\omega_1}$. Does Code(even-odd) imply $2^{\omega} = \omega_2$? We have a coding principle which implies $2^{\omega} = 2^{\omega_1} = \omega_2$ and whose consistency strength is exactly that of a strongly inaccessible cardinal ([Mi]).

(2) It is shown Con(2^{ω} is large $+ \neg$ club guessing) via Cohen forcing in [Sa]. How about, as pointed out in [Sa], Con(2^{ω} is large $+ \neg$ weak club guessing)?

References

[A] D. Aspero, communications and e-mails, Dec 2007.

[D-D] H. Donder and O. Dieter, Canonical functions, non-regular ultrafilters and Ulam's problem on ω_1 , Journal of Symbolic Logic, Vol. 68 (2003), no. 3, pp. 713-739.

[I] T. Ishiu, Club guessing sequences and filters, *Journal of Symbolic Logic*, Vol. 70 (2005), no. 4, pp. 1037–1071.

[L-S] P. Larson and S. Shelah, Bounding by canonical functions, with CH, Journal of Mathematical Logic, Vol. 3 (2003), no. 2, pp. 193-215.

[Mi] T. Miyamoto, A coding and a strongly inaccessible cardinal, 14th January 2008.

[Mo] J. Moore, Set mapping reflection, Journal of Mathematical Logic, Vol. 5 (2005), no. 1, pp. 87–97. [Sa] H. Sakai, Preservation of \neg CG by finite support product of Cohen forcing, December 16, 2007 and e-mails Dec, 2007.

[Sh1] S. Shelah, *Proper and improper forcing*, Perspectives in Mathematical Logic, Springer-Verlag, 1998.

[Sh2] S. Shelah, NNR Revisited SH 656, 2000/March/14.

[W] H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideals, De Gruyter, 1999.

miyamoto@nanzan-u.ac.jp Division of Mathematics Nanzan University 27 Seirei-cho, Seto, Aichi 489-0863 JAPAN