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The variety of sa(X)
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In [3], Kada and Tomoyasu defined some cardinal characteristics concern-
ing approximating the Stone-Cech compactification of a metrizable space by
a family of its metric-dependent compactifications, and raised several ques-
tions on these characteristics. Since then, Kada, Tomoyasu and the author
have been studying this subject ([4], [6] and [5]). In this article the author
presents a few (rather simple) observations which were obtained in the au-
thor’s recent study, which was done as a part of this continuing joint research.

1 Basic definitions and backgrounds

For topological spaces X and aX satisfying X C aX, we say aX is a com-
pactification of X if aX is compact Hausdorff and X is dense in aX. For
compactifications aX, X of X, we denote aX >x vX if there is a con-
tinuous mapping of aX onto X which is identity on X. We also denote
aX ~x vX if aX >x vX >x aX holds, or equivalently there is a home-
omorphism between aX and vX which is identity on X. Note that ~x is
a (class) equivalent relation on the class Cpt(X) of compactifications of X,
and by identifying ~x-equivalent compactifications we may consider that
Cpt(X) is a set and that <x is a partial ordering of Cpt(X).
The following are well-known facts about Cpt(X).

Proposition 1. (1) Cpt(X) # 0 iff X is completely regular.

(2) If Cpt(X) # 0, (Cpt(X), <x) forms an upper semi-lattice. In particular,
Cpt(X) has the <x-largest element, the Stone-Cech compactification of
X, denoted as BX.
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An important tool to analyze the structure of (Cpt(X), <x) is a family
of Banach algebras of real-valued functions on X. Let C*(X) denote the
set of bounded continuous functions from X to R. C*(X) forms a (real)
Banach algebra with respect to the uniform norm. A subalgebra (as a Banach
algebra) C of C*(X) is said to be regular if for every closed F C X andz € X
there is f € C such that f(z) = 0 and f(p) = 1 for all p € F. Let R(X)
denote the class of regular subalgebras of C*(X).

For aX € Cpt(X) let C,x denote the set of functions in C* (X) which can
be continuously extended to a function on aX. Then Cox € R(X) holds.
The mapping which maps each aX € Cpt(X) to C,x gives an isomorphism
between (Cpt(X), <x) and (R(X), C). See [2] for more details.

Now suppose X is a metrizable space, and d is a metric on X which is
consistent with the topology of X. The Smirnov compactification ugX of X
with respect to d is defined so that

Cux = {f € C*(X) | f is uniformly continuous with respect to d}.

Note that if X is totally bounded with respect to d, ugX is exactly the same
as the completion of X with respect to d.

The following theorem shows that the class of Smirnov compactifications
of a space is rich enough to “generate”its Stone-Cech compactification.

Theorem 2. (Woods [8]) For any metrizable space X,
V uwX ~x BX

deM(X)

holds, where M(X) denotes the set of metrics on X which are consistent
with the topology of X, and the join in the left-hand side is taken in the
upper semilattice (Cpt(X), <x).

Inspired with this theorem, Kada and Tomoyasu raised the following gen-
eral question: For various metrizable spaces, how many metrics do we need
to generate their Stone-Cech compactifications?

Definition 3. (Kada and Tomoyasu [3]; see also [4]) For a metnza,ble space
X, define

sa(X) = min{|D| | D € M(X) A \/ uaX =x BX}.
deD
The following are general facts about sa(X):

Theorem 4. (Kada and Tomoyasu [3] for (1); Kada, Tomoyasu and Yoshi-
nobu (6] for (2); [5] for (3))
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(1) sa(X) = 1 holds if and only if the set of non-isolated points of X is
compact.

(2) If sa(X) # 1 then sa(X) > 0 (the dominating number).

(3) For an arbitrarily large cardinal 8, there exists a metrizable space X such
that sa(X) > 6.

On the other hand, if X is separable, sa(X) < ¢(= 2"°) holds since there
are at most ¢ metrics on X, and thus the problem comes within the range
of set theory of reals. The authors have been working on deciding sa(X) for
various separable X’s.

Theorem 5. (Kada, Tomoyasu and Yoshinobu [6] for (1); [5] for (2), (3))

(1) sa(X) = 9 holds for every non-compact, locally compact separable metriz-
able space X.

(2) 5a(Q) = sa(R\ Q) =2.
(3) sa(B) = ¢ for a Bernstein subset B of R.

Having these results, the following question was raised in [5].

Question 6. Is it consistent that there exists a separable metrizable space
X such that d < sa(X) < ¢?

If X is separable, X can be homeomorphically embedded into the Hilbert
cube H = “[0, 1] (with the product topology). So in such cases we regard X
as a subspace of H. Let us denote X* = X \ X, where X denotes the closure
of X in HL.

The following theorem, observed independently by Kada and Todoréevié,
shows that the study of sa(X) for a separable metrizable X can be reduced
to combinatorics on compact subsets of a separable metrizable space.

Theorem 7. (Kada, Todoréevié(see [5])) Suppose X C H and sa(X) > 1.
Then the following holds:

sa(X) = max{d, cof (K(X*), )},
where C(X*) denotes the class of compact subsets of X*.

Note that any separable metrizable space Y is homeomorphic to X* for
some X C H, since Y can be regarded as a subspace of {f € H | f(0) = 0},
which is homeomorphic to H itself, and thus by letting X = H \ Y we have
Y = X*. Therefore Question 6 is equivalent to the following:

Question 8. Is it consistent that there exists a separable metrizable space
Y such that 9 < cof(K(Y),C) <¢?
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2 “oo-bounding posets and countable compact
subsets of metrizable spaces

Here we introduce a property of posets and observe the effect of forcing by
posets with this property on the structure of countable compact subsets of
metrizable spaces.

Definition 9. Let P be a poset.

(1) For an ordinal A, IP is “A-bounding if for any f : w — X in V¥ there exists
a function F': w — [A]<“ in V such that Vn < w(f(n) € F(n)) holds.

(2) P is “oo-bounding if P is “A-bounding for all ordinal \.

(3) P is w-covering if whenever X is a countable set of ordinals in V¥ there
exists a countable set Y in V such that X C Y.

Note that if P is “oco-bounding, it is also true that for any f € V? from w |
to V, there exists a function F' € V' such that F(n) is finite and f(n) € F(n)
for all n < w.

Lemma 10. Suppose P is an “oo-bounding poset and X is a metrizable
space in V. Then any C C X in V*® which is countable and compact in VP
is covered by some Cp C X in V which is countable and compact in V.

Proof. Fix a metric d on X within V. We prove the lemma by induction on
the Cantor-Bendixson rank o of C. The case a = 0 is trivial, since in this
case C = @ holds. Otherwise, argue in V? for a while. By the compactness
of C, a = £ + 1 for some &, and letting F' denote the set of points of rank
€ in C, we have F is finite (non-empty) and thus is in V. Pick a positive
real do € V which is larger than the diameter of C (this is possible since C
is compact). For each n < w let

X, ={z€X| g}} > d(z, F) > 5,"%}, and K, = C N X,
Note that {X,}n<w is defined within V. Note also that each K, is a closed
subset of C' and thus is compact, and that FU|J, ., K» = C holds. Moreover,
the Cantor-Bendixson rank of each K, is strictly smaller than o, since K,
contains no points in F'. Now by the induction hypothesis, for each n < w
there exists a countable compact f(n) € V such that K, C f(n) C X.
Then by the note after Lemma 11 there exists a function H € V such that

H(n) is finite and f(n) € H(n) holds for all n < w. Moreover, we may



93

assume that each H(n) consists only of countable compact subsets of X, in
V. Now let Co = F U, .,UH(n). It is clear that Cp is a countable set
in V and C C Cy. To see that Cy is compact, let {z,} be any sequence in
Co. Then either lim,_, d(z,, F') = 0 holds, or, for infinitely many n’s z, is
in somie fixed | J H(m), which is a finite union of compact sets and thus is
itself compact. In any case, there exists a subsequence of {z,} converging to
a point in Cj. O
Remark

(1) The converse of Lemma 10 is also true. For an ordinal A, let X =
(w x A) U {(w,0)} and define a metric d on X as follows: for every
two distinct (m, a), (n,8) € X let d((m, @), (n, 8)) = 2-=={m"} Note
that for each f : w — A, C; = {(n,f(n)) | » < w}U{(w,0)} is a
(countable) compact subset of X, and that for any compact subset C' of
X, F(n) = {a < A | (n,a) € Cp} is finite for all n < w. Using these
facts one can show that the conclusion of Lemma 10 for this X implies
that P is “ A»-bounding.

(2) One can also show that for the conclusion of Lemma 10 only for separable
metrizable spaces, the assumption that PP is “¢c-bounding is sufficient (and
necessary).

The following is a useful criterion for a poset to be “co-bounding.

Lemma 11. For a poset P, the following are equivalent:
(a) P is “oo-bounding,
(b) P is “w-bounding and w-covering.

Proof. ((a)=(b)) Assume (a). It is enough to show that P is w-covering. Let
X be a countable set of ordinals in VF. Fix a surjection f : w — X. By (a)
there exists a function F' € V on w such that F(n) is finite and f(n) € F(n)
holds for all n < w. Thus |Jrange(F) is countable in V' and contains X.

((b)=>(a)) Assume (b). Let f € V? be any ordinal-valued function on w.
Since range(f) is a countable set of ordinals in V¥ and PP is w-covering, there
exists a countable set Y in V such that range(f) CY. Now let {¥m}m<. be
an enumeration of Y in V, and define g : w — w so0 that f(n) = yg(n) holds
for each n < w. Since g € V? and P is “w-covering, there exists a function
G : w — w in V such that g(n) < G(n) for all n < w. Define F' so that
F(n) = {ym | m < G(n)} for each n < w. Then F € V and for all n < w
F(n) is finite and f(n) € F(n) holds. O
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3 Consistency of ? < sa(X) < ¢

For an infinite cardinal x, let B(x) denote the measure algebra on x. It is
well-known that B(k) is “w-bounding (see [1]), and is also w-covering since
it satisfies the countable chain condition. Thus by Lemma 11 B(x) is “oo-
bounding. The following theorem gives an affirmative answer to Questmn 8
and thus to Question 6 in a strong sense.

Theorem 12. Assume GCH and & is a cardinal in V. Then in VB®), for

every cardinal 0 satisfying 9(= R;) < 8 < ¢ there exists a separable metrizable
space X such that sa(X) =

Proof. We may assume ? < @ < c, since the cases § = 9 and @ = ¢ are already
done (Theorem 5). Under this assumption we have § < k. By Theorem 7 it
is enough to show that there exists a set Y C H such that cof (KX (Y), C) =
Case 1 cff # w.

We will use the fact that B(x) can be factorized as B(d) *B(x \ 6). Argue
in VB®), Let Y = HN VBO), Note that [Y| = ¢"™® = < ¢, and thus any
compact subset of Y is at most countable. This shows that cof(K(Y), C) > 6,
since any C-cofinal subfamily of X(Y") must cover Y. On the other hand, let
F be the family of countable compact subsets of H computed in VB®. Then
|F| = 6, and since VB*) is an “co-bounding extension of VB®) by Lemma
10, F remains to be a C-cofinal subfamily of K(Y) in VB®?!  This shows
that cof(K(Y),C) < 6.

Case 2 cff = w.

Argue in VB(®) again. Let {6, }n<w be regular uncountable cardinals such
that sup, ., 6, = 0. Case 1 shows that for each n < w there exists a set
Y, € H such that |Y;| = 6, and cof (K(Y,,),C) = 6,. Let K, be a C-cofinal
subfamily of X(Y},) such that |[KC,| = 6,. Now let

Y={f€H|3n<UJ(f(O)=l/\f€Yn)}’

where f € H is defined by f(n) = f(n+1) (Vo < w) for f € H. Then
Y| = 6 and by the same argument as in Case 1 we have cof (K(Y), C) > 6.
Now note that any compact subset of Y is of the form |J,,, Kn for some
m < w, where each K, is a compact subset of Y', = {f €Y | f(0) =
Therefore

K={{J K |m<w/\Vn<m({f|f€K,,,}€)Cn)}

n<m
1Here we used the fact that the compactness of a countable metric space is upward-
_ absolute. This follows from the fact that the compactness of a countable metric space is
a I1}-statement about its metric.
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forms a C-cofinal subfamily of (Y. It is easy to check that |K| = € holds.
This shows that cof (K(Y),C) < 6. O

After having the above observation, the author noticed that older studies
had already suggested that if 8 € [0, ¢] is small enough, it is always the case
that there exists a separable metrizable space X such that sa(X) = 6.

Theorem 13. (van Douwen [7, Theorem 8.10(a), (b)]) For a countable met-
ric space X, cof(K(X), €) < 0 holds.

Corollary 14. For any cardinal 8 satisfying 9 < 6 < min{R,, ¢} there exists
a separable metrizable X such that sa(X) =6.

Proof. Again we may assume 9 < § < ¢, and it is enough to show that there
exists a set Y C H such that cof (K(Y),C) = 6.

Casge 1 6 = R, for some n < w (thus in fact n > 1).

First note that [§]<™ has a C-cofinal subfamily of size 6: w; is a C-cofinal
subfamily of [wy]S® of size w;. If K, is a C-cofinal subfamily of [wp]S™° of
size Ny, then it is easy to see that U, ,, ., (f™)" Ko is & C-cofinal subfamily

of [Wim+1]™° of size Npiy (Where fI* denotes a surjection from wnm, to ~).

Pick any Y C H of size §. Since every compact subset of Y is countable,
by the same argument as in the proof of Theorem 12, cof(KX(Y),C) = 6
holds. On the other hand, letting C be a C-cofinal subfamily of [Y]<*° of size
6, by Theorem 13 we have

cof (K(¥), ) < 3 cof(K(X), ) < [¢] -0 = 6.

Xec
Case 2 0 = N,,.
This case can be dealt with in exactly the same way as in Case 2 in the
proof of Theorem 12, using Case 1. O

Having these results, our next question becomes of the following kind,
somewhat with an opposite tone to Question 6.

Question 15. Is it consistent that 9 < R,41 < ¢ no separable metrizable
space X satisfies sa(X) = N,417 More generally, is it consistent that there
exists a cardinal 6 such that ® < § < ¢ with no separable metrizable space
X such that sa(X) = 67
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