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In [3], Kada and Tomoyasu defined some cardinal characteristics concern-
ing approximating the Stone-0ech compactification of a metrizable space by
a family of its metric-dependent compactifications, and raised several ques-
tions on these characteristics. Since then, Kada, Tomoyasu and the author
have been studying this subject ([4], [6] and [5]). In this article the author
presents a few (rather simple) observations which were obtained in the au-
thor’s recent study, which was done as a part of this continuing joint research.

1 Basic definitions and backgrounds

For topological spaces $X$ and $\alpha X$ satisfying $X\subseteq\alpha X$ , we say $\alpha X$ is a $comarrow$

pactification of $X$ if $\alpha X$ is compact Hausdorff and $X$ is dense in $\alpha X$ . For
compactifications $\alpha X,$ $\gamma X$ of $X$ , we denote $\alpha X\geq x\gamma X$ if there is a con-
tinuous mapping of $\alpha X$ onto $\gamma X$ which is identity on $X$ . We aiso denote
$\alpha X\simeq x\gamma X$ if $\alpha X\geq x\gamma X\geq x\alpha X$ holds, or equivalently there is a home-
omorphism between $\alpha X$ and $\gamma X$ which is identity on $X$ . Note $that\simeq x$ is
a (class) equivalent relation on the class Cpt(X) of compactifications of $X$ ,
and by identifying $\simeq x$-equivalent compactifications we may consider that
Cpt(X) is a set and that $\leq x$ is a partial ordering of Cpt(X).

The following are $wen$-known facts about Cpt(X).

Proposition 1. (1) $Cpt(X)\neq\emptyset$ iff $X$ is completely regular.

(2) If $Cpt(X)\neq\emptyset,$ $(Cpt(X), \leq x)$ forms an upper semi-lattice. In particular,
Cpt(X) has the $\leq x$-largest element, the Stone-\v{C}ech compactification of
$X$ , denoted as $\beta X$ .
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An important tool to analyze the structur$e$ of (Cpt(X), $\leq x$ ) is a family
of Banach algebras of real-valued functions on $X$ . Let C’(X) denote the
set of bounded continuous functions from $X$ to $\mathbb{R}$ . $C^{*}(X)$ forms a (real)
Banach algebra with respect to the uniform norm. A subalgebra (as a Banach
algebra) $C$ of C’(X) is said to be regular if for every closed $F\subseteq X$ and $x\in X$

ther$e$ is $f\in C$ such that $f(x)=0$ and $f(p)=1$ for ffi $p\in F$ . Let $\mathcal{R}(X)$

denot$e$ the class of regular subalgebras of $C(X)$ .
For $\alpha X\in Cpt(X)$ let $C_{aX}$ denote the set of functions in $C$“ (X) which can

be continuously extended to a function on $\alpha X$ . Then $C_{\alpha X}\in \mathcal{R}(X)$ holds.
The mapping which maps each $\alpha X\in Cpt(X)$ to $C_{\alpha X}$ gives an isomorphism
between (Cpt(X), $\leq x$ ) and $(\mathcal{R}(X), \subseteq)$ . See [2] for more details.

Now suppose $X$ is a metrizable space, and $d$ is a metric on $X$ which is
consistent with the topology of $X$ . The Smimov compactification $u_{d}X$ of $X$

with respect to $d$ is defined so that

$C_{u_{d}\dot{X}}=$ {$f\in C^{*}(X)|f$ is uniformly continuous with respect to $d$}.

Note that if $X$ is totally bounded with respect to $d,$ $u_{d}X$ is exactly the same
as the completion of $X$ with respect to $d$ .

The following theorem shows that the class of Smirnov compactifications
of a space is rich enough to “generate”its Stone-\v{C}ech compactification.

Theorem 2. (Woods [8]) For any metrizable space $X$ ,

$\vee$ $u_{d}X\simeq x\beta X$

$d\in M(X)$

holds, where $M(X)$ denotes the set of metrics on $X$ which are consistent
with the topology of $X$ , and the join in the left-hand side is taken in the
upper semilattice (Cpt(X), $\leq x$ ).

Inspired with this theorem, Kada and Tomoyasu raised the following gen-
eral question: For various metrizable spaces, how many metrics do we need
to generate their Stone-0ech compactifications?

Definition 3. (Kada and Tomoyasu [3]; see $dso[4]$ ) For a metrizable space
$X$ , define

$\mathfrak{s}\mathfrak{a}(X)=\min${ $|D||D\subseteq M(X)$ A $d\in D\vee u_{d}X\simeq x\beta X$}.

The foNowing are general facts about sa(X):

Theorem 4. (Kada and Tomoyasu [3] for (1); Kada, Tomoyasu and Yoshi-
nobu [6] for (2); [5] for (3))
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(1) sa(X) $=1$ holds if and only if the set of non-isolated points of $X$ is
compact.

(2) If $\mathfrak{s}\mathfrak{a}(X)\neq 1$ then sa(X) $\geq \mathfrak{d}$ (the dominating number).

(3) For an $ax$bitrarily large cardinal $\theta$ , ther$e$ exists a metrizable space $X$ such
that sa(X) $\geq\theta$ .
On the other hand, if $X$ is separable, sa(X) $\leq c(=2^{\aleph_{0}})$ holds since there

are at most $c$ metrics on $X$ , and thus the problem comes within the range
of set theory of reals. The authors have been working on deciding sa(X) for
various separable $X’ s$ .
Theorem 5. (Kada, Tomoyasu and Yoshinobu [6] for (1); [5] for (2), (3))

(1) sa(X) $=\mathfrak{d}$ holds for every non-compact, locally compact separable metriz-
able space $X$ .

(2) $\alpha \mathfrak{a}(\mathbb{Q})=sa(\mathbb{R}\backslash \mathbb{Q})=\mathfrak{d}$ .
(3) $za(\mathbb{B})=c$ for a Bernstein subset $\mathbb{B}$ of R.

Having these results, the following question was raised in [5].

Question 6. Is it consistent that there exists a separable metrizable space
$X$ such that $\theta<\mathfrak{s}a(X)<c$?

If $X$ is separable, $X$ can be homeomorphically embedded into the Hilbert
cube $\mathbb{H}=w[0,1]$ (with the product topology). So in such cases we regard $X$

as a subspace of $\mathbb{H}$ . Let us denote $X^{*}=\overline{X}\backslash X$ , where $\overline{X}$ denotes the closure
of $X$ in $\mathbb{H}$ .

The following theorem, observed independently by Kada and $Todor6evi6$,
shows that the study of sa(X) for a separable metrizable $X$ can be reduced
to combinatorics on compact subsets of a separable metrizable space.

Theorem 7. (Kada, $Todor\check{\text{\v{c}}}evi\acute{c}(see[5])$ ) Suppose $X\subseteq \mathbb{H}$ and sa(X) $>1$ .
Then the following holds:

$\mathfrak{s}\mathfrak{a}(X)=\max\{\mathfrak{d}, cof(\mathcal{K}(X^{*}), \subseteq)\}$ ,

where $\mathcal{K}(X$
“

$)$ denotes the class of compact subsets of $X^{*}$ .

Note that any separable metrizable space $Y$ is homeomorphic to $X$“ for
some $X\subseteq \mathbb{H}$ , since $Y$ can be regarded as a subspace of $\{f\in \mathbb{H}|f(O)=0\}$ ,
which is homeomorphic to $\mathbb{H}$ itself, and thus by letting $X=\mathbb{H}\backslash Y$ we have
$Y=X^{*}$ . Therefore Question 6 is equivalent to the $f_{0}n_{oW}ing$ :

Question 8. Is it consistent that there exists a separable metrizable space
$Y$ such that $\mathfrak{d}<cof(\mathcal{K}(Y), \subseteq)<c$ ?
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2 $\omega\infty$-bounding posets and countable compact
subsets of metrizable spaces

Here we introduc$e$ a property of posets and observe the effect of forcing by
posets with this property on the structure of countable compact subsets of
metrizable spaces.

Deflnition 9. Let $\mathbb{P}$ be a poset.

(1) For an ordinal $\lambda,$ $\mathbb{P}$ is $\omega_{\lambda}$-bounding if for any $f$ : $\omegaarrow\lambda$ in $V^{P}$ there exists
a fiiction $F:\omegaarrow[\lambda]<d$ in $V$ such that $\forall n<\omega(f(n)\in F(n))$ holds.

(2) $\mathbb{P}$ is $\omega\infty$ -bounding if $\mathbb{P}$ is $w\lambda$-bounding for all ordinal $\lambda$ .

(3) $\mathbb{P}$ is $\omega$ -covering if whenever $X$ is a countable set of ordinais in $V^{P}$ there
exists a countable set $Y$ in $V$ such that $X\subseteq Y$ .

Note that if $\mathbb{P}$ is $w\infty$-bounding, it is ako true that for any $f\in V^{P}$ from $\omega$

to $V$ , there exists a function $F\in V$ such that $F(n)$ is finite and $f(n)\in F(n)$

for all $n<\omega$ .

Lemma 10. Suppose $\mathbb{P}$ is an $\nu\infty$-bounding poset and $X$ is a metrizable
space in $V$ . Then any $C\subseteq X$ in $V^{P}$ which is countable and compact in $V^{P}$

is covered by some $C_{0}\subseteq X$ in $V$ which is countable and compact in $V$ .

Proof. Fix a metric $d$ on $X$ within $V$ . We prove the lemma by induction on
the Cantor-Bendixson rank $\alpha$ of $C$ . The case $\alpha=0$ is trivial, since in this
case $C=\emptyset$ holds. Otherwis$e$ , argue in $V^{P}$ for a while. By the compactness
of $C,$ $\alpha=\xi+1$ for some $\xi$ , and letting $F$ denot$e$ the set of points of rank
$\xi$ in $C$ , we have $F$ is finit$e$ (non-empty) and thus is in $V$ . Pick a positive
real $d_{0}\in V$ which is larger than the diameter of $C$ (this is possible since $C$

is compact). For each $n<\omega$ let

$X_{n}= \{x\in X|\frac{d_{0}}{2^{n}}\geq d(x, F)\geq\frac{d_{0}}{2^{n+1}}\}$ , and $K_{n}=C\cap X_{n}$ .

Note that $\{X_{n}\}_{n<\omega}$ is defined within $V$ . Note also that each $K_{n}$ is a closed
subset of $C$ and thus is compact, and that $F \cup\bigcup_{n<w}K_{n}=C$ holds. Moreover,
the Cantor-Bendixson rank of each $K_{n}$ is strictly smaller than $\alpha$ , since $K_{n}$

contains no points in $F$ . Now by the induction hypothesis, for each $n<\omega$

there exists a countable compact $f(n)\in V$ such that $K_{n}\subseteq f(n)\subseteq X$ .
Then by the note after Lemma 11 there exists a function $H\in V$ such that
$H(n)$ is finite and $f(n)\in H(n)$ holds for all $n<\omega$ . Moreover, we may

92



assume that each $H(n)$ consists only of countable compact subsets of $X_{n}$ in
V. Now let $C_{0}=F \cup\bigcup_{n<w}\cup H(n)$ . It is clear that $C_{0}$ is a countable set
in $V$ and $C\subseteq C_{0}$ . To see that $C_{0}$ is compact, let $\{x_{n}\}$ be any sequence in
$C_{0}$ . Then either $1_{\dot{i}1_{narrow\infty}}d(x_{n}, F)=0$ holds, or, for infinitely many $n’ sx_{n}$ is
in some fixed $\cup H(m)$ , which is a finite union of compact sets and thus is
itself compact. In any case, there exists a subsequenc$e$ of $\{x_{n}\}$ converging to
a point in $C_{0}$ . $\square$

Remark

(1) The converse of Lemma 10 is also true. For an ordinal $\lambda$ , let $X=$
$(\omega\cross\lambda)\cup\{(\omega, 0)\}$ and define a metric $d$ on $X$ as follows: for every
two distinct $(m, \alpha),$ $(n,\beta)\in X$ let $d((m, \alpha),$ $(n,\beta))=2^{-\min\{m,n\}}$ . Note
that for each $f$ : $\omegaarrow\lambda,$ $C_{f}=\{(n, f(n))|n<\omega\}\cup\{(\omega, 0)\}$ is a
(countable) compact subset of $X$ , and that for any compact subset $C$ of
$X,$ $F(n)=\{\alpha<\lambda|(n, \alpha)\in C_{0}\}$ is finite for all $n<\omega$ . Using these
facts one can show that the conclusion of Lemma 10 for this $X$ implies
that IP is $w\lambda$-bounding,

(2) One can also show that for the conclusion of Lemma 10 only for separable
metrizable spaces, the assumption that $\mathbb{P}$ is $w$ c-bounding is sufficient (and
necessary).

The following is a useful criterion for a poset to be $\omega\infty$-bounding.

Lemma 11. For a poset $\mathbb{P}$ , the following are equivalent:

(a) $\mathbb{P}$ is $w\infty$-bounding,

(b) $\mathbb{P}$ is $w\omega$-bounding and $\omega$-covering.

Proof. $((a)\Rightarrow(b))$ Assume (a). It is enough to show that $\mathbb{P}$ is $\omega$-covering. Let
$X$ be a countable set of ordinals in $V^{P}$ . Fix a surjection $f$ : $\omegaarrow X$ . By (a)
there exists a function $F\in V$ on $\omega$ such that $F(n)$ is finite and $f(n)\in F(n)$

holds for all $n<\omega$ . Thus $\cup range(F)$ is countable in $V$ and contains $X$ .
$((b)\Rightarrow(a))$ Assume (b). Let $f\in V^{P}$ be any ordinal-valued function on $\omega$ .
Since raJlge$(f)$ is a countable set of ordinals in $V^{P}$ and $\mathbb{P}$ is $\omega$-covering, there
exists a countable set $Y$ in $V$ such that range$(f)\subseteq Y$ . Now let $\{y_{m}\}_{m<w}$ be
an enumeration of $Y$ in $V$ , and define $g$ : $\omegaarrow\omega$ so that $f(n)=y_{g(n)}$ holds
for each $n<\omega$ . Since $g\in V^{P}$ and $\mathbb{P}$ is $w\omega$-covering, there exists a function
$G$ : $\omegaarrow\omega$ in $V$ such that $g(n)<G(n)$ for all $n<\omega$ . Define $F$ so that
$F(n)=\{y_{m}|m<G(n)\}$ for each $n<\omega$ . Then $F\in V$ and for all $n<\omega$

$F(n)$ is finit$e$ and $f(n)\in F(n)$ holds. $\square$
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3 Consistency of $\mathfrak{d}<\mathfrak{s}\mathfrak{a}(X)<c$

For an infinite cardinal $\kappa$ , let $\mathbb{B}(\kappa)$ denote the measure algebra on $\kappa$ . It is
well-known that $\mathbb{B}(\kappa)$ is $w\omega$-bounding (see [1]), and is ako $\omega$-covering since
it satisfies the countable chain condition. Thus by Lemma 11 $\mathbb{B}(\kappa)$ is $w\infty-$

bounding. The following theorem gives an affirmative answer to Question 8
and thus to Question 6 in a strong sense.
Theorem 12. Assume GCH and $\kappa$ is a cardinal in $V$ . Then in $V^{B(\kappa)}$ , for
every $cardinal\theta satis\phi ing\mathfrak{D}(=\aleph_{1})\leq\theta\leq c$ there exists a separable metrizable
space $X$ such that $\ovalbox{\tt\small REJECT} \mathfrak{a}(X)=\theta$ .
Proof. We may assume $\mathfrak{d}<\theta<c$ , since the cases $\theta=\mathfrak{d}$ and $\theta=c$ are already
done (Theorem 5). Under this assumption we have $\theta\leq\kappa$ . By Theorem 7 it
is enough to show that there exists a set $Y\subseteq \mathbb{H}$ such that $cof(\mathcal{K}(Y), \subseteq)=\theta$.
Case 1 $cf\theta\neq\omega$ .

We $wiU$ us$e$ the fact that $\mathbb{B}(\kappa)$ can be factorized as $\mathbb{B}(\theta)*\dot{\mathbb{B}}(\kappa\backslash \theta)$ . Argue
in $V^{B(\kappa)}$ . Let $Y=\mathbb{H}\cap V^{B(\theta)}$ . Note that $|Y|=c^{V^{r(\theta)}}=\theta<c$ , and thus any
compact subset of $Y$ is at most countable. This shows that $cof(\mathcal{K}(Y), \subseteq)\geq\theta$ ,
since $any\subseteq$-cofinal subfamily of $\mathcal{K}(Y)$ must cover Y. On the other hand, let
$\mathcal{F}$ be the family of countable compact subsets of $\mathbb{H}$ computed in $V^{B(\theta)}$ . Then
$|\mathcal{F}|=\theta$ , and since $V^{B(\kappa)}$ is an $w\infty$-bounding extension of $V^{B(\theta)}$ , by Lemma
10, $\mathcal{F}$ remains to be $a\subseteq$-cofinal subfamily of $\mathcal{K}(Y)$ in $V^{B(\kappa)1}$ . This shows
that $cof(\mathcal{K}(Y), \subseteq)\leq\theta$ .
Case 2 $cf\theta=\omega$ .

Argue in $V^{B(\kappa)}$ again. Let $\{\theta_{n}\}_{n<w}$ be regular uncountable cardinals such
that $\sup_{n<w}\theta_{n}=\theta$ . Cas$e1$ shows that for each $n<\omega$ there exists a set
$Y_{n}\subseteq \mathbb{H}$ such that $|Y_{n}|=\theta_{n}$ and $cof(\mathcal{K}(Y_{n}), \subseteq)=\theta_{n}$ . Let $\mathcal{K}_{n}$ be $a\subseteq$-coflnal
subfamily of $\mathcal{K}(Y_{n})$ such that $|\mathcal{K}_{n}|=\theta_{n}$ . Now let

$Y=\{f\in \mathbb{H}|\exists n<w(f(0)=\frac{1}{n}\wedge-\in Y_{n})\}$ ,

where $\overline{f}\in \mathbb{H}$ is defined by $\overline{f}(n)=f(n+1)(\forall n<\omega)$ for $f\in \mathbb{H}$ . Then
$|Y|=\theta$ and by the same argument as in Cas$e1$ we have $cof(\mathcal{K}(Y), \subseteq)\geq\theta$ .
Now note that any compact subset of $Y$ is of the form $\bigcup_{n<m}K_{n}\cdot\cdot for$ some
$m<\omega$ , where each $K_{n}$ is a compact subset of $Y_{n}’=\{f\in Y|f(O)=\frac{1}{n}\}$ .
Therefore

$\mathcal{K}=\{\cup K_{n}|m<\omega\wedge\forall n<m(\{\overline{f}|\underline{n<m}f\in K_{n}\}\in \mathcal{K}_{n})\}$

lHere we used the fact that the compactness of a countable metric space is upward-
absolute. This folows from the fact that the compactness of a countable metric space is
a $\Pi_{1}^{1}$-statement about its metric.
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forms $a\subseteq$-cofinal subfamily of $\mathcal{K}(Y)$ . It is easy to check that $|\mathcal{K}|=\theta$ holds.
This shows that $cof(\mathcal{K}(Y), \subseteq)\leq\theta$ . $\square$

After having the above observation, the author noticed that older studies
had already suggested that if $\theta\in[\mathfrak{d}, c]$ is small enough, it is always the case
that there exists a separable metrizable space $X$ such that sa(X) $=\theta$ .
Theorem 13. (van Douwen [7, Theorem 8.10(a), $(b)]$ ) For a countable met-
ric spac$eX,$ $cof(\mathcal{K}(X), \subseteq)\leq \mathfrak{d}$ holds.
Corollary 14. For any cardinal $\theta$ satisfying $\mathfrak{d}\leq\theta\leq\min\{\aleph_{w}, c\}$ there exists
a separable metrizable $X$ such that $\mathfrak{s}a(X)=\theta$ .

Proof. Again we may assume $\mathfrak{d}<\theta<c$ , and it is enough to show that there
exists a set $Y\subseteq \mathbb{H}$ such that $cof(\mathcal{K}(Y), \subseteq)=\theta$ .
Case 1 $\theta=\aleph_{n}$ for some $n<\omega$ (thus in fact $n>1$).

First note that $[\theta]\leq\aleph_{0}$ has $a\subseteq$-cofinal $subf_{\bm{t}1}4y$ of siz$e\theta:w_{1}$ is $a\subseteq$-cofinal
subfamily of $[w_{1}]\leq\aleph_{0}$ of size $\omega_{1}$ . If $K_{m}$ is $a\subseteq$-cofinal subfamily of $[w_{m}]\leq\aleph 0$ of
size $\aleph_{m}$ , then it is easy to see that $\bigcup_{\gamma<w_{m+1}}(f_{\gamma}^{m})’’K_{m}$ is $a\subseteq$-cofinal subfamily
of $[\omega_{m+1}]\leq\aleph_{0}$ of size $\aleph_{m+1}$ (where $f_{\gamma}^{m}$ denotes a surjection from $\omega_{m}$ to $\gamma$).

Pick any $Y\subseteq \mathbb{H}$ of size $\theta$ . Since every compact subset of $Y$ is countable,
by the same argument as in the proof of Theorem 12, $cof(\mathcal{K}(Y), \subseteq)\geq\theta$

holds. On the other hand, letting $C$ be $a\subseteq$-cofinal subfamily of $[Y]\leq\aleph_{0}$ of size
$\theta$ , by Theorem 13 we have

$cof(\mathcal{K}(Y), \subseteq)\leq\sum_{X\in C}cof(\mathcal{K}(X), \subseteq)\leq|C|\cdot \mathfrak{d}=\theta$
.

Case 2 $\theta=\aleph_{w}$ .
This case can be dealt with in exactly the same way as in Cas$e2$ in the

proof of Theorem 12, using Case 1. $\square$

Having these results, our next question becomes of the foUowing kind,
somewhat with an opposite tone to Question 6.

Question 15. Is it consistent that $\mathfrak{d}<\aleph_{w+1}<c$ no separable metrizable
space $X$ satisfies sa(X) $=\aleph_{w+1}$ ? Mor$e$ generally, is it consistent that there
exists a caxdinal $\theta$ such that $\mathfrak{d}<\theta<c$ with no separable metrizable space
$X$ such that sa(X) $=\theta$?
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