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ABSTRACT. We introduce a new model of block matrix operator M{a, 8) induced by
two sequences a and § and characterize its p-hyponormality. The model induces a
measurable transformation T on the set of nonnegative integers Ny with point mass and
composition operator Cr on [? := [2(Np). The techniques via composition operators
will be used to treat p-hyponormality of M(«, 5) and provide some interesting theorems

about p-hyponormality. Finally, we apply our results to obtain examples of p-hyponormal
making distinct as usual.

1. Introduction and Preliminaries. This was talked at the 2008 RIMS conference:
Inequalities on linear operators and its applications, which was held at Kyoto University
on January 30-February 1 in 2008.

Let H be a separable, infinite dimensional complex Hilbert space and let £(H) be the
algebra of all bounded linear operators on H. An operator T € L(H) is said to be p-
hyponormal if (T*T)? > (TT*)?, p € (0,00). If p=1, T is hyponormal and if p= 3, T is
semi-hyponormal ([Xi]). In particular, T is said to be co-hyponormal if it is p-hyponormal
for all p > 0 ([MS]). The Léwner-Heinz inequality implies that every p-hyponormal op-
erators are g-hyponormal operators for ¢ < p and many operator theorists have studied
properties in operators in those classes; for examples, spectral theory, operator inequali-
ties, and invariant subspaces, etc. (cf. [BJ], [Fur], [IY], [JKP], [JLPa]). Also, the study
of gaps between subnormality and hyponormality has been studied in several areas by
many operator theorists, and whose study is growing up still. ' The p-hyponormality is
contained in those studies, but new models for p-hyponormal operators need to be devel-
oped still. And also, Jung-Lee-Park constructed examples induced by some block matrix
operators in [JLP] and [JLL], in which the classes of those operators are distinct with
respect to any positive real number p. Recently Burnap-Jung-Lambert discussed some
models via composition operator Cr on.L? in [BJL] and [BJ], in which such classes of-
weak hyponormal operators are distinct for each p. Moreover, they used the notion of
conditional expectations for studying of p-hyponormality of Cr, which will be also main
tool of this note. Here are some terminologies for conditional expectation. Let (X, F, u)
be a o finite measure space and let T : X — X be a transformation such that T-'F C F
and poT~! < p. It is assumed that the Radon-Nikodym derivative b = duoT"!/du is in
L>. The composition operator Cr acting on L? := L*(X, F, 1) is defined by Crf = foT.
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The condition h € L™ assures that Cr is bounded. And we denote Ef = E(f|T™'F)
for the conditional expectation of f with respect to T-!F. Some useful results will come
from [L], [BJL], and [HWh)]. In particular, in the proofs and examples below, we will have
need of the following special case: if A is the purely atomic o-subalgebra of F generated
by the measurable partition of X into sets of positive measure {4 }x>0, then

B =3 s ([ F00auta)) o

k=0

. The interested readers can find a more extensive list of properties for conditional expec-
tations in [BJL] and [Ra).

This article consists of five sections. In Section 2, we construct a block matrix operator
induced by two sequences o and 3, which will make distinct classes of p-hyponormal oper-
ators with respect to p > 0 later section. A block matrix operator M (e, 3) induced by two
sequences a and 3 provides a measurable transformation T' on Ny with point mass mea-
sure on Ny and its corresponding composition operator Cr on [? is equivalent to M(a, B).
In Section 3, we characterize block matrix operators' M (e, 3) for p-hyponormality and
construct a useful form for distinction examples. In Section 4, we discuss a flatness of
p—hyponormality about block matrix operator M(a, 8): the co-hyponormality of M (e, 3)
is equwalent to any[some] p-hyponormality under some conditions. Finally, in Section 5,
we give some examples being distinct the classes of p-hy})onormal operators.

This article will be appeared in other journal as the full version. And so we skip the
detail proofs here.

2. Relationships. Let o := {a )} 15isr and 3 := {b }1<,<s be bounded sequences

of positive real numbers. Let M = [A ,J]C,S,,J <00 De 2 block matrzx operator whose blocks
are (r + s) x (s + 1) matrices such that A;; =0, ¢ # j, and

[ \
e O

Ap = Apn = b(n) ) (21)
1

\Q' - o

where other entries are 0 except a{™ and b™ indicated in (2.1). Obviously such block
matrix operator M is bounded. » ‘

Definition 2.1. For two bounded sequences o := {a } 1gisr and 8 := {b( } Jsiss
n<oo

the block matrix operator M = M/(a, B) satisfying (2.1) is ca.lled a block matriz operator
with weight sequence (c, ).

Let M be a block matrix operator with weight sequence (a, 8) and let W, g be its cor-
responding operator on [? relative to some orthonormal bases. Then W, g has a duplicate

form; for example, if we take r = 3, s = 2 and a,(") = bg-") =1 for all 4, j,n € N, then the
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block matrix operator with (e, ) is unitarily equivalent to the following operator W, g
on 2 defined by

Wa.ﬁ(xhx?r I3,T4,T5,""" ) = (:rl)ml;-’rla I2,T3,24,T4,T4,T5,T6,T7,T7,T7," """ )
(3) (3) (3)

For arbitrary block matrix operator M with weight sequence (o, 3), since M is p-
hyponormal if and only if oM is p-hyponormal for any[some] positive real number a, we
may assume a§°> = 1, which will be assumed throughout this note.

We now return to our work, in particular, consider X = Ny := NU {0} and the power
set P(X) of X for the o-algebra F. Define a non-singular measurable transformation T
on Nj such that

T k(s+1)={k(r+s)+i-1:0<i<r}, k=0,1,2,---, (2.2)

THk(s+ 1) +3)=k(r+s)+r—1+14, 1<i<s, k=0,1,2---.

We write m({i}) := m; for a point mass measure on X.

Proposition 2.2. Under the above notation, the composition operator Cr on I? defined
by Crf = foT is unitarily equivalent to the block matriz operator M(a,f3), where

ool = [P (1< <r) and B8 = | [Teletatisl (1 <G <), e No.

Mn(s41)+5
Proposition 2.3. Let M(a,B) be a block matriz with weight sequence (a, 3), where
Q= {a,(”)} 1<i<r , B = {bg-n)} 1<j<s , and -a&o) = 1. Then there exists a measurable trans-
: 0<n<oo 0<n<oo

formation T on a o finite measure space (No, P(No),m) such that M(a,B) is unitarily
equivalent to a composition operator Cr on I2.

3. Some Characterizations. Let T be a non-singular measurable transformation on
I? as in (2.2) and let m({i}) = m; be the point mass on Np.

Theorem 3.1. Let p € (0,00). Then the following assertions are equivalent:
(1) Cr is p-hyponormal on I2;

(ii) the block matriz operator M(a, 8) as in Proposition 2.2 is p-hyponormal;
(i) £ (1/hP) (n) < 1/(hP o T)(n)

(iv) it holds that

1 m;’mj TN (n) P
m(T-HT(n)) 2. m@G)P = (m(T‘l(T(n))) » nee

JET-Y(T(n))

Remark 3.2. By some formulas in the proof of Theorem 3.1, we have the following
assertions: '
g.ll)l M(a, B) is co-hyponormal if and only if m(T~(n))/mn > m(T-YT(n))/m(T(n)) for

ne No.
(i) %(a, B) is quasinormal if and only if m(T~(n))/my, = m(T~YT(n))/m(T(n)) for all
n € Ny. .
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To obtain more useful and simpler form for p-hyponormality of M(«, 3), we consider a
block matrix operator M as following:

M(o,B) : A= A; = Ay = --- (with notation in (2.1)) with
a:aE")-_——a,-,neNo, 1<i<m (3.1)
B:b =b;, n€Ny; 1<j <. <

This type will be used usefully to obtain examples being distinct classes of p-hyponormal
operators in Section 5.

Theorem 3.3. Let M(a,[) be as in (3.1). Then the block matriz operator M(a, ) is
p-hyponormal if and only if the following two cases hold
(@) forn=k(r+s)+i—-1 (1<i<r),

1 P a?j . 1 a?J
Z Zl<'<r a,? 1<i<r a? * Zl< i< a?
JET~H(T(n)) St =t= JET‘I(T(H)) 137
7=0 mod(s+1) j#0 mod(s+1)

» _
1
Sl=s=——=], 1<4<r1<;<s, (3.2)
_ (219’9“?) ? !
() form=k(r+s)+r+j—-1 (1<j<s),

(ii-a) b2 <Y icicr@f if n=0 mod(s+1)

(ii-b) b2 < b2 if n#0 mod(s+ 1) and for some t,, (1< t, < s).

The following is a special case of Theorem 3.3, which provides a simple form.

Corollary 3.4. Let M := M(a, 3) be as in (3.1) with a(") =a(l1<i<r)and b( M=}

(1 <j<s). Then M is p-hyponormal if and only if the followzng two cases hold:
() forn=k(r+s)+i—1 (1 <i<r),

S @) T owml=(m)
ra? | — \ra2/ ’

FET=H(T(n)) JET~HT(n))

j=0 mod(s+1) Jj#0 mod(s+1)

(ii) for n=lc(r+s)+r+] —1 (1 <7<5s), b? < ra? holds.

Note that if we are under type of Theorem 3.3 (which will be called “type I") it will be
important to know which j in T~!(T'(n)) have various j = t; mod(s + 1) which if we are
under type of Corollary 3.4 (which will be called “type II”) it is only important to know
how many j are of various j = ¢t; mod(s + 1). Then we have the following remark.

[}

Remark 3.5 (Special case of Corollary 3.4 with r = N(s + 1)). In this case for
n=n(r+s)+i—1, 1 <i<r theset of l in T-}(T'(n)) contains exactly N elements of
each modulus, mod(s + 1). So under type II the test (3.2) for such n becomes

(e ()
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For n = k(r +s) +r — 1 + j, and under type II we either get a condition trivially
satisfied for all p, or 1/(ra?) < 1/b?, the latter only if there is at least one n so that
n=K(r+s)+r—1+jandn=Q(s+1). But since r = N(s+ 1), this is (K +1)N(s +
1)+ Ks+j—1=Q(s+1) for some K,Q,7, and take K = s+ 1 and j = 1 to obtain a
solution, so 1/(ra?) < 1/%.

Remark 3.6. We can apply the idea of Theorem 3.3 to the model of general block
matrix operator in the Definition 2.1 by the same method; the result formula will be slight
. complete than that of Theorem 3.3. We leave the exact formula to interested readers.

4. oo-hyponormality and Flatness. We begin this section with the following fun-
damental lemma.

Lemma 4.1. Suppose p > 1 and q > 1 are relatively prime. Given any l,, 0 < [, <
p—1, and any l,, 0 < Iy < g — 1, there ezists n € N so that n = |, mod p and n = [,
mod gq.

Lemma 4.2. Suppose that

(Vi o )
: [ A |
A= Vo and M .= A . (4.1)
VA .
\ O Ve
Assume that GCD(r + s,s + 1) = 1. If M is p-hyponormal for some p € (0,0), then
$1=$2='°‘=$952%- (4.2)

1<i<r

Proposition 4.3. Let A and M be as in (4.1). Suppose there exists N € N such that
r = N(s+1) and GCD(r + s, s + 1) = 1. Then the following assertions are equivalent:

(i) M is p-hyponormal for some p € (0,00); :

(if) M is co-hyponormal,

(i) z) =2 = - =2, = Pi<i<r Yi-

5. Examples. Let A and M be'as in (4.1) with r + s = N(s+ 1) for some N € N and
we will see this is the “opposite” of » = N(s+ 1) and GCD(r + 8,8 +1) = 1.

Proposition 5.1. Let M be the block matriz operator as in (4.1). Then M is p-
hyponormal if and only if the following inequality holds:

1\ 1
Z (;——““) Yi+1 < m Z Yj+1- (5.1)

%0 mod(s+1) V't mod(s+1) j#0 mod(s+1)
JETY(T(n)) ‘ JETY(T(n))

The following corollaries come immediately from Proposition 5.1.

Corollary 5.2. Let M be the block matriz operator as in (4.1) with T, = 2o = -+ =
z; = z. Then (5.1) is trivially satisfied as long as = > Y, ;.. ¥ with no conditions on
the y;. o
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Corollary 5.3. Let M be the block matriz operator as in (4.1) such that the y;;1 for
j = 0 mod(s + 1) occur only in Y, ¢, ¥i- Thus if we consider some yj,, for j =0
mod(s + 1), as long as 3 - Yj41 = D_j=o Yi+1, then M’ is p-hyponormal if and only if
M is p-hyponormal.

Now we close this paper with the following example.

Example 5.4. Let

(1 \
O :
A= ! and M := A
Ve
\ O NZY,
Write Y for 37, ;<4 %i- Then the condition of
Ly, 1y lys, 1y 1
iy L Tl L Tl - T b i
'Y T ZY TZY Ty S Yr
is equivaient to
Y2 Y3 _Y2tuys
LN L
A

Inserting the y; = 1,1 <1 < 4, we get

Ere@e e

which is equivalent to M is p-hyponormal. Note that (5.2) keeps distinct the classes of p-
hyponormal operators with respect to 0 < p < co. To obtain region for co-hyponormality
of M we use Remark 3.2 and formulas in proof of Theorem 3.3, and there are three cases,
Cases 1a, 1b, and 2b, which imply that mak, = mar, 1 > 4 & 72 2 4, and z; > 71 &
Ty > I, respectively. Thus we obtain that :

M is co-hyponormal <> z; > 4 and z; > 4.

Of course, since (5.2) is equivalent to z, > 4- (2 — (4/z;)?)"Y? for z; > 4 - 27/,
taking p — oo, we may check easily the obtaining conditions oo-hyponormality of M are
z; > 4 and z, > 4. On the other hand, applying Remark 3.2 and formulas in proof of
Theorem 3.3 for quasinormality of M, we also obtain that M is quasinormal if and only
if (IIIl,.TJz) = (4, 4)
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