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ABSTRACT. We introduce anew model of block matrix operator $M(\alpha,\beta)$ induced by
two sequences $\alpha$ and $\beta$ and characterize its $\gamma hyponormality$. The $mo$del inducae a
measurable transformation $T$ on the set of nonnegative integers $N_{0}$ with point maes and
composition operator $C_{T}$ on $l^{2}:=l^{2}(N_{0})$ . The techniqu\infty via composition operators
will be us\’e to treat $\triangleright hyponormality$ of $M(\alpha,\beta)$ and provide some interesting thmrems
about p-hyponormality. Finally, we apply our $r\infty ults$ to obtain examples $of\gamma hyponormal$

making distinct as usual.

1. Introduction and Preliminaries. This wae talked at the 2008 RIMS conference:
Inequalities on linear operators and its $aPPlications$ , which was held at Kyoto University
on January 30-February 1 in 2008

Let $\mathcal{H}$ be a separable, infinite dimensional complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the
algebra of all bounded linear oPerators on $\mathcal{H}$ . An operator $T\in \mathcal{L}(\mathcal{H})$ is said to be p-
ん鮎 ponomal if (丁*丁)p $\geq(TT)^{p},$ $p\in(0, \infty)$ . If $p=1,$ $T$ is $hypono\tau mal$ and if $p= \frac{1}{2},$ $T$ is
semi-ん yponomal ([Xi]). In Particular, $T$ is said to be $\infty-$ん卯 onormal if it isか hyponormal
for all $p>0$ ([MS]). The L\"owner-Heinz $ineq_{ua}1ity$ imPlies that every p.hyponormal op-
erators are $q$-hyponormal $oPerators$ for $q\leq P$ and many oPerator theorists have studied
properties in oPerators in those classes; for $\circ.xamples$ , sPectral theory, operator inequali-
ties, and invariant subsPaces, etc. (cf. [BJ], [Fbr], [IY], [JKP], [JLPa]). Also, the study
of gaps between subnormality and hyPonormality has been studied in several areae by
many operator theorists, and whose study is growing up still. The $P$-hyPonormality is
contained in those studies, but new models for $\gamma hyponormal$ oPerators need to be devel-
oped still. And also, Jung-Le -Park constructed examples induced by some block matrix
operators in [JLP] and [JLL], in which the classes of those oPerators are distinct with
respect to any Positive real number $p.$ Recently $Burna\triangleright Jung$-Lambert discussed some
models via composition operator $C_{T}$ on.L2 in [BJL] and [BJ], in which such classes of
weak hyponormal oPerators are distinct for each $p$ . Moreover, they used the notion of
conditional exPectations for studying of $\gamma hyPonormality$ of $C_{T}$ , which will be also main
tool of this note. Here are some terminologies for conditional expectation. Let (X, $\mathcal{F},$

$\mu$)
be a $\sigma$ finite measure space and let $T$ : $Xarrow X$ be a transformation such that $T^{-1}\mathcal{F}\subset \mathcal{F}$

and $\mu oT^{-1}\ll\mu$ . It is aaeumed that the $Radon- Nikody_{m}$ derivative $h=d\mu oT^{-1}/d\mu$ is in
$L^{\infty}$ . The comPosItion oPerator $C_{T}$ acting on $L^{2}$ $:=L^{2}(X, \mathcal{F}, \mu)$ is defined by $C_{T}f=f\circ T$ .

$1_{2000}$ Mathematics subject classification: $47B20,47B38$.
Key words and phrases: p-hyponormal operator, composition operator, conditional expectation.
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The condition $h\in L^{\infty}$ assures that $C_{T}$ is bounded. And we denote $Ef=E(f|T^{-1}\mathcal{F})$

for the conditional expectation of $f$ with respect to $T^{-1}\mathcal{F}$ . Some useful results will come
from [L], [BJL], and [HWh]. In particular, in the proofs and examples below, we will have
need of the following special case: if $\mathcal{A}$ is the purely atomic $\sigma$-subalgebra of $\mathcal{F}$ generated
by the measurable partition of $X$ into sets of positive measure $\{A_{k}\}_{k\geq 0}$ , then

$E(f| \mathcal{A})=\sum_{k=0}^{\infty}\frac{1}{\mu(A_{k})}(\int_{A_{k}}f(x)d\mu(x))\chi_{A_{k}}$ .

The interested readers can find amore extensive list of properties for conditional expec-
tations in [BJL] and [Ra].

This article consists of five sections. In Sectlon 2, we construct ablock matrix operator
induced by two sequences $\alpha$ and $\beta,$ which will make distinct classes of $p$-hyponormal oper-
ators with respect to $p>0$ later section. Ablock matrix operator $M(\alpha,\beta)$ induced by two
sequences $\alpha$ and $\beta$ provides ameasurable transformation $T$ on $N_{0}$ with point mass mea-
sure on $N_{0}$ and its corresponding composition operator $C_{T}$ on $l^{2}$ is equivalent to $M(\alpha,\beta)$ .
In Section 3, we characterize block matrix operators’ $M(\alpha,\beta)$ for $p$-hyponormality and
construct auseful form for distinction examples. In Section 4, we discuss aflatness of
$p$-hyponormality about block matrix operator $M(\alpha, \beta)$ :the $\infty$-hyponormality of $M(\alpha, \beta)$

is equivalent to any[some] p.hyponormality under some conditions. Finally, in Section 5,
$We_{This}gve$

someexam$pngfp_{\vee}honorma10.perators$.

detail proofs here.

2. Relationships. Let $\alpha$
$:=\{a_{i}^{(n)}\}_{1\leq i\leq r ,0\leq n<\infty}$ and $\beta$

$:=\{b_{j}^{(n)}\}_{1\leq j\leq\epsilon ,0\leq n<\infty}$ be bounded sequences

$ofpositiverea1numbersLetM=[A_{ij}]_{0\leq i,j<\infty}are(r+s)x(s+l)matricessuC^{-}hthatA_{ij}=0,$

$i\neq j$ , and
be a block matrix operator whose blocks

$A_{n}$ $:=A_{\mathfrak{n}n}=(a_{r}^{(n)}a_{1}^{(.n)}O$

$b_{1}^{(n)}$

$O$

$b_{s}^{(n)}]$ , (2.1)

where other entries are $0$ except $a_{*}^{(n)}$ and $b^{(n)}$ indicated in (2.1). Obviously such block
matrix operator $M$ is bounded.

Definition 2.1. For two bounded sequences $\alpha:=\{a_{i}^{(n)}\}_{1\leq:\leq r ,0<n<\infty}$ and $\beta$
$:=\{b_{j}^{(\mathfrak{n})}\}_{1\leq j\leq\epsilon ,0\leq n<\infty}$ ,

the block matrix operator $M:=M(\alpha, \beta)$ satisfying (2.1) is $c\overline{a}1led$ a block $mat\dot{m}$ operator
witん weight sequence $(\alpha, \beta)$ .

Let $M$ be a block matrix operator with weight sequence $(\alpha,\beta)$ and let $W_{\alpha,\beta}$ be its cor-
responding operator on $l^{2}$ relative to some orthonormal bases. Then $W_{\alpha,\beta}$ has a duplicate
form; for example, if we take $r=3,$ $s=2$ and $a_{i}^{(n)}=b_{j}^{(n)}=1$ for all $i,j$ )

$n\in N$ , then the
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block matrix operator with $(\alpha, \beta)$ is unitarily equivalent to the following operator $W_{\alpha,\beta}$

on $l^{2}$ defined by

For arbitrary block matrix operator $M$ with weight sequence $(\alpha,\beta)$ , since $M$ is p-
hyponormal if and only if $\alpha M$ is $\mu$hyponormal for any[some] positive real number $\alpha$ , we
may assume $a_{1}^{(0)}=1$ , which will be assumed throughout this note.

We now return to our work, in particular, consider $X=N_{0}$ $:=N\cup\{0\}$ and the power
set $\mathcal{P}(X)$ of $X$ for the $\sigma$-algebra $\mathcal{F}$ . Define a non-singular measurable transformation 丁
on $N_{0}$ such that

$T^{-1}(k(s+1))=\{k(r+s)+i-1 : 0\leq i\leq r\},$ $k=0,1,2,$ $\cdots$ , (2.2)

$T^{-1}(k(s+1)+i)=k(r+s)+r-1+i$ , $1\leq i\leq s$ , $k=0,1,2,$ $\cdots$ .

We write $m(\{.i\})$ $:=m_{i}$ for a point mass measure on $X$ .

Proposition 2.2. Under the above notation, the composition operator $C_{T}$ on $l^{2}$ defined
by $C_{T}f=f\circ T$ is unitarily equivalent to $t$ん $e$ block matrix operator $M(\alpha,\beta)$ , where

$\alpha$ : $a_{i}^{(n)}=\sqrt{\frac{m_{n(r+\cdot)+\cdot-1}}{m_{\mathfrak{n}(\iota+1)}}}(1\leq i\leq r)$ and $\beta:b_{j}^{(n)}=\sqrt{\frac{m_{\mathfrak{n}(r+\cdot)+r+j-1}}{m_{n\langle\cdot+1)+j}}}(1\leq j\leq s),$ $n\in N_{0}$ .

Proposition 2.3. Let $M(\alpha,\beta)$ be a block matrzX with weigん $t$ sequence $(\alpha,\beta),$ $w$んere
$\alpha$

$:=\{a_{i}^{(n)}\}_{1\leq i\leq r ,0<n<\infty}$ , $\beta$
$:=\{b_{j}^{(n)}\}_{1\leq j\leq s ,0\leq n<\infty}$ , and $a_{1}^{(0)}=1$ . Then there exists a measurable trans-

formation $\tau^{-}on$ a $\sigma$ finite measure space $(N_{0}, \mathcal{P}(N_{0}),$ $m$ ) such that $M(\alpha,\beta)$ is unitarily
equivalent to a composition operator $C_{T}$ on $l^{2}$ .

3. Some Characterizations. Let $T$ be a non-singular measurable transformation on
$l^{2}$ as in (2.2) and let $m(\{i\})=m_{i}$ be the point mass on $N_{0}$ .

Theorem 3.1. Let $p\in(O, \infty)$ . Then $t$ん $e$ following assertions are equivalent:
$\{\begin{array}{l}C_{T}l^{2}M(\alpha,\beta)\end{array}$

$\{_{iv)it}^{iii)E}$ ん (lo/ldん sp)t $(n)\leq l/(\text{ん^{}p}oT)(n)at$

$\frac{1}{m(T^{-1}(\text{丁}(n))}\sum_{j\in T^{-1}(T(n))}\frac{m_{j}^{p}m_{j}}{m(\text{丁^{}-1}(j))^{p}}\leq(\frac{m_{T(n)}}{m(T^{-1}(T(n))})^{p}$ , $n\in N_{0}$ .

Remark 3.2. By some formulas in the proof of Theorem 3.1, we have the following
assertions:
(i) $M(\alpha, \beta)$ is $\infty$-hyponormal if and only if $m(\text{丁^{}-1}(n))/m_{n}\geq m(\text{丁^{}-l}$ (丁 (n))/m(T(n)) for
all $n\in N_{0}$ .
(ii) $M(\alpha, \beta)$ is quasinormal if and only if $m(T^{-1}(n))/m_{n}=m(T^{-1}$ (T(n))/m(丁 (n)) for all
$n\in N_{0}$ .
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To obtain more useful and simpler form for p-hyponormality of $M(\alpha, \beta)$ , we consider a
block matrix operator $M$ as following:

$M(\alpha, \beta)$ :
$A\equiv(n)A_{1}=A_{2}=\cdots$

(with notation in (2.1)) with
$\alpha$ : $a_{i}$

一

$a_{i},$ $n\in N_{0},1\leq i\leq r$ ; (3.1)
$\beta:b_{j}^{(n)}=b_{j},$ $n\in N_{0},1\leq j\leq\cdot s$ .

This type will be used usefully to obtain examples being distinct classes ofか hyponormal
operators in Section 5.

Theorem 3.3. Let $M(\alpha,\beta)$ be as in (3.1). Then $t$ん $e$ block matrit operator $M(\alpha,\beta)$ is
p-ん yponorm$al$ if and only if $t$ん $e$ following two cases hold:

(i) for $n=k(r+s)+i-1(1\leq i\leq r)$ ,

$\sum_{j\in T^{-1}(T(n))}$

$( \frac{1}{\sum_{1\leq i\leq r}a_{i}^{2}}I^{p}\frac{a_{i_{j}}^{2}}{\sum_{1\leq i\leq r}a_{i}^{2}}+\sum_{\dot{g}\in T^{-1}(T(n))}\frac{1}{b_{l_{j}}^{2p}}$ $\frac{a_{i_{j}}^{2}}{\sum_{1\leq i\leq r}a_{i}^{2}}$

$j\equiv 0$ mod(s+l) $j\not\equiv Omod (s+1)$

$\leq(\frac{1}{\sum_{1\leq 1\leq r}a_{1}^{2}}I^{p},$ $1\leq i_{j}\leq r,$ $1\leq l_{j}\leq s$ , (3.2)

(ii) for $n=k(r+s)+r+j-1(1\leq j\leq s)$ ,

(ii-a) $b_{j}^{2} \leq\sum_{1\leq i\leq r}a_{i}^{2}$ if $n\equiv 0mod (s+1)$

(ii-b) $b_{j}^{2}\leq b_{t_{n}}^{2}$ if $n\not\equiv Omod (s+1)$ and for some $t_{n}(1\leq t_{n}\leq s)$ .

The following is a special case of Theorem 3.3, which provides a simple form.

Corollary 3.4. Let $M:=M(\alpha,\beta)$ be as in (3.1) witん $a_{i}^{(n)}=a(1\leq i\leq r)$ and $b_{j}^{(n)}=b$

$(1\leq j\leq s)$ . Then $M$ is p-んyponormal if and only if $t$ん $e$ following two cases んold:
(i) for $n=k(r+s)+i-1(1\leq i\leq r)$ ,

$\frac{1}{r}[\sum_{\equiv 0mod(\epsilon+1)}(\frac{1}{ra^{2}})^{p}+$ $\sum_{j\in T^{-1}(T(n)),j\not\equiv 0mod(s+1)}\frac{1}{b^{2p}}]\leq(\frac{1}{ra^{2}})^{p}$ ,

(ii) for $n=k(r+s)+r+j-1(1\leq j\leq s),$ $b^{2}\leq ra^{2}$ んolds.

Note that if we are under type of Theorem 3.3 (which will be called “type I”) it will be
important to know $w$ん$ic$ん $j$ in 丁-1 $(T(n))$ have various $j\equiv t_{j}mod (s+1)$ which if we are
under type of Corollary 3.4 (which will be called “type II”) it is only important to know
ん$ow$ many $j$ are of various $j\equiv t_{j}$ mod(s+l). Then we have the following remark.

Remark 3.5 (Special case of Corollary 3.4 with $r=N(s+1)$ ). In this case for
$n=n(r+s)+i-1,1\leq i\leq r$ , the set of $l$ in 丁-1 $(T(n))$ contains exactly $N$ elements of
each modulus, $mod (s+1)$ . So under type II the test (3.2) for such $n$ becomes

$N( \frac{1}{ra^{2}})^{p}\frac{1}{r}+(r-N)(\frac{1}{b^{2}})^{p}\frac{1}{r}\leq(\frac{1}{ra^{2}})^{p}$ .
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For $n=k(r+s)+r-1+j$, and under type II we either get a condition trivially
satisfied for all $p$ ; or $1/(ra^{2})\leq 1/b^{2}$

} the latter only if there is at least one $n$ so that
$n=K(r+s)+r-1+j$ and $n=Q(s+1)$ . But since $r=N(s+1)$ , this is $(K+1)N(s+$
$1)+Ks+j-1=Q(s+1)$ for some $K,$ $Q,j$ , and take $K=s+1$ and $j=1$ to obtain a
solution, so $1/(ra^{2})\leq 1/b^{2}$ .

Remark 3.6. We can apply the idea of Theorem 3.3 to the model of general block
matrix operator in the Definition 2.1 by the same method; the result formula will be slight
complete than that of Theorem 3.3. We leave the exact formula to interested readers.

4. $\infty$-hyponormality and Flatness. We begin this section with the following fun-
damental lemma.

Lemma 4.1. $S\tau\iota pposep>1$ and $q>1$ are relatively prime. Given any $l_{p},$ $0\leq l_{p}\leq$

$p-1$ , and any $l_{q},$ $0\leq l_{q}\leq q-1$ , there exists $n\in N$ so that $n\equiv l_{p}$ mod $p$ and $n\equiv l_{q}$

mod $q$ .

Lemma 4.2. Suppose that

$A$ $:=\{\begin{array}{llll}\sqrt{y_{1}} \vdots O \sqrt{y_{r}} \sqrt{x_{1}} \ddots O \sqrt{x_{s}}\end{array}\}$ and $M:=(AA$ $...)$ . (4.1)

Assume that $GCD(r+s, s+1)=1.$ If $M$ is p-んyponormal for some $p\in(O, \infty)$ , then

$x_{1}=x_{2}= \cdots=x_{\delta}\leq\sum_{1\leq i\leq r}y_{1}$
. (4.2)

Proposition 4.3. Let $A$ and $M$ be as in (4.1). Suppose $t$んere exists $N\in N$ such that
$r=N(s+1)$ and $GCD(r+s, s+1)=1$ . Then $t$ん $e$ following assertions are equivalent:

(i) $M$ is p-んyponormal for some $p\in(O, \infty)$ ;
(ii) $M$ is $\infty$ -hyponormal;
(iii) $x_{1}=x_{2}= \cdots=x_{s}=\sum_{1\leq i\leq r}y_{t}$ .

5. Examples. Let $A$ and $M$ be as in (4.1) with $r+s=N(s+1)$ for some $N\in N$ and
we will see this is the “opposite” of $r=N(s+1)$ and $GCD(r+s, s+1)=1$ .

Proposition 5.1. Let $M$ be $t$ん $e$ block matrix operator as in (4.1). Then $M$ is p-
hyponomal if and only if the following inequality holds:

$j \not\equiv 0mod(s+1)\sum_{j\in T^{-1}(T(n))}(\frac{1}{x_{t_{j}mod (\epsilon+1)}})^{p}y_{j+1}\leq\frac{1}{(\sum_{1\leq i\leq r}y_{i})^{p}}\sum_{j\in T^{-1}(T(n))}y_{j+1}j\not\equiv 0mod (\epsilon+1)$

(5.1)

The following corollaries come immediately from Proposition 5.1.
Corollary 5.2. Let $M$ be th$e$ block matnx operator as in (4.1) with $x_{1}=x_{2}=\cdots=$

$x_{s}=x$ . Then (5.1) is trivially satisfied as long as $x \geq\sum_{1\leq i\leq r}y_{i}$ with no conditions on
the $y_{j}$ .
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Corollary 5.3. Let $M$ be the block matrix operator as in (4.1) such $t$んat the $y_{j+1}$ for
$j\equiv 0mod (s+1)$ occur only in $\sum_{1<i<r}y_{i}$ . 丁ん (us if we consider some $y_{j+1}’$ for $j\equiv 0$

$mod (s+1)$ , as long as $\sum_{j\equiv 0}y_{j+1}’=\sum_{j\equiv 0}^{-}y_{j+1}-$ , then $M’$ is p-hyponormal if and only if
$M$ is p-hyponorrreal.

Now we close this paper with the following example.

Example 5.4. Let

$A:=[o1111$ $\sqrt{x_{1}}\sqrt{x_{2}}O)$ and $M:_{l}=(AA$ $...)$ .

Write $Y$ for $\sum_{1\leq\iota\leq 4}y_{i}$ . Then the condition of

$\frac{1}{Y^{p}}\frac{y_{1}}{Y}+\frac{1}{x_{1}^{p}}\frac{y_{2}}{Y}+\frac{1}{x_{2}^{p}}\frac{y_{3}}{Y}+\frac{1}{Y^{p}}\frac{y_{4}}{Y}\leq\frac{1}{Y^{p}}$

is equivalent to

.. $\frac{y_{2}}{x_{1}^{p}}+\frac{y_{3}}{x_{2}^{p}}\leq\frac{y_{2}+y_{3}}{4^{p}}$ .

Inserting the $y_{i}\equiv 1,1\leq i\leq 4$ , we get

$( \frac{4}{x_{1}})^{p}+(\frac{4}{x_{2}})^{p}\leq 2$ , (5.2)

which is equivalent to $M$ is p-hyponormal. Note that (5.2) keeps distinct the classes of $r$

hyponormal operators with respect to $0<p<\infty$ . To obtain region for $\infty$-hyponormality
of $M$ we use Remark 3.2 and formulas in proof of Theorem 3.3, and there are three cases,
Cases la, lb, and $2b$ , which imply that $m_{3k_{1}}\geq m_{3k},$ $x_{1}\geq 4\ x_{2}\geq 4$ , and $x_{1}\geq x_{1}$ &
$x_{2}\geq x_{2}$ , respectively. Thus we obtain that

$M$ is $\infty$-hyponormal $\Leftrightarrow x_{1}\geq 4$ and $x_{2}\geq 4$ .

Of course, since (5.2) is equivalent to $x_{2}\geq 4\cdot(2-(4/x_{1})^{p})^{-1/p}$ for $x_{1}>4\cdot 2^{-1/p}$ ,
$x_{\iota\geq 4\bm{t}dx_{2}\geq}takingparrow\infty,$$we_{4}ma_{\delta_{ntheotherhand,app1yingRemark3.2\bm{t}dformu1asinproofof}^{checkeasi1ytheobtainingconditions\infty- hyponorma1ityofMare}}$

Theorem 3.3 for quasinormality of $M$ , we also obtain that $M$ is quasinormal if and only
if $(x_{1}, x_{2})=(4,4)$ .
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