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ABSTRACT
Characterizations of the classes of p-hyponormal, $\infty$-hyponormal and weak

hyponormal weighted composition operators are introduced. It is shown that
some classes of weak hyponormal weighted composition operators can not be
separated. It is an extension of the result by C. Burnap, etc.

This report is based on the following paper:
[CY] M. Cho and T. Yamazaki, Characterizations of p-hyponormd and weak
hyponormal weighted composition operators, preprint.

1. INTRODUCTION
Let $\mathcal{H}$ be a complex Hilbert space, and $B(\mathcal{H})$ be the algebra of all bounded linear.

operators on $\mathcal{H}$ . For a bounded linear operator, many authors have studied properties
of weak normality of operators, especially, the class of hyponormal operators defined
as follows:

Definition 1. Let $T\in B(\mathcal{H})$ . Then the following operator classes are defined:
(i) $T$ is $hyponorma1\Leftrightarrow T^{*}T\geq TT^{*}$ ,
(ii) for $p>0,$ $T$ is $p- hyponorma1\Leftrightarrow(T^{*}T)^{P}\geq(TT^{*})^{p}$ .

Especially, if $T$ is p-hyponormal for all $p>0$ , we call $T\infty$-hyponormal ([10]).

It is well known that typical examples of these operators are expressed by polyno-
mials of weighted shift operators on $l^{2}$ . So many authors have studied properties of
weighted shift operators. Examples are obtained as follows:

Example 1.1. Let $U$ be a weighted unilateral shift on $l^{2}$ as follows:

$U=(^{1}0002002$
$00$

.
$0.$

$\cdot..$

).
Then
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(i) $U$ is $\infty$-hyponormal, not quasinormal (i.e., $T^{*}TT\neq TT^{*}T$ ),
(ii) $2U+U^{*}$ is hyponormal, not $\infty$-hyponormal,
(iii) $(2U+U^{*})^{2}$ is $\frac{1}{2}$-hyponormal, not hyponormal.

Moreover, classes of weak hyponormal operators have been also dePned, especially,
the following operator classes are studied by many authors, strenuously.

Definition 2. Let $T\in B(\mathcal{H})$ . Then the following operator classes are defined:
(i) $T$ is $quasihyponorma1\Leftrightarrow T^{*}T^{*}TT\geq T^{*}TT^{*}T$ ,
(ii) for $p>0,$ $T$ is $pquasihyponorma1\Leftrightarrow T^{*}(T^{*}T)^{p}T\geq T^{*}(TT^{*})^{p}T$,
(iii) $T$ belongs to class $A\Leftrightarrow|T^{2}|\geq|T|^{2}([4,5])$ ,
(iv) for $s,$ $t>0,$ $T$ belongs to class $A(s,t)$

$\Leftrightarrow(|T^{*}|^{t}|T|^{2s}|T^{*}|^{t})^{\frac{t}{+}}\geq|T^{*}|^{2t}([3])$ .

We remark that the class A coincides with the class $A(1,1)$ . These operator classes
are defined by operator inequalities. As parallel classes of them, the classes of para-
normal and $absolute-(s, t)$-paranormal operators are known.

Definition 3. Let $T\in B(\mathcal{H})$ . Then the following operator classes are defined:
(i) $T$ is paranormal $\Leftrightarrow\Vert T^{2}x\Vert\Vert x\Vert\geq\Vert Tx\Vert^{2}$ for all $x\in \mathcal{H}$ ([4]),
(ii) for $s,$ $t>0,$ $T$ is $absolute-(s,t)$-paranormal

$\Leftrightarrow\Vert|T|^{s}|T$“ $|^{t}x\Vert^{t}\Vert x\Vert"\geq\Vert|T$
“

$|^{t}x\Vert^{\epsilon+t}$ for all $x\in \mathcal{H}$ ([12]).

We also remark that the classes of paranormal and $absolute-(1,1)$-paranormal oper-
ators are the same. These operator classes are defined by norm inequalities. Inclusion
relations among above operator classes are well known [12] as follows: For a fixed
$p>0$ ,

$\{p-hyponormal\}\subset$ {$p$ –quasihyponormal}
(1.1)

$\subset$ class $A(p, 1)\subset$ {$absolute-(p,$ $1)$ -paranormal}.
The above inclusion relations are all proper. To study these operators, weighted shift
operators are very usefull tools. As an extension of weighted shift, weighted compo-
sition operators (it’s definition will be introduced in the below) are known. Hence, to
study some operator classes related to hyponormal operators, it is better that we know
properties of weighted composition operators. Study of hyp,onormal weighted comp&
sition operators has been started by A. Lambert in [7]. Recently, weak hyponormal
composition operators are studied in $[2, 1]$

) they have shown some characterizations of
weak hyponormal composition operators, and obtained concrete examples for related
hyponormal composition $6perators$. But they discussed on composition operators (not
weighted composition operators), mainly.

In this report, we shall obtain some characterizations of related hyponormal weighted
composition operators. In section 2, we shaIl prepare the definition and baeic prop-
erties of weighted composition operators. In section 3, we shall discuss acharac-
terization of $p$ and $\infty$-hyponormalities of weighted composition operators. They are
extensions of the results in [7] and [2]. In section 4, we shall show that the claes\’e
of $p$-quasihyponormal and $absolute-(p, 1)$-paranormal weighted composition operators
are the same. This is an extension of the results in [1].
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2. DEFINITION AND BASIC PROPERTIES OF WEIGHTED COMPOSITION OPERATORS

In this section, we shall introduce the definition and basic properties of weighted
composition operators.

Definition 4. Let $(X,\mathcal{F}, \mu)$ be a $\sigma- finite$ measure space. A measurable transfor-
mation $T$ : $X$ $arrow$ $X$ with $T^{-1}\mathcal{F}\subseteq \mathcal{F}$ and $\mu\circ T^{-1}\ll\mu$ . For a non negative
$w\in L^{\infty}(X, \mathcal{F}, \mu)$ , define the weighted composition operator $C$ on $L^{2}(X, \mathcal{F}, \mu)$ as

$Cf=wf\circ T$ for $f\in L^{2}(X,\mathcal{F}, \mu)$ .

Especially, the case $w\equiv 1$ , we call $C$ a composition operator, simply.

In the case $h= \frac{d\mu oT^{-1}}{d\mu}\in L^{\infty},$ $C$ is bounded. We can consider that weighted

composition operators ar$e$ kind of shift operators.

Example 2.1. Let $X=N$, a transformation $T(n)$ be

$T(n)=\{\begin{array}{ll}1 (n=1)n-1 (n\geq 2)\end{array}$

and $w=(O, 1,2,2, \cdots)\in l^{\infty}$ . Then for $f=(f_{1}, f_{2}, \cdots)\in l^{2}$ ,

$Cf=wf\circ T=w(fi, f_{1}, f_{2}, f_{3}, \cdots)=(0, fi, 2f_{2},2f_{3)}\cdots)$ ,

i.e., $C$ is weighted shift which is the same as $U$ in Example 1.1.

Let $Ef=E(f|T^{-1}\mathcal{F})$ be the conditional expectation of $f$ with respect to $T^{-1}\mathcal{F}$ .
$Ef$. derived its uses from the idea that it represents $f$ on the average with respect to
$T^{-1}\mathcal{F}$ . Specifically, for each $A\in T^{-1}\mathcal{F},$ $\int_{A}fd\mu=\int_{A}Efd\mu$ . This means that except
when $f$ is $T^{-1}\mathcal{F}$-measurable, $Ef$ and $f$ are never related by a pointwise inequality,
and conditional expectation is of limited value in making pointwise estimates to the
value of a function.

Example 2.2. Let $X=N$ , a transfornation $T(n)$ be

$T(n)=\{\begin{array}{ll}1 (n=1)n-1 (n\geq 2).\end{array}$

Then $T^{-1}\mathcal{F}$ is generated by the atoms

{1, 2}, {3}, {4}, $\cdots$ .

Moreover the measure $\mu$ is defined by $\mu(\{n\})=1$ for $\cdot$ $n\in$ N. Hence for $f=$
$(f_{1}, f_{2}, f_{3}, \cdots)$ ,

$Ef=( \frac{\mu(\{1\})f_{1}+\mu(\{2\})f_{2}}{\mu(\{1,2\})}, \frac{\mu(\{1\})f_{1}+\mu(\{2\})f_{2}}{\mu(\{1,2\})}, \frac{\mu(\{3\})f_{3}}{\mu(\{3\})}, \frac{\mu(f^{\backslash }4\})f_{4}}{\mu(\{4\})}, \cdots)$

$=( \frac{f_{1}+f_{2}}{2}, \frac{f_{1}+f_{2}}{2}, f_{3}, f_{4}, \cdots)$ .

To study weighted composition operators, we prepare some important properties
of conditional expectation as follows: First of all we note that for any nonnegative
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function $f,$ $supp(Ef)$ is the smallest (up to null sets) $T^{-1}\mathcal{F}$ set containing $supp(f)$ in
[9], i.e.,

$supp(f)\subseteq s.upp(Ef)$

always holds. Hence, $\frac{f}{Ef}$ is well defined.

Lemma A. Let $C=U|C|$ be the polar decomposition of weighted composition operator
$C$ and $h= \frac{d\mu oT^{-1}}{d\mu}$ . Then for $f\in L^{2}(X, \mathcal{F}, \mu)$ , the following hold:

(i) C’ $f=hE(wf)\circ T^{-1}[7]$ ,
(ii) $C^{*}Cf=hEw^{2}oT^{-1}f$ .

In what follows, we write the modulus of $C$ by $a,$ $i.e.,$ $C^{*}Cf=hEw^{2}\circ T^{-1}f=a^{2}f$ .
Moreover by $hoT>0[6]$ , the Panial $isomet\eta$ part $U$ of $C$ can be erpressed as follows:

$Uf= \frac{w}{a\circ T}f\circ T$.

Lemma $B$ ([11]). The conditional expectation $E$ is a projection onto $T^{-1}\mathcal{F},$ $i.e.$ , if
$g,$ $k\in L^{2}(X, \mathcal{F}, \mu)_{f}$ then there exists $G\in L^{2}(X, \mathcal{F}, \mu)$ such that $Eg=G\circ T.$ Hence
$E(g\circ T\cdot k)=g\circ T\cdot Ek$ and $E(Eg\cdot k)=Eg\cdot Ek$ hold.

More properties are listed in [2].

3. CHARACTERIZATIONS OF $p$ AND $\infty$-HYPONORMAL OPERATORS

In this section, we shall introduce characterizations of $p$ and $\infty$-hyponormal weighted
composition operators.

Theorem 3.1. For $p>0_{f}$ a weighted composition operator $C$ is p-hyponormal if and
only if the following conditions hold:

(i) $supp(w)\subseteq supp(a)$ ,

(ii) $E[( \frac{aoT}{a})^{2p}\frac{w^{2}}{Ew^{2}}]\leq 1a.e$ .

The case $w\equiv 1$ has been shown in [2]. To prove Theorem 3.1, we use the following
characterization of hyponormal weighted composition operators:

Theorem $C$ ([7]). A weighted composition operator $C$ is hyponomal if and only if
the following conditions hold:

(i) $supp(w)\subseteq supp(a)$ ,

(ii) $E[( \frac{aoT}{a})^{2}\frac{w^{2}}{Ew^{2}}]\leq 1a.e$.

Proof of Theorem 3.1. Let $C=U|C|$ be the polar decomposition of C. $C$ is P-
hyponormal if and only if $C_{p}=U|C|^{p}$ is hyponormal. $C_{p}$ is also a weighted com-
position operator as follows:

$C_{p}f=U|C|^{p}f=Ua^{p}f= \frac{w}{aoT}a^{p}\circ Tf\circ T=wa^{p-1}\circ Tf\circ T=w_{p}f\circ T$,
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where $w_{p}\equiv wa^{p-1}oT$ . Then by Lemma $B$ ,

(3.1) $Ew_{p}^{2}=E(w^{2}\cdot a^{2(p-1)}oT)=Ew^{2}\cdot a^{2(p-1)}oT$ .

Moreover we have $|C_{p}|f=|C|^{p}f=a^{p}f$ . Hence by Theorem $C$ , we have only to prove
that

(i) $supp(w_{p})\subseteq supp(a^{p})\Leftrightarrow supp(w)\subseteq supp(a)$ ,

(ii) $E[( \frac{a^{p}\circ T}{a^{p}})^{2}\frac{w_{p}^{2}}{Ew_{p}^{2}}]\leq 1\Leftrightarrow E[(\frac{a\circ T}{a})^{2p}\frac{w^{2}}{Ew^{2}}]\leq 1$,

see [CY]. 口

For each non-negative $f\in L^{2}(X, \mathcal{F}, \mu),$ $(Ef^{p})^{\frac{1}{p}}$ is increasing on $p>0[8]$ by Holder’s
inequality and $(Ef^{p})^{\frac{1}{p}}\leq\Vert f\Vert_{\infty}<+\infty$ . Then there exists $M(f)=s- \lim_{parrow\infty}(Ef^{p})^{\frac{1}{\rho}}$

and we call it minimal majorant of $f$ . It is known that $f.\leq M(f)$ holds in [8].

Next we will show a characterization of oo-hyponormal weighted composition op-
erators as follows:

Theorem 3.2. A weighted composition operator $C$ is $\infty$ -hyponormal if and only if
the following conditions hold:.

(i) $supp(w)\subseteq supp(a)$ ,
(ii) a $oT\leq a$ on $x_{\sup p(w)}$ ,

where $\chi_{N}$ means the characteristic function on $N$ .

To prove Theorem 3.2, we shall prepare the following lemma:

Lemma 3.3. Let $a,$ $b\in L^{2}(X,\mathcal{F},\mu)$ with $a,$ $b\geq 0$ . Then

s- $\lim_{parrow\infty}\{E(a^{p}b)\}^{\frac{1}{p}}=M(a\chi_{\sup p(b)})$ .

Proof is given in [CY].

Proof of Theorem 3.2. By the definition of $\infty hyponormality$ of $C,$ $C$ is P-hyponormal
for all $p>0$ , that is, $supp(w)\subseteq supp(a)$ and

$E[( \frac{a\circ T}{a})^{2p}\frac{w^{2}}{Ew^{2}}]\leq 1$

hold for all $p>0$ by Theorem 3.1. Then by Lemma 3.3 and $f\leq M(f)$ ,

$1 \geq s-\varliminf_{\rangle p\infty}(E[(\frac{a\circ T}{a})^{2p}\frac{w^{2}}{Ew^{2}}])^{\frac{1}{p}}$

$=M(( \frac{aoT}{a})^{2}\cdot x_{\sup p())}Bw^{2}\neg w\geq(\frac{a\circ T}{a})^{2}\cdot x_{\sup p()}B\neg ww^{2}\cdot$

Here, by $supp(w^{2})\subseteq supp(Ew^{2})$ , we have a $oT\chi_{\sup p(w)}\leq a$ . Moreover, by
$supp(w)\subseteq supp(a)$ we have (ii).
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Conversely, if $a$ $oT\leq a$ on $supp(w)$ holds, then we have

$1 \geq Ew^{2}\cdot\frac{1}{Ew^{2}}=E(\frac{w^{2}}{Ew^{2}})\geq E[(\frac{a\circ T}{a}\cdot x_{\sup p(w)})^{2p}\frac{w^{2}}{Ew^{2}}]=E[(\frac{a\circ T}{a})^{2p}\frac{w^{2}}{Ew^{2}}]$

hold for all $p>0_{r}$ that is, $C$ is $\infty$-hyponormal. $\square$

4. EQUIVALENT CLASSES

In this section, we shall prove that for a fixed $p>0$ , the class of p.quasihyponormal
weighted composition operators coincides with the class of $absolute-(p, 1)$-paranormal
weighted composition operators, and obtain their characterization. Hence some weak
hyponormal classes in (1.1) are coincide with each other in the weighted composition
operators case. We remark that, $absolute-(p, 1)$-paranormal has been introduced in
the name absolute-p.paranormal in [5], firstly.

Theorem 4.1. Let $C$ be a weighted composition operator. For $p>0$ , the following
conditions are equivalent:

(i) $C$ is $p$ -quasihyponormal,
(ii) $C$ belongs to class $A(p, 1)$ ,
(iii) $C$ is $absolute-(p, 1)$ -paranormal,
(iv) $a^{2p}oT\cdot Ew^{2}\leq E(w^{2}a^{2p})$ .

The case $w\equiv 1$ has been already shown in [1].

Proof. Inclusions (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) have been already known as (1.1). So we
have to show the inclusions (iv) $\Leftrightarrow$ (i) and (iii) $\Leftrightarrow$ (iv).

Proof of (iv) $\Leftrightarrow^{.}$ (i). $C$ is $p$-quasihyponormal if and only if
$C^{*}(C^{*}C)^{p}C\geq C^{*}(CC^{*})^{p}C$.

For $f\in L^{2}(X, \mathcal{F}, \mu)$ , by simple calculation (detail is given in [CY]), we have
$C^{*}(C^{*}C)^{p}Cf=hE(w^{2}a^{2p})\circ T^{-1}f$.

On the other hand,
$C^{*}(CC^{*})^{p}Cf=(C^{*}C)^{p+1}f=a^{2(p+1)}f$ .

Hence $C$ is $p$-quasihyponormal if and only if
(4.1) $a^{2(p+1)}\leq h(Ew^{2}a^{2p})\circ T^{-1}$

$\Leftrightarrow a^{2(p+1)}\circ T\leq h\circ TE(w^{2}a^{2p})$

$\Leftrightarrow a^{2p}o$ TEw$2\leq E(w^{2}a^{2p})$

$\Leftrightarrow(iv)$ .

Proof of (iii) $\Leftrightarrow$ (iv). In [4, Section 3.5.5, Theorem 1], $C$ is $absolute-(p, 1)-$
paranormal if and only if
(4.2) $C^{*}|C|^{2p}C-(p+1)\lambda^{p}|C|^{2}+p\lambda^{p+1}I\geq 0$ for all $\lambda>0$ .
Here

(1) $C^{*}|C|^{2p}Cf=hE(w^{2}a^{2p})oT^{-1}f$ ,
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(2) $|C|^{2}f=a^{2}f$ .

Then (4.2) is equivalent to
$hE(w^{2}a^{2p})\circ T^{-1}-(p+1)\lambda^{p}a^{2}+p\lambda^{p+1}\geq 0$ for all $\lambda>0$ .

Put $\lambda=a^{2}$ , then it is equivalent to
$hE(w^{2}a^{2p})\circ T^{-1}\geq a^{2(p+1)}$ ,

and it is equivalent to (4.1), so does (iv). 口
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