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1 Introduction
The classical Lotka-Volterra model: ‘
T =az — bxy y=-cy+dzy (1)

where a, b, c and d are positive constants, has an extreme character such
that all solutions are periodic and the average of each solution is equal to
the equilibrium value, z = § and y = ¢ [1]. However, once the saturation
term is added as in the case of (2), there exists no non-constant periodic

solution

& = ax — bry — z° y=—cy+dzy (2)
(see [2]). This gap make the author doubt the validity of Lotka-Volterra
type models. ‘

On the other hand the author proposed a kind of ratio-dependent
model for predator-prey system [3]. In this paper, first of all we shall
show that our model possesses a non-constant periodic solution in spite
of the appearance of saturation term and that the average of non-
constant periodic solutions is less than the equilibrium value. Secondly
we shall show that FitzHugh-Nagumo equation is a special case of our
model, and hence FitzHugh-Nagumo equation is a kind of predator-prey
system model. Thirdly we shall propose the model with time lag, which
is reasonable from the aspect of biological theory and guarantees the
positiveness of solutions.

2 Ratio-dép'endent model

The author proposed a kind of ratio-dependent model for prey and
predator system such that
T by '
S =e———9()

e
< |§

3;=—c+—— 3)



where a,b,c and d are positive constants, z and y represent the popu-
lations of prey and predator, z > 0 and y > 0, and g(z) represents the

saturation effect, that is, g(x) > a for large z (see [3]). Obviously (3) is
equivalent to that

& =azx — by — g(z)z y=-cy+dzx (4)

We shall consider the existence of non-constant periodic solution of (4),
which is positive valued. First of all we assume that the equation (5)
has the positive root z*

o@)=a- 2, ©

and hence E = (z*,y*), where y* = %z*, is an equilibrium point.

Theorem 1

Let g(z) be once continuously differentiable with respect to > 0, and
assume that g'(z*) > 0, ¢'(z*)z* = ¥ — ¢ > 0 and that 24 (z*)z" #

0. Then there exists two continuously differentiable functions a(e) and
w(e), a(0) = a and w(0) = W’ such that (4), where a = a(¢),
has a non-constant w(e)-periodic solution (z(t,€),y(t,€)) for ¢ aé 0 and
(z(t,€),y(t,e)) — E as ¢ — 0. Consequently xz(t,€) and y(t,c) are
positive for small €.

Proof The linear variational system of (4) around FE is the following :

EN_[%2-d@)z* -b) (¢
qn) d —c J\n)’
and hence the characteristic equation is

N (9’(1"‘):6' B i‘f- + C) A+cd'(z*)z* =0,

which, by our assumption, has the pure imagenary root A = £2i/g'(z*)z*.

Since %{g’(m*)az* — & 4 ¢} # 0, our conclusion follows from Hopf bifur-
cation theorem [4, Theorem 4.1].

Example 1 We shall treat the case where g(z) = z, and hence (4)
is the following

E=ar—by—22 §=-—-cy+dc (6)

where bd > ¢? and a = 2"" —ec. Thenwemayseethatx -—a—-— >0
and that ¢'(z*)z* — "g + c=a- c bd } ¢. Therefore we can verlfy
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that all asumptions of Theorem 1 are satisfied, and consequently the
conclusion of Theorem 1 holds for (6). Next let (z(¢),y(¢)) be an existing
non-gonstant periodic solutign of (6) with period w > 0, and set zg =
—1—/ z(t)dt and yo = -1-/ y(t)dt. From (6), we get that zo = Syo
wJo wJo | e

and azg = byo + % /o 22 (t)dt. Since " /0 z2(t)dt > z2, it follows
that (a - Qf) xo > z3, which implies that z* > zp, and hence y* > yo.
Namely the average of periodic solutions are smaller than the equilibrium
values.

3 FitzHugh-Nagumo equation

We shall consider the case of (4) with external force (I, J), that is,
t=azx—by—g(z)z+1 y=—cy+dz+J (7

Now we shall refer to the Bohnhoeffer-Van del Pol equation [5, p.447)
z3 | |
T=c y+m———3—+z y=—(x—a—-by)/c
where a, b, c and 2z are constants. Replacing z by —z, we shall get

. C3 . 1 b’a
rE@ogm gt o Y=Eom T

which is the case of (7), where I = —cz and J = £. Next we shall refer
to Nagumo’s partial differential equation [6, p.2064]

9%u 10u ( u3)
&% = 2y (oL

Os? c ot 3
c'-a—a—t'lg + bw=a-u,

where a, b, c and h are constants. Replacing u by —z and w by y respec-
tively, we shall get that

Oz 0%z cx®
fé't" = Ch"‘——as2 + cx ~ cy — —-3
Oy b 1 a

5 - dtEte

which is the case of (7), where I = ch%’-:% and J = £.
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4 Delay system

The domain {z > 0, y > 0} may not be invariant for (4) as t increases.
In order to cover this defect, we shall consider the case where (3) has
partially a delay term such that

#t) -1 i) _ g2
2@ " ooy el =Tt ®

where the initial condition is that z(#) >0, y(@) >0for -1 <6 <0.

Let (z(t),y(t)) denote the solution of (8).

Theorem 2
(z(t),y(t)) is defined for t > 0, z(t) > 0 and y(t) > 0 for ¢t > 0, and
(z(t),y(t)) is bounded for t > 0.

Proof Setting that f(t) = a — b7 t 1 for 0 < t < 1, we shall obtain
the ordinary differential equation such that

#(t) = f(t)z(t) — g(z(t)z(®t) §=—cy(t) +dz(t), = (9)

where 0 < t < 1, and therefore by the usual existence theorem, (9) has
the solution (z(t),y(t)) for 0 < t < 1. Repeating this argument infinitly,
we may claim that the solution of (9) is defined for ¢t > 0. Now the first
equation of (9) yields that

o) = 20)exp ([ 1(6) - gla(s))ds) >0
and the second one that
t
y(t) = e‘“y(Q) + ‘[) de~(t=9)z(s)ds > 0. (10)

Since #(t) < (a — g(z(t))z(t) and since there is a positive number A
such that g(z) > a for £ > A, it follows that z(t) < A for large ¢,
and therefore (10) implies that y(t) is bounded for ¢ > 0. The proof
completed.
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