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1 lntroduction
We are interested in bifurcation structure of stationary solution for a 3-component reaction-diffusion

system with a conservation law in the following:

$\{\begin{array}{l}\frac{\partial u}{\partial t}=\nabla\cdot(D_{u}\nabla u)+f(u, v)+\delta w\frac{\partial v}{\partial t}=\nabla\cdot(D_{v}\nabla v)+g(u,v)\frac{\partial w}{\partial t}=\Delta(D_{w}w)-f(u, v)-\delta w\end{array}$ (1.1)

where the functions $f(u,v)$ and $g(u, v)$ are chosen in such forms that the local oscillator

$\frac{du}{dt}=f(u, v)$ , $\frac{dv}{dt}=g(u,v)$ (1.2)

can undergo the supercritical Hopf bifurcation. Obviously, the total amount of $u+w$ is conserved under
homogeneous Neumann (no-flux) boundary condition and some natural and appropriate conditions.

In [4], they propose this system to understand the periodic oscillation of the body of the plasmodium of
the true slime mold: Physarum polycephalum. In fact, the system describes the time-evolution of $(u, v, w)$ ,
which may obtain some spatio-temporal oscillation solutions. We explain the mechanism heuristically
in the following: We note that if $w$ does not exist, then the system is a coupled oscillators system with
diffusion coupling. This system has temporally oscillation solutions, but does not have any spatlally
structural solution. It is sure that this system is not appropriate for the model system just as it is,
but the body of the plasmodium of Physarum polycephalum can be separated in the two parts; one is
a sponge part, the other is a tubular part. The characteristic property is that the diffusion rates are
quite different between the former part and the latter part. Namely, the diffusion coefficient of tubular
part is quite larger than the one of sponge part. This is why they have considered the new variable $w$ ,
which means the tubular part and the diffusion coefficient of $w$ is much larger than those of $u,v$ . Here
$u$ stands for the sponge part, and $v$ represents the effect of the other ingredients, which let the desirable
oscillations occur. Our objective is that we understand how many structural varieties this system has
from the viewpoint of bifurcation of stationary solutions. Note that $D_{u},$ $D_{v}\ll D_{w}$ should hold in order
to describe the behavior of plasmodium.

In biological experiment, for example, if you watch a circular plasmodium propagating on a flat ager
surface, you can observe an anti-phase oscillation between the peripheral region and the rear of the
plasmodium. Such an oscillation pattem is called peripheral phase inversion. In [4], they impose the
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assumption that $D_{u}$ and $\delta$ depend on the space variable and reproduce the peripheral phase inversion
by numerical simulation. This is very interesting for us too, and we have noticed that the original system
with constant coefficients is also a mathematically attractive object. This is because this system has
the mass conservation law, so that a kind of “degree of freedom” of solutions may be less than the usual
3-component system, which undergoes wave bifurcations. Therefore, in this study, we assume that all
the coefficients are constant. We investigate behavior of solution orbit of the system near the Hopf
bifurcation point of the origin. Especially, wave instability is our interest. The wave instability breaks
both spatial and temporal symmetries of a $homogen\infty us$ state while the (uniform) Hopf bifurcation does
only temporal symmetry $[3, 5]$ . In [3], it is said that the wave instability occurs when a homogeneous state
becomes unstable by a pair of purely imaginary eigenvalues with spatially non-uniform eigenfunctions.

We consider the system on an interval $\Omega=[0,1]$ with homogeneous Neumann boundary condition and
suppose that $D_{u}=D_{v}=\epsilon,$ $D_{w}=1$ . We adopt the $\lambda-\omega$ system as a simple local oscillator. Therefore we
study the following equations:

$\{\begin{array}{l}\frac{\partial u}{\partial t}=\epsilon\frac{\partial^{2}u}{\partial x^{2}}+\lambda u-\omega v+\delta w-u(u^{2}+v^{2})\frac{\partial v}{\partial t}=\epsilon\frac{\partial^{2}v}{\partial x^{2}}+wu+\lambda v-v(u^{2}+v^{2})\frac{\partial w}{\partial t}=\frac{\partial^{2}w}{\partial x^{2}}-\lambda u+\omega v-\delta w+u(u^{2}+v^{2})\end{array}$ (1.3)

We can prove mathematically rigorously that the wave instability can occur under natural and appro-
priate conditions for this system. We will state the main statement of our theorem in the next section.
Moreover, in \S 3, we will show some graphs and figures obtained by numerical simulation in which we
observe the Hopf critIcal points’ behavior for each Fourier mode and observe the behavior of solutions
near the bifurcation points at which rwo Fourier modes are made unstable at the same time. We espe-
cially notice that this system has a preferable cluster size of synchronization of oscillations, which tends
to smaller and smaller as $\epsilon$ goes to $0$ . It may be interesting that, if the effect by which the synchronized
oscillation occurs is too much, then the synchronized cluster is vanishing and a kind of homogenization
happens.

2 The linearized eigenvalue problem
The equations (1.3) can be written in matrix form as follows:

$\frac{\partial U}{\partial t}=(D\frac{\partial^{2}}{\partial x^{2}}+\Lambda)U+F(U)$, (2.1)

where $U=(u,v,w)$ ,

$D=(\begin{array}{lll}\epsilon 0 00 \epsilon 00 0 l\end{array})$ , A $=(\begin{array}{lll}\lambda -\omega \delta\omega \lambda 0-\lambda \omega -\delta\end{array})F(u)=(^{-u(u^{2}+v^{2}}-uv((u^{2}u^{2}++v^{2}v^{2})\})$ .

Remark 1. It is not necessary for the results in this section that $\Omega$ is an interval. It is allowed $\Omega$ to be
n-dimensional bounded domain for $n\geq 1$ .

We study the linearized system:

$\{\begin{array}{ll}\frac{\partial U}{\partial t}=D\Delta U+\Lambda U in \Omega,\frac{\partial U}{\partial\nu}=0 on \partial\Omega, \end{array}$ (2.2)
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where $U=(u, v, w)$ . Now we recall the eigenvalue problem of Laplacian with homogeneous Neumann
boundary condition [1].

$\{\begin{array}{ll}\Delta\psi_{n}=- \psi_{n},\frac{\partial\psi_{n}}{\partial\nu}=0 on \partial\Omega,\end{array}$ (2.3)

where $0=k_{0}^{2}<k_{1}^{2}\leq k_{2}^{2}\ldots$ . If $\Omega=[0,1]$ , then we obtain $k_{n}=n\pi$ .
For any integer $n$ , the equations (2.2) admits solutions of the form $U_{n}(x, t)=V_{n}e^{\mu_{n}}{}^{t}\psi_{n}(x)$ , where

$V_{n}\in \mathbb{R}^{3}$ . By substitution, we have the eigenvalue problem

$L_{n}V_{\mathfrak{n}}=\mu_{n}V_{n}$ , (2.4)

where the matrix $L_{\mathfrak{n}}=\Lambda-k_{n}^{2}D$ is given by

$L_{n}=(\omega$ $\lambda-\epsilon k_{n}^{2}-\omega w$ $-\delta\delta-k_{n}^{2}0$). (25)

It is obvious that the eigenvalues of $L_{0}=\Lambda$ is identical to that of the local oscillator:

$\mu_{0}=0$ , $\frac{1}{2}(2\lambda-\delta\pm\sqrt{\delta^{2}-4\omega^{2}})$ . (26)

Next, we consider the case of $n\neq 0$ . The characteristic polynomial $\varphi_{n}$ of $L_{n}$ is cubic. It is not
impossible to express the solutions of $\varphi_{n}(\mu)=0$ explicitly, but it is not suitable for bifurcation $analy_{8}is$ .
So we take a qualitative approach. We give a sufficient condition for the existence of a pair of complex
conjugate eigenvalues of $L_{n}$ and its real part becomes positive for some $n$ .
Theorem 1. Let $\lambda,\omega,$ $\delta>0$ and $0<\epsilon<1$ . If the following four inequalities hold for an integer $n$ , then
$L_{n}$ has a negative eigenvatue and a pair of complex conjugate eigenvalues:

$\lambda+\omega<\delta+k_{n}^{2}$ (2.7)
$2w<(1-\epsilon)k_{n}^{2}$ (2.8)

$2\lambda-\delta+2(1-\epsilon)k_{n}^{2}>0$ (2.9)

$\sqrt{\frac{\delta\lambda\{\delta+\lambda+(1-\epsilon)k_{n}^{2}\}}{2\lambda-\delta+2(1-\epsilon)k_{n}^{2}}}<\omega$ (2.10)

nnhermooe, under the above assumptions, if $\epsilon\dot{u}$ sufciently small, then $L_{n}$ has a pair of complex
conjugate eigenvalues with positive real part.

To prove this theorem, we apply Gershgorin’s $th\infty rem$(see [2] for detail of the theorem). $Gershgorin’ 8$

theorem gives us a rough estimate of the distribution of eigenvalues of matrix on complex plane. If (2.7)
and (2.8) are satisfied, then $L_{n}$ has at least one negative eigenvalue. Then we have only to consider the
shape of the graph of $\varphi_{n}(\mu)$ , and furthermore calculations for $\varphi_{n}(\mu)$ , in fact, give us desired informations
about the arrangement of the roots of $\varphi_{n}(\mu)=0$. In details of the proof, please refer our forthcoming
paper in the near future.

Remark 2. If the inequalities hold for $n=1$ , then $L_{n}$ has a negative eigenvalue and a pair of complex
conjugate eigenvalues for $n\geq 1$ . Especially, it should be noted that even if the real $p$art of O-mode
eigenvalue is negative $(2\lambda<\delta)$ , then that of n-mode can be positive for some $n\geq 1$ . This implies that
the wave instability occurs mathematically rigorously.

Remark 3. If $D_{u}=D_{v}=D_{w}=d>0$, the problem is very easy. The eigenvatues of $L_{n}$ are given by

$\mu_{n}=-dk_{n}^{2}$ , $\frac{1}{2}(2\lambda-\delta-2dk_{n}^{2}\pm\sqrt{\delta^{2}-4w^{2}})$ .

According to the monotonicity of the eigenvalues of Laplacian, O-mode is the most unstable. Thenfore,
in this case, wave instability does not occur as the first biftircation.
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3 Numerical simulations
In this section, we briefly show the results obtained by numerical simulation. The system (1.3) with

zero-flux boundary condition was solved numerically in one spatial dimension using a explicit finite
difference method. To calculate the eigenvalues of each matrix $L_{n}$ , we employed the QR method.

We have already known that the eigenvalues of $L_{n}$ are one negative and a pair of complex $\infty njugate$ .
Therefore we focus on the real parts of the complex eigenvalues $\mu_{\mathfrak{n}}$ to study the bifurcation structure.

Figure 1 shows each Hopf bifurcation curve$({\rm Re}\mu_{n}=0)$ for corresponding Fourier mode in the parameter
space $(\delta, \lambda)$ for some fixed $\epsilon$ . Here $\epsilon$ is the diffusion coefficient of $u$ and $v$ . Small $\epsilon$ leads to spatially
non-uniform Hopf bifurcation, that is, wave instability. If $\epsilon$ is chosen smaller, then the higher Fourier
mode becomes unstable as the first bifurcation. Hence it can be said that fast diffusion of $w$ plays an
important role for the emergence of the wave instability in (1.3). As shown in Figure 1, each of Hopf
bifurcation curves can intersect. These intersections imply wave-wave interactions.

Figure 2 shows the behavior of the most unstable mode number as $earrow 0$. The parameters are chosen
so that $R\epsilon\mu_{0}=0$. At $\epsilon=1$ , O-mode eigenvalue is the most unstable. However, the most unstable mode
number changes successively as $\epsilon$ approaches to zero.

Figure 3 shows stable standing wave solutions. The 2-mode $8tanding$ wave solution is very similar to
peripheral phase inversion behavior of plasmodium. Of course, standing waves with different wave-length
can be observed for corresponding parameters. Furthermore, spatiotemporal patterns arising from the
interaction between wave instabilities of different modes can be observed.

何 $R-$ 何 $Ra$

Fig. 1 Hopf bifurcation curves in $(\delta,\lambda)$-plane. Parameter: $\epsilon=0.01(left),\epsilon=0.\alpha)01(right)$ .

Flg. 2 The most unstable mode number increases as $\epsilonarrow 0.The$ parameters are $(\lambda,w,\delta)=$

$(0.5,1,1).The$ horizontal line indicates $\log_{10}\epsilon$ and the vertical line does the mode number which
has the most positive eigenvalue for fixed $\epsilon$ .
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Fig. 3 Stable standing wave solutions. The left is 2-mode oscillation for $(\lambda,w, \delta,\epsilon)$ $=$

(0.005, 1, 1, 0.001). The right is 3-mode oscillation for $(\lambda,w,\delta,e)=(0.0004,1,1, 0.000003)$

time

Fig. 4 Mode interaction between l-mode and 2-mode.

4 Discussion, Conclusion, and Future works
In the system (1.3), the wave instability plays a central and crucial role for pattem formation. It turned

out the pattem like peripheral phase inversion to be naturally included in the system. In addition, the
system can exhibit many other spatiotemporal structures. Therefore, from the viewpoint of our study,
we can interpret the work in [4] as follows: To understand the behavior of the plasmodium system
mathematically, they crushed the structures in which the solution did not behave like the plasmodium
system of Physarum polycephalum by considering spatially dependence of coefficients naturally. AI a
result, they succeeded to construct the mathematical model which was better to reproduce behavior of
the plasmodium system cleverly.

In this study, $D_{u}=D_{v}$ is assumed. If $D_{u}\neq D_{v}$ , the Turing instability might be caused. In [5],
they study the pattern formation arising from the interaction between Turing and wave instability in
3-component oscillatory reaction diffusion system. Their system does not satisfy any conservation law.
In the future, we would like to consider that how different the structure of bifurcations is ? On the other
hand, the homogenization of the synchronized oscillation cluster size, which has been already mentioned
in \S 1, is another mathematically interesting problem. We try to make this be a mathematical result.
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