Global asymptotic stability for a class of difference equations

Yoshiaki Muroya (Department of Mathematical Science, Waseda University)
Emiko Ishiwata (Department of Mathematical Information Science, Tokyo University of Science)
Nicola Guglielmi (Dipartimento di Matematica, Pura ed Applicata, Universita de L'Aquila)

1 Introduction

Consider the following nonlinear difference equation with variable coefficients:

\[x_{n+1} = qx_{n} - \sum_{j=0}^{m} a_{j} f_{j}(x_{n-j}), \quad n = 0, 1, 2, \ldots, \]

where \(0 < q \leq 1 \), \(a_{j} \geq 0 \), \(0 \leq j \leq m \) and \(\sum_{j=0}^{m} a_{j} > 0 \). We now assume that

\[
\begin{cases}
 f(x) \in C(-\infty, +\infty) \text{ is a strictly monotone increasing function,} \\
 f(0) = 0, \quad 0 < \frac{f(x)}{f'(x)} \leq 1, \quad x \neq 0, \quad 1 \leq j \leq m, \text{ and} \\
 \text{if } f(x) \neq x, \text{ then } \lim_{x \to -\infty} f(x) \text{ is finite, otherwise } f(x) = x.
\end{cases}
\]

The above difference equation has been studied by many literatures (see for example, [1]-[9] and references therein).

Definition 1.1 The solution \(y^{*} \) of (1.1) is called uniformly stable, if for any \(\varepsilon > 0 \) and non-negative integer \(n_{0} \), there is a constant \(\delta = \delta(\varepsilon) > 0 \) such that \(\sup\{|y_{n_{0}-i} - y^{*}| | 0 \leq i \leq m\} < \delta \), implies that the solution \(\{y_{n}\}_{n=0}^{\infty} \) of (1.1) satisfies \(|y_{n} - y^{*}| < \varepsilon \), \(n = n_{0}, n_{0} + 1, \ldots \).

Definition 1.2 The solution \(y^{*} \) of (1.1) is called globally attractive, if every solution of (1.1) tends to \(y^{*} \) as \(n \to \infty \).

Definition 1.3 The solution \(y^{*} \) of (1.1) is called globally asymptotically stable, if it is uniformly stable and globally attractive.

In this paper, we study "semi-contractive" functions and global asymptotic stability of difference equations. In Section 2, we first define semi-contractivity of functions and show the related results on the global asymptotic stability of difference equations.

2 Semi-contractive function

Assume that

\[g(z_{0}, z_{1}, \ldots, z_{m}) \in C(R^{m+1}) \quad \text{and} \quad g(y, y, \ldots, y) = y \text{ has a unique solution } y = y^{*}. \]

\[(2.1) \]
Definition 2.1 The function \(g(z_0, z_1, \cdots, z_m) \) is said to be semi-contractive at \(y^* \), if
(i) for any constants \(\bar{z} < y^* \) and \(z_i \geq \bar{z} \), \(0 \leq i \leq m \), there exists a constant \(y^* < \bar{z} < +\infty \) such that \(g(z_0, z_1, \cdots, z_m) < \bar{z} \), and for any \(\bar{z} \leq z_i \leq \bar{z} \), \(0 \leq i \leq m \), there exists a constant \(\bar{z} > z \) such that \(\bar{z} \leq g(z_0, z_1, \cdots, z_m) \), or
(ii) for any constants \(\bar{z} > y^* \) and \(z_i \leq \bar{z} \), \(0 \leq i \leq m \), there exists a constant \(y^* > \bar{z} > -\infty \) such that \(g(z_0, z_1, \cdots, z_m) \geq \bar{z} \), and for any \(\bar{z} \leq z_i \leq \bar{z} \), \(0 \leq i \leq m \), there exists a constant \(\bar{z} < \bar{z} \) such that \(\bar{z} \geq g(z_0, z_1, \cdots, z_m) \).

Lemma 2.1 If \(g(y) \in C(R) \) is a strictly monotone decreasing function such that \(g(g(y)) > y \) for any \(y < y^* \), then \(g(z) \) is semi-contractive for \(y^* \).

Lemma 2.2 Assume (2.1) and that each \(g_i(z_0, z_1, \cdots, z_m) \), \(0 \leq i \leq m \) is semi-contractive for \(y^* \). Then for any \(b_{n,i} \geq 0 \), \(n \geq 0 \), \(0 \leq i \leq m \) such that \(\sum_{i=0}^{m} b_{n,i} = 1 \) and \(\lim_{n \to \infty} b_{n,i} = b_i \), \(0 \leq i \leq m \), it holds that \(\sum_{i=0}^{m} b_{n,i} g_i(z_0, z_1, \cdots, z_m) \) is semi-contractive for \(y^* \).

Corollary 2.1 Assume (2.1) and that \(g(z_0, z_1, \cdots, z_m) \) is semi-contractive for \(y^* \). Then for any \(0 \leq q_n < 1 \), \(g_n(z_0, z_1, \cdots, z_m) \) and \(k \) such that
\[
\lim_{n \to \infty} q_n = q < 1, \quad \text{and} \quad 0 \leq k \leq m,
\]
\[
\lim_{n \to \infty} g_n(z_0, z_1, \cdots, z_m) = g(z_0, z_1, \cdots, z_m) \quad \text{for any} \quad z_0, z_1, \cdots, z_m \in (-\infty, +\infty),
\]
(2.2)
it holds that \(q_n z_k + (1 - q_n) g_n(z_0, z_1, \cdots, z_m) \) is semi-contractive for \(y^* \).

Corollary 2.2 Assume each \(g_i(z) \in C(R) \) and \(g_i(y) = y \) has a unique solution \(y = y^* \), \(0 \leq i \leq m \), and each \(g_i(z_i) \), \(0 \leq i \leq m \) is semi-contractive for \(y^* \), then for any \(b_{n,i} \geq 0 \), \(n \geq 0 \), \(0 \leq i \leq m \) such that \(\sum_{i=0}^{m} b_{n,i} = 1 \) and \(\lim_{n \to \infty} b_{n,i} = b_i \), \(0 \leq i \leq m \), it holds that \(\sum_{i=0}^{m} b_{n,i} g_i(z_i) \) is semi-contractive for \(y^* \). In particular, for any \(0 \leq q_n < 1 \) and \(k \) such that \(\lim_{n \to \infty} q_n = q < 1 \) and \(0 \leq k \leq m \), it holds that \(q_n z_k + (1 - q_n) \sum_{i=0}^{m} b_{n,i} g_i(z_i) \) is semi-contractive for \(y^* \).

Remark 2.1 If \(g(z_0, z_1, \cdots, z_m) > 0 \) for any \(z_i > 0 \), \(0 \leq i \leq m \), then there are cases that we may restrict our attention only to \(z_i > 0 \), \(0 \leq i \leq m \) and the unique positive solution \(y^* > 0 \) of \(g(y^*, y^*, \cdots, y^*) = y^* \), whether or not \(g(y, y, \cdots, y) = y \) has other solutions \(y \leq 0 \).

Example 2.1 Examples of semi-contractive function \(g(z_0, z_1, \cdots, z_m) \) for \(y^* \).
(i) \(g(z_0, z_1, \cdots, z_m) = z_m e^{c(1 - z_m)}, \ y^* = 1 \) and \(c \leq 2 \) (see [1]).
(ii) \(g(z_0, z_1, \cdots, z_m) = z_0 \exp(c(1 - \sum_{i=0}^{m} a_i z_i)), \ y^* = 1/(\sum_{i=0}^{m} a_i) \) and \(c \leq 2 \), where \(a_0 > 0, a_i \geq 0, 1 \leq i \leq m \) and \((\sum_{i=1}^{m} a_i)/a_0 \leq 2/e \).
This is equivalent to \(h(u_0, u_1, \cdots, u_m) = u_0 - c \sum_{i=0}^{m} b_i (e^{u_i} - 1) \) is semi-contractive for \(u^* = 0 \) and \(c \leq 2 \), where \(z_i = y^*_e^{u_i}, \ b_0 = y^* a_0 > 0, b_i = y^* a_i > 0, 1 \leq i \leq m, \sum_{i=0}^{m} b_i = 1 \),
and \((\sum_{i=1}^{m} b_i)/b_0 \leq 2/e \) (see [8]).
(iii) \(g(z_0, z_1, \cdots, z_m) = c(1 - e^{c_m}), \ y^* = 0 \) and \(c \leq 1 \) (see [3]).
(iv) \(g(z_0, z_1, \cdots, z_m) = \frac{e^{z_m}}{z_1 + \cdots + z_m}, \ x^* = ((c - 1)/b)^{1/p} \) and \(c \leq \frac{p}{p - 2} \), where \(p > 2 \) and \(b > 0 \) (see [1]).

We consider the following difference equation
\[
y_{n+1} = q_n y_{n-k} + (1 - q_n) g_n(y_n, y_{n-1}, \cdots, y_{n-m}), \quad n = 0, 1, \cdots,
\]
(2.3)
where we assume (2.1) and

\[
\begin{cases}
0 \leq q_n < 1, & \lim_{n \to \infty} q_n = q < 1, \quad k \in \{0, 1, \ldots, m\}, \text{ and} \\
\lim_{n \to \infty} g_n(z_0, z_1, \ldots, z_m) = g(z_0, z_1, \ldots, z_m) \text{ for any } z_0, z_1, \ldots, z_m \in (-\infty, +\infty).
\end{cases}
\] (2.4)

Theorem 2.1 If \(g(z_0, z_1, \ldots, z_m)\) is semi-contractive for \(y^*\), then \(y^*\) of (2.3) is globally asymptotically stable for any \(0 \leq q < 1\).

Colloary 2.3 Assume that there exists a constant \(0 \leq q_0 < 1\) and some \(0 \leq k \leq m\) such that \(q_0 z_k + (1 - q_0)g(z_0, z_1, \ldots, z_m)\), is semi-contractive for \(y^*\). Then, for any \(q_0 \leq q_n < 1\) and \(g_n(z_0, z_1, \ldots, z_m)\) which satisfy (2.4), the solution \(y^*\) of (2.3) is globally asymptotically stable.

Remark 2.2 (i) The corresponding continuous case (2.3) is the following differential equation

\[
\begin{cases}
y'(t) = -p(t)\{y(t) - \frac{1}{1-q_n}g_n(y(n), y(n-1), \ldots, y(n-m))\}, \quad n \leq t < n+1, \quad n = 0, 1, 2, \ldots, \\
p(t) > 0, \quad q_n = e^{-\int_{n}^{n+1}p(t)dt} < 1.
\end{cases}
\]

(ii) In Theorem 2.1, a semi-contractivity condition is a delays and \(q_n\)-independent condition for the solution \(y^*\) of (2.3) to be globally asymptotically stable.

By Theorem 2.1 and Example 2.1, we obtain the following result:

Example 2.2 Examples of delays and \(q\)-independent stability conditions.

(i) Ricker model \(y_{n+1} = qy_n + (1-q)y_{n-m}e^{c(1-y_{n-m})}\), \(n = 0, 1, 2, \ldots\). The positive equilibrium \(y^* = 1\) is globally asymptotically stable, if \(c \leq 2\) (see [1]).

(ii) Ricker model with delayed-density dependence \(y_{n+1} = qy_n + (1-q)y_n \exp\{c(1-\sum_{i=0}^{m}a_iy_{n-i})\}\). The positive equilibrium \(y^* = 1/(\sum_{i=0}^{m}a_i)\) is globally asymptotically stable, if \(c \leq 2\), where \(a_0 > 0, \quad a_i \geq 0, \quad 1 \leq i \leq m\) and \((\sum_{i=1}^{m}a_i)/a_0 \leq 2/e\) (see [8]).

(iii) Wazewska-Czyzewska and Lasota model \(y_{n+1} = qy_n + (1-q)c \sum_{i=0}^{m}b_ie^{-\gamma y_{n-i}}, \quad n = 0, 1, 2, \ldots\), where \(\gamma > 0, \quad b_i \geq 0, \quad 0 \leq i \leq m\), and \(\sum_{i=0}^{m}b_i = 1\).

The positive equilibrium \(y^*\) is the positive solution of the equation \(y^* = ce^{-\gamma y^*}\). Put \(x_n = y^* - y_n\). Then, this equation is equivalent to

\[
x_{n+1} = qx_n - (1-q){\gamma y^*} \sum_{i=0}^{m}b_i(e^{\gamma y^*} - 1), \quad \text{where} \quad b_i \geq 0, \quad 0 \leq i \leq m, \quad \sum_{i=0}^{m}b_i = 1.
\] (2.5)

Thus, the positive equilibrium \(y^*\) is globally asymptotically stable, if \(c \leq e/\gamma\) which is equivalent that the zero solution of (2.5) is globally asymptotically stable if \(\gamma y^* \leq 1\) (see [3]).

(iv) Bobwhite quail population model \(y_{n+1} = qy_n + (1-q)\frac{qy_{n-m}}{1+by_{n-m}}, \quad n = 0, 1, 2, \ldots\), where \(c > 1, \quad b > 0\). The positive equilibrium \(y^* = ((c-1)/b)^{1/p}\) is globally asymptotically stable, if \(c \leq \frac{p}{p-2}\) for \(p > 2\) (see [1]).

We have the following counter example:

Example 2.3 Examples of \(q\)-dependent and delay-dependent stability conditions.

(i) A model in hematopoiesis \(y_{n+1} = qy_n + (1-q)e^{2(1-y_{n-m})}, \quad n = 0, 1, 2, \ldots\).

The equilibrium \(y^* = 1\) is globally asymptotically stable if \(q \in [1/3, 1]\), and 2-cycle if \(q \in [0, 1/3]\) (see [2]).

(ii) A delayed model in hematopoiesis \(y_{n+1} = qy_n + (1-q)e^{2(1-y_{n-m-1})}, \quad n = 0, 1, 2, \ldots\).

The characteristic equation takes the form \(\lambda^3 - q\lambda^2 = -2(1-q)\). Then for \(q = q_2 = \frac{3-\sqrt{3}}{2}\)
the roots are $-1 < \lambda_1 < 0$, $|\lambda_2| = |\lambda_3| = 1$. For $q_2 < q < 1$, the equilibrium $y^* = 1$ is locally attractive but it becomes unstable for $q = q_2$, and Hopf bifurcation occurs (see [2]).

(iii) Ricker’s equation with delayed-density dependence $y_{n+1} = y_n \exp\{c_n(1-\sum_{i=0}^{m} b_{n,i}y_{n-i})\}$, $n = 0, 1, \cdots$, which is equivalent to $x_{n+1} = x_n - c_n \sum_{i=0}^{m} b_{n,i}(e^{x_{n-i}} - 1)$, $n = 0, 1, \cdots$, where $c_n, b_{n,i} > 0$, $\sum_{i=0}^{m} b_{n,i} = 1$ and $y_n = e^{x_n}$.

The positive equilibrium $y^* = 1$ is globally asymptotically stable if $\lim\sup_{n \to \infty} \sum_{i=n}^{n+m} r_i < \frac{3}{2} + \frac{1}{2(m+1)}$ (see [7]).

(iv) A model of the growth of bobwhite quail populations $y_{n+1} = qy_n + (1-q)c \sum_{i=0}^{m} b_{i}e^{-\gamma y_n}$, $n = 0, 1, \cdots$, where $c, \gamma > 0$.

If $c \leq 1$, then for any $0 < q < 1$, $\lim_{n \to \infty} y_n = 0$. If $c > 1$, then the positive equilibrium $y^* = (c-1)^{1/p}$ of the model exists. Moreover, if $p \leq \frac{2c}{(c-1)(1-q)}$ for $m = 0$, or $p < \frac{c}{(c-1)(1-q)} \frac{3m+4}{2(m+1)^2}$ for $m \geq 1$, then the positive equilibrium y^* is globally asymptotically stable (see [4]).

3 Delays-independent stability conditions for (1.1)

After setting

$$r_1 = a_0, \quad r_2 = \sum_{i=1}^{m} a_i, \quad r = r_1 + r_2, \quad \varphi(x) = qx - r_1 f(x), \quad \hat{z}(q) = (-1 + \sqrt{1+4q})/(2q),$$

we have the following result.

Theorem 3.1 Assume that $f(x) = f_0(x) = e^x - 1$ and $0 < q < 1$, and suppose that

$$r_1 < q, \quad r \leq q + (1-q)\ln(q/r_1) \quad \text{and} \quad (q/r_1)^{q}e^{-q}(r_1 - r_2) + (1-q) \geq 0,$$

or

$$r_1 \leq q, \quad r > q + (1-q)\ln(q/r_1), \quad qr_2 \leq r_1, \quad r - r_2(q/r_1)^{q}e^{-q} - (1-q)(L - 1) \geq 0 \quad \text{and} \quad \ell = \ln \frac{r-q-(1-q)\ln(q/r_1)}{r_2} \leq 0,$$

or

$$r_1 > q, \quad r \leq 1 + q, \quad r - r_2(q/r_1)^{q}e^{-q} - (1-q)(\ln(q/r_1) - 1) \geq 0,$$

and $\frac{\ell}{q(r_1)}r^{-q} \leq \frac{q}{1-\ell(q)}$.

Then, the zero solution of (1.1) is globally asymptotically stable.

Numerical result 3.1 Assume that $f(x) = f_0(x) = e^x - 1$ and $0 < q < 1$.

(i) The last inequality in (3.4) can be eliminated from (3.4).

(ii) Under the condition $\frac{p^2}{q} \leq \frac{2}{q}$ and $r \leq 1 + q$, the third inequality of (3.4) is satisfied, and hence the zero solution of (1.1) is globally asymptotically stable.

Example 3.1 Wazewska-Czyzewska and Lasota model (see [9]).

$$y_{n+1} = qy_n + (1-q)c \sum_{i=0}^{m} b_ie^{-\gamma y_{n-i}}, \quad \text{where} \quad c, \gamma > 0, \quad b_i \geq 0 \quad \text{and} \quad \sum_{i=0}^{m} b_i = 1.$$ (3.5)

(3.5) is equivalent to (2.5). For equation (3.5), the positive equilibrium of (3.5), say y^*, is globally asymptotically stable, if $\gamma y^* \leq 1$ (see [3] and Example 2.2 iii)). For the case $\gamma y^* > 1$, by using
the generalized Yorke condition, [6, Theorem 8] extended these to $\gamma y^* \leq (1 + q^{m+1})/(1 - q^{m+1})$ with some restricted conditions "$V_k(q) < 0$, $W_k(q) < 0$". Note that the last condition contains the restriction $(q + q^2 + \cdots + q^m)q^m \leq 1$ for $0 < q < 1$. On the other hand, by applying Theorem 3.1 and Numerical result 3.1 to (2.5) for $a_i = (1 - q)\gamma y^* b_i$, $0 \leq i \leq m$, we obtain another sufficient condition, for example, $\sum_{i=1}^{m} b_i \leq \frac{2}{e} b_0$ and $\gamma y^* \leq (1 + q)/(1 - q)$ for the solution y^* of (3.5) to be globally asymptotically stable. Note that $e^x - 1 < x/(1 - x)$ for $0 < x < 1$ and $\frac{1 + x^{m+1}}{1 - x^m} < \frac{1 + x^m}{1 - x}$ for $0 < q < 1$. Thus, compared with [6, Proof of Theorem 2] (and [1]-[9] and references therein), one can see that our results offer new stability conditions to (3.5).

4 Semi-contractivity with a sign condition

For $0 \leq q < 1$, consider the following nonautonomous equation

$$x_{n+1} = qx_n - \sum_{j=0}^{m} a_{n,j} f_j(x_{n-j}), \quad n = 0, 1, \ldots,$$

(4.1)

where $0 < q \leq 1$, $a_{n,j} \geq 0$, $0 \leq j \leq m$, $n = 0, 1, \ldots$, and $\sum_{j=0}^{m} a_{n,j} > 0$, and we assume that there is a function $f(x)$ such that (1.2) holds.

For (4.1) and any $0 \leq l_n \leq m$, we can derive the following equation.

$$x_{n+1} = \left\{ q^{l_{n+1}} x_{n-l_n} + (1 - q) \sum_{k=0}^{l_n} q^k \sum_{j=0}^{m-k} a_{n-k,j} f_j(x_{n-k-j}) \right\}$$

$$- \sum_{k=1}^{l_n} q^k \sum_{j=m-k+1}^{m} a_{n-k,j} f_j(x_{n-k-j}), \quad n = 2m, 2m + 1, \ldots$$

(4.2)

Similar to the proofs of [5, Lemmas 2.3 and 2.4], we have the following two lemmas for (4.1).

Lemma 4.1 Let $\{x_n\}_{n=0}^{\infty}$ be the solution of (4.1). If there exists an integer $n \geq m$ such that $x_{n+1} \geq 0$ and $x_{n+1} > x_n$, then there exists an integer $g_n \in [n-m, n]$ such that

$$x_{g_n} = \min_{0 \leq j \leq m} x_{n-j} < 0.$$

(4.3)

If there exists an integer $n \geq m$ such that $x_{n+1} \leq 0$ and $x_{n+1} < x_n$, then there exists an integer $\bar{g}_n \in [n-m, n]$ such that

$$x_{\bar{g}_n} = \max_{0 \leq j \leq m} x_{n-j} > 0.$$

(4.4)

After setting

$$\bar{r}_1 = \sup_{n \geq m} \sum_{k=0}^{m} q^k \sum_{j=0}^{m-k} a_{n-k,j}, \quad \bar{r}_2 = \sup_{n \geq m} \sum_{k=1}^{m} q^k \sum_{j=m-k+1}^{m} a_{n-k,j},$$

(4.5)

and

$$\bar{r} = \bar{r}_1 + \bar{r}_2, \quad \bar{\varphi}(x) = \bar{q} x - \bar{r}_1 f(x), \quad \bar{q} = q^{m+1}, \quad \bar{\xi} = (-1 + \sqrt{1 + 4\bar{q}})/(2\bar{q})$$

(4.6)

we are able to prove the following results.
If there exists an integer \(n \geq m \) such that \(x_{n+1} \geq 0 \) and \(x_{n+1} > x_n \), then by (4.3) and (4.2) with \(l_n = n - g_n \), we have that

\[
x_{n+1} \leq \varphi(x_{g_n}) - r_2 f(L_n), \quad L_n = \min_{0 \leq j \leq 2m} x_{n-j}.
\] (4.7)

If there exists an integer \(n \geq m \) such that \(x_{n+1} \leq 0 \) and \(x_{n+1} < x_n \), then by (4.4) and (4.2) with \(l_n = n - g_n \), we have that

\[
x_{n+1} \geq \varphi(x_{g_n}) - r_2 f(R_n), \quad R_n = \max_{0 \leq j \leq 2m} x_{n-j}.
\] (4.8)

Lemma 4.2 Suppose that the solution \(x_n \) of (4.1) is oscillatory about 0. If for some real number \(L < 0 \), there exists a positive integer \(n_L \geq 2m \) such that \(x_n \geq L \) for \(n \geq n_L \), then for any integer \(n \geq n_L + 2m \),

\[
x_{n+1} \leq R_L \text{ for } n \geq n_L + 2m, \quad \text{and } x_{n+1} \geq S_L \text{ for } n \geq n_L + 4m,
\] (4.9)

where \(R_L = \max_{L \leq x < 0} \varphi(x) - r_2 f(L) > 0 \) and \(S_L = \min_{0 \leq x \leq L} \varphi(x) - r_2 f(R_L) < 0 \). Moreover, if \(S_L > L \) for any \(L < 0 \), then \(\lim_{n \to \infty} x_n = 0 \).

Assume that \(g(z_0, z_1, \cdots, z_m) \) is continuous for \((z_0, z_1, \cdots, z_m) \in \mathbb{R}^{m+1} \) and \(g(y^*, y^*, \cdots, y^*) = y^* \) has a unique solution \(y^* \).

Definition 4.1 The function \(g(z_0, z_1, \cdots, z_m) \) is said to be semi-contractive with a sign condition \(z_0 \) for \(y^* \), if

(i) for any constants \(\tilde{z} < y^* \) and \(z_i \geq \tilde{z}, 0 \leq i \leq m \) with \(z_0 \leq y^* \), there exists a constant \(y^* < \tilde{z} < +\infty \) such that \(g(z_0, z_1, \cdots, z_m) \leq \tilde{z} \) and for any \(\tilde{z} \leq z_i \leq \tilde{z}, 0 \leq i \leq m \) with \(z_0 \geq y^* \), there exists a constant \(\tilde{z} \geq z \) such that \(\tilde{z} \leq g(z_0, z_1, \cdots, z_m) \),

or

(ii) for any constants \(\tilde{z} > y^* \) and \(z_i \leq \tilde{z}, 0 \leq i \leq m \) with \(z_0 \geq y^* \), there exists a constant \(y^* > \tilde{z} > -\infty \) such that \(g(z_0, z_1, \cdots, z_m) \geq \tilde{z} \) and for any \(\tilde{z} \leq z_i \leq \tilde{z}, 0 \leq i \leq m \) with \(z_0 \leq y^* \), there exists a constant \(\tilde{z} \geq z \) such that \(\tilde{z} \geq g(z_0, z_1, \cdots, z_m) \).

Then by (4.7), (4.8) and Lemma 4.2, we can obtain the following result.

Theorem 4.1 If \(\bar{g}(z_0, z_1; \bar{q}) = \bar{\varphi}(z_0) - r_2 f(z_1) \) is semi-contractive with a sign condition \(z_0 \) for \(x^* = 0 \), then the zero solution of (4.1) is globally asymptotically stable.

Note that if \(\bar{g}(z_0, z_1; \bar{q}) = \bar{\varphi}(z_0) - r_2 f(z_1) \) is semi-contractive with a sign condition \(z_0 \) for \(x^* = 0 \), then the zero solution \(x^* = 0 \) of (4.1) is uniformly stable and hence \(x^* = 0 \) is globally asymptotically stable.

For the special case \(f(x) = e^x - 1 \), we establish the following sufficient conditions for \(0 < q < 1 \) which are some extensions of the result in [5] for \(q = 1 \).

Theorem 4.2 Suppose that \(f(x) = e^x - 1 \) and that one of the following condition is fulfilled:

\[
\begin{align*}
\begin{cases}
\bar{r} \leq 1 & \text{and } \frac{\bar{r} e^{q}}{q} e^{q} \leq \frac{\bar{r}}{1-\bar{q}} \\
\bar{r} \leq 1 + \bar{q} & \text{and } \frac{\bar{r} e^{q}}{q} e^{q} \geq \frac{\bar{r}}{1-\bar{q}}
\end{cases}
\end{align*}
\]

or

\[
\begin{align*}
\begin{cases}
\bar{r} \leq 1 & \text{and } \frac{\bar{r} e^{q}}{q} e^{q} \geq \frac{\bar{r}}{1-\bar{q}} \\
\bar{r} \leq 1 + \bar{q} & \text{and } \frac{\bar{r} e^{q}}{q} e^{q} \leq \frac{\bar{r}}{1-\bar{q}}
\end{cases}
\end{align*}
\] (4.10) (4.11)
with \[
\begin{align*}
G_1(x) &= q\left(\tilde{q}\ln(\tilde{q}/\tilde{r}_1) + \tilde{r} - \tilde{q} - \tilde{r}_2 z^2\right) + \tilde{r} - \tilde{r}(\tilde{q}/\tilde{r}_1)^q e^{\tilde{r}_{2} e^{\tilde{r}_2} - x}, \\
G_3(x) &= (\tilde{r}_1 + (1 + \tilde{q})\tilde{r}_2) - \tilde{q}\tilde{r}_2 e^{\tilde{r}_{2}} - \tilde{r} e^{\tilde{r}_{2} - \tilde{r}_2 z^2} - x,
\end{align*}
\] (4.12)

where \(\alpha\) and \(\delta\) are the lowest solutions of \(G_1(x) = 0\) and \(G_3(x) = 0\), respectively, and \(\tilde{r}\) is a positive solution of \(\tilde{q}z^2 + z - 1 = 0\). Then, the solution \(x^* = 0\) of (4.1) is globally asymptotically stable.

As an immediate consequence we have the following corollary.

Corollary 4.1 Assume that \(f(x) = e^x - 1\) and that \(p \leq 1 + \tilde{q}\) and \(\tilde{r}_1 \geq \tilde{q}\tilde{r}_2\).

If
\[
(i) \frac{\tilde{r}}{\tilde{q}}(\tilde{q}/\tilde{r}_1)^q e^{\tilde{r}_{2} - \tilde{q}} \leq \frac{e^{\tilde{r}}}{1 - \tilde{r}}, \quad \text{or} \quad (ii) \frac{\tilde{r}}{\tilde{q}}(\tilde{q}/\tilde{r}_1)^q e^{\tilde{r}_{2} - \tilde{q}} > \frac{e^{\tilde{r}}}{1 - \tilde{r}} \quad \text{and} \quad G_1(\alpha) > 0,
\]
(4.14)

then, the zero solution of (4.1) is globally asymptotically stable.

Example 4.1 Consider a model \(x_{n+1} = qx_n - \sum_{i=0}^{m} a_i (e^{-x_{n-i}} - 1), \quad n = 0, 1, 2, \ldots\), where \(a_i \geq 0, \quad 0 \leq i \leq m, \quad \text{and} \quad \sum_{i=0}^{m} a_i > 0\). This equation is equivalent to (2.5), if \(\sum_{i=0}^{m} a_i = (1-q)\gamma y^*\) and \(0 < q < 1\). By Corollary 4.1, the zero solution \(x^* = 0\) is globally asymptotically stable for \(p \leq 1 + \tilde{q}\), if for the setting (4.5) and \(\tilde{r}_1 = \tilde{q}(1+2)(1-\tilde{r})e^{1-\tilde{r}}\), it holds that \(\frac{\tilde{r}_1}{\tilde{r}} \leq \frac{1+2}{\tilde{r}_1} - 1\). Since \(e^x - 1 < x/(1-x)\) for \(0 < x < 1\) and we do not need the restriction \((q + q^2 + \cdots + q^m)q^m \leq 1\) for \(0 < q < 1\) in [6, Theorem 2], our results improve some of [6, Theorem 8] (see [5]).

References

