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Abstract
Evolutionary dynamics of food-webs were numerically analyzed, using a multi-phenotype predator-
prey model. In the model, a two-dimensional phenotype space was defined by two traits that determine
strategies as prey and as predator, respectively. EvolutionaIy dynamics of food-webs was numerically
calculated as time evolutions of phenotype distributions. Numerical simulation showed autonomous
development of complex trophic structures through recursive evolutionary branching. Successful
development and maintenance of large food-webs were associated with the Ideal Free Distribution
among predators and prey within them.

Introduction
The present biological communities are ultimately derived from a universal ancestor by repeated spe-
ciation through a long evolutionaIy history of life, is a widespread idea among evolutionary biologists
(Di-Giulio, 2001). The history seems to have been influenced by both external and internal factors.
Ecological interaction among organisms (e.g. predator-prey interaction, resource competition), that
is one of the internal factors, induces their coevolution. It is notable that their evolutionary changes
can also change the ways of interactions among them, which change their ways of evolution further.
Such feedback process of coevolutionary dynamics may have induced autonomous diversification and
development of biological communities.

Reducing complexity not in community structure but in ways of interaction and reproduction,
Ito and Ikegami $(2003, 2\alpha$]$6$); Ito et al. (unpublished) constructed a model that describes evolution-
ary dynamics of a community as a continuous time dynamical system in a two-dimensional pheno-
typic space. These studies numerically showed that predator-prey interaction among the phcnotypes
induces coevolutionary formation of a food-web with recursive evolutionary branching of asexual
lineages from a single ancestor lineage.

The present study analyzes long tern evolutionary dynamics of food-webs, focusing on how the
dynamics is related to Ideal Free Distribution.

Model
Here we use the same predator-prey model with Ito et al. (unpublished). We suppose atwo-dimensional
phenotype space $x=(u, r)$, in which biomass density distribution $n(x)$ is represented. Traits $u$ and
$r$ are real numbers that determine strategies of phenotype $x$ as a predator and as a prey, respectively.
We write the biomass change of ith phenotype as,

$\frac{dn(x)}{dt}=\lambda\int n(x)\cdot g(x’, x)dx’-\int n(x’)\cdot g(x, x’)-d\cdot n(x)$ , (1)
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where $g(x’, x)$ denotes the predation rate by phenotype $x$ on $x’$ , i.e. functional response, and a constant
$\lambda$ denotes the biomass production per unit predation amount, i.e. trophic efficiency, and a constant $d$

denotes the rate of biomass loss by energy consumption and natural death.
We define the prey strategy of phenotype $x$ as a resource distribution in a one-dimensional “re-

source space”, $z$ , provided by unit biomass of the phenotype, which we call a “resource pattem”:
$p_{r}(z, r)$ . The $z$ can be e.g. body size, hardness, toxicity, or abilities to hide or escape. On the other
hand, we define the predator strategy of phenotype $x$ as its energy investment distribution in the re-
source space provided by a unit biomass of the phenotype, which we call a utilization distribution:
$M\cdot p_{u}(z, u)$ . A constant $M$ is the total amount of utilization and $p_{u}(z, u)$ determines its allocation to
each resource, i.e. utilization pattem. Here $\int p_{r}(z, r)dz=\int p_{u}(z, u)dz=1$ is assumed.

The sum of utilization pattems of extant phenotypes gives the total utilization distribution,

$U(z)= \int n(x)\cdot M\cdot p_{u}(z,u)dx$ (2)

while the total resource distribution, $R(z)$ , is given by the sum of resource pattems of extant pheno-
types,

$R(z)= \int n(x)\cdot p_{r}(z,r_{j})dx$ (3)

The basal oesource can be treated as the sunlight.
$W_{1}th$ the $U(z)$ and $R(z)$ , we define the functional response using a general form known as the

Beddington-DeAngelis type (Beddington, 1975; DeAngelis et at., 1975),

$g(x’,x)=M \Omega\int p_{u}(z, u)\phi(z)n(x’)p_{r}(z, r’)dz$ , (4)

where

$\phi(z)=$ $\frac{1}{\beta+\beta’\cdot U(z)+R(z)}$ (5)

Substituting this into Eq. (1) yields,

$\frac{1}{n(x)}\cdot\frac{dn(x)}{dt}=\lambda M\Omega\int p_{u}(z,u)\phi(z)R(z)dz-\Omega\int p_{r}(z,r)\phi(z)U(z)dz-d$ . (6)

Since no biomass inflow into the system is assumed, the system cannot sustain its total biomass. Here
we introduce a basal resource $I(z)$ , which is added to the total resouIce distribution,

$R(z)= \int n(x)\cdot p_{r}(z, r)dx+I(z)$ (7)

This equation gives population dynamics under asexual reproduction.
We introduce sexual reproduction into Eq. (6), as additional biomass flows among phenotypes,

$\frac{dn(x)}{dt}=(\lambda\cdot G(x)-L(x)-d)\cdot n(x)+B(x)-b(x)$ , (8)

where $b(x)$ is the rate of reproduction of phenotype $x$ (i.e. biomass outflow from $x$), given by $b(x)=$

$\zeta\cdot\lambda G(x)n(x)$ , where $\zeta$ is a constant $(\leq 1)$ . The $B(x)$ is the rate of offspring production with
phenotype $x$ by all phenotypes (biomass inflow into $x$). Following Dieckmann and Doebeli (1999),
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we assume that mating probability between phenotypes $x$ and $x’$ is a decreasing function with their
phenotypic distance, $\exp(-(x-x’)^{2}/2\sigma_{m}^{2})$ . We also assume that mating between phenotypes $x$ and
$x’$ produces phenotype $(x+x’)/2$ only, that is simplification of (Drossel and McKane, 2000). With
these assumptions the $B(x)$ is derived as,

$B(x)= \int\frac{b(y)\int\exp(-(y-y’)^{2}/2\sigma_{m}^{2})b(y’)\delta(x-(y+y’)/2)dy’}{\int\exp(-(y-y)^{2}/2\sigma_{m}^{2})b(y’)dy’}dy$, (9)

where $\int B(x)dx=\int b(x)dx$ is fulfilled.
Then Eq. (8) with Eq. (9) describes population dynamics under sexual reproduction. Note that this

formulation only expresses one possibility of the effect of hybridization that counteracts disruptive
selection.

In order to describe evoEutionary dynamics, mutation process is introduced into Eq. (8) as dim-
sion of biomass from extant phenotypes to their neighbour phenotypes.

$\frac{\partial n(x)}{\partial t}=(\lambda\cdot G(x)-L(x)-d)\cdot n(x)+B(x)-b(x)+\nabla(D\cdot\nabla B(x))$ , (10)

where $D=(D_{u}, D_{r})$ denotes a diffusion coefficient vector corresponding to the mutation rates.

Calculation method
For simplicity, the utilization and resource pattems were defined with a delta function $p_{u}(z,x)=$

$M\cdot\delta(z-u),p_{r}(z, x)=\delta(z-r)$ . In this case, phenotypes with trait $u=z_{0}$ prey on phenotypes
whose $r$ is equal to $z_{0}$ . In this paper, $r$ and $u$ are called a “resource trait$\cdot\cdot$ and a $utiliz\epsilon r$ trait”,
respectively.

Time evolutions of phenotype distributions were calculated with the Explicit Euler Method, on
the discretized phenotype space. Absorbing boundaries were assumed for the phenotype space. Con-
sidering that densities of phenotypes cannot be lower than that of one individual in real populations,
phenotypes with their densities lower than a given threshold, $\epsilon$ , were removed instantly at each time
step. For fast calculation, we assumed that the mating between phenotypes only occurs when both
distances in traits $r$ and $u$ between them are less than a given threshold, $\epsilon_{m}$ . This study treated each
phenotype density peak as one cluster.
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(a) (d)

Figure 1: Long term dynamics of food-webs. The number of species (solid line) and the rates of
branching (broken line) and extinction (dotted line) in different three long-term evolutionary dy-
namics, (a): collapse, (b): static maintenance, (c): dynamic maintenance, are plotted. (d), (e)
and (f) are moving-averaged dynamics of the number of species (solid line) and the deviation
from FD (broken line) of (a), (b) and (c), $respe_{\wedge}ctively$. Deviation from IFD was calculated as
$\int(U(z)+R(z))\cdot\{log(U(z)/R(z))-log(M\cdot A)\}^{2}dz/\int(U(z)+R(z))dz$ . Model patameters:
$\lambda=0.15,$ $d=1.0,\beta=0.0,$ $\epsilon=1.0x10^{-6},$ $\sigma_{m}=2.8x10^{-2},$ $\zeta=1.0,$ $\Delta t=1.0x10^{-2}$

$L(z)=4000/M\cdot\exp[-(z-\mu_{L})^{2}/(2\sigma_{L}^{2})],\mu_{L}=0.0,\sigma_{L}=0.08,$ $\epsilon_{m}=1.25x10^{-2}$ . $u=[0,2],r=$
$[0,2],$ $\Omega=20$. $D_{u}=3.6x10^{-4},$ $D_{r}=2.0x10^{-3},$ $M=9.0$ for (a), $M=10.5$ for (b)and $M=9.7$
for (c)

Results

Simulated food-webs typically show repeated collapse and development of their structures. Some
food-webs never recover (Fig. 1 $(a)$), while some are maintained for long periods of time without
losing the diversity (Fig. 1 (b) and $(c)$). We have roughly two distinct dynamic phases in the system.
One is static-maintenance phase, in which both population dynamics and evolutionary dynamics
are stabilized (Fig. 1 $(b)$). The other is “dynamic maintenance” phase in which frequencies of evo-
lutionary branching and extinction are roughly balanced. This keeps the magnitudes of collapse and
development relatively small (Fig. 1 $(c)$). In the static-maintenance phase and during development in
the dynamic maintenance phase, almost all species have both prey and predators. That is, any species
as a node in the food-web has both biomass inflow and outflow from’to other nodes. In other words,
the food-web forms a closed structure. Moreover, when $\beta=0$ (i.e. the ratio dependent response)
is assumed, the distribution of $U(z)/R(z)$ tends to be flat in the resource space, during static main-
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tenance. This corresponds to the Ideal Free Distribution (IFD) (reviewed by Kacelnik et al. (1992)),
because assuming flat $U(z)/R(z)$ and $\beta=0$ in Eq. (6) results in an identical gain $G(x)$ for all
possible strategies of predation. Under these assumptions, the equilibrium ratio in Eq. (6) is given
by $U(z)/R(z)\wedge=M(\lambda\Omega-d/M)/(\Omega+d)$ . Since $U(z)/M$ is the biomass of predators preying on
resource $z,$ $A=\wedge(\lambda\Omega-d/M)/(\Omega+d)$ gives the biomass ratio of interacting predator and prey. We
call the ratio, $A$-ratio”, and its state, “A-equilibrium”.

Indeed, as the system falls into a static-maintenance phase, the ratio $U(z)/R(z)$ converges to
$M\cdot$ $A$ at all locations of extant resources, and the deviation from IFD ($\hat{A}$-ratio) converges to zero
(Fig. 1 $(e)$ ). In the case of the dynamic-maintenance, the system tends to have a larger number of
species when the deviation is smaller (Fig. 1 (0), which implies that convergence to IFD corresponds
to successful development and maintenance of a food-web structure.

Discussion
There are several models focusing on such longer time scales of dynamics, considering evolutionary
adaptation of species (Kondoh, 2003), or expressing speciation by introducing new species simi-
lar to their parent species (Caldarelli et al., 1998; Drossel et al., 2004; Yoshida, 2003). Describing
phenotype-level dynamics of a community, Ito and Ikegami $(2003, 2006)$; Ito et al. (unpublished)
demonstrated food-web formation with recursive evolutionary branchings of asexual phenotypic clus-
ters. The observed relationship between food-web dynamics and IFD can be explained as follows (Ito
et al., unpublished). In any situation, $u$ evolves towards higher density of resource, while $r$ evolves to
escape from predation. As a result, $U(z)$ evolves so that $U(z)$ becomes similar to $R(z)$ (i.e. toward
IFD), while $R(z)$ evolves so that $R(z)$ becomes dissimilar to $U(z)$ . Thus if evolutionary speed of $u$

is slow relative to $r$ , there is alarge difference between $R(z)$ and $U(z)$ . In this case phenotypes under
very low selection pressures exist, which easily exclude other phenotypes, destroying the food-web
structure. Then complex food-web cannot develop. On the other hand, if evolutionary speed of $u$ is
fast relative to $r$ , the deviation from IFD is kept small, in which emergence of too strong competitors
are suppressed. In this case complex food-webs may develop. And if $u$ is sufficiently fast to suppress
evolution of $r$ , static food-web structures emerge, otherwise the dynamics is continued with endless
arms race between $u$ and $r$ .
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