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1 Introduction
Resouroe uptake by microorganisms. such as bacteria and phytoplankton, is inevitably limited
by diffusive transport of resource molecules [10, 6, 7]. In this study, I introduce a new model
of consumer-resource dynamics in aquatic $e$nvironments that considers mechanistic details of
resource uptake process. Here I formulate resource uptake as a three-step process: (i) transport
of resource molecules from the medium to the cell surface via molecular diffusion, (ii) resource
uptake by membrane transporters, and (iii) enzymatic catalysis within a cell.

Because molecular diffusion coefficients are inversely proportional to sizes of resource
molecules according to the Stokes-Einstein equation, resource sizes affect consumer-resource
dynamics by changing the efficiency of diffusive transport. This model is the first to link sizes
of microorganisms with sizes of their resource molecules, providing new insight to the resource
competition theory.

2 Mechanistic model of resource uptake
We consider spherical cells that take up resource molecules dissolved in a fluid. First, resource
molecules are transported by molecular diffusion from medium to cell surface. Once resource
molecules reach the cell surface, they are taken up actively by membrane transporter proteins,
kept temporally in the internal storage pool, and then utilized for cell growth. Thus resource
molecules are taken uP by a cell via these three steps: diffusive transport, membrane uptake,
and cellular catalysis.

The first step, diffusive transport solely relies on molecular diffusion at the scale of unicel-
lular organisms [7]. In polar coordinate system, this step can be described by:

$\frac{\partial R}{\partial t}=\frac{D}{r^{2}}\frac{\partial}{\partial r}($戸 $\frac{\partial R}{\partial r})$ , (1)

where $t$ is time; $r$ is the distance from the center of a cell; $R$ is the resource concentration; and $D$

is the molecular diffusion coefficient. The boundary conditions are: $R(r_{0})=R_{0}$ at cell surface
$(r=r_{0})$ , and $R(r_{BL})=\overline{R}$ at the edge of the diffusive boundary layer [4], where $\overline{R}$ is the resource
concentration in the medium. While $\overline{R}$ is what we usually consider as “resource concentration”
both theoretically and empirically, $R_{0}$ is what a cell actually experiences in the resource uptake
prooess.
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The second step, the membrane uptake, is described by a function of resource concentration
at cell surface, $R_{0}$ , and amount of intemal storage of resource, $Q[11,3]$ ;

$4\pi r_{0}^{2}f(R_{0},Q)$ , (2)

where $f(R_{0},Q)$ is the uptake rate per unit cell surface area. In most studies, $f$ is an increasing
function of $R_{0}$ with negative feedback from $Q:\partial f/\partial R_{0}\geq 0$ and $\partial f/\partial Q\leq 0[11,3]$ .

The last step, enzymatic catalysis, is described by a function of intemal storage, $Q$,

$\frac{4}{3}\pi r_{0}^{3}g(Q)$ , (3)

where $g(Q)$ is the rate per unit cell volume. The catalysis rate increases with intemal storage,
$\partial g/\partial Q\geq 0$ .

Equations (1)$-(3)$ describe the three steps of mechanistic resource uptake. Most studies
consider step 2 only, or step 2 and 3, which correspond to the well-known Droop model $[2, 3]$ .

3 Example: chemostat model
The mechanistic resource uptake model can be aPPlied to consumer-resource dynamics. Here I
consider a chemostat model. The dynamics of resource concen廿鴎 tion in medium $(\overline{R})$, intemal
storage $(Q)$ , and cell density $(B)$ is expressed by

$\frac{d\overline{R}}{dr}=\kappa(R_{IN}-\overline{R})-J_{BL}B$ (4a)

$\frac{dQ}{dt}=4\pi r_{0}^{2}f(R_{0},Q)-\frac{4}{3}\pi P_{0S}(Q)$ (4b)

$\frac{dB}{dt}=B$ ($\frac{4/3\pi r_{0}^{3}g(Q)}{Q}-\theta r_{0}^{p}$
一 $\kappa$), (4c)

where $\kappa$ is dilution rate of chemostat and $\theta\mu_{0}$ is size dependent loss rate such as respiration,
sinking, or grazing mortality. JBL is the resource flux at the edge of the diffusive boundary
layer:

$J_{BL}=4 \pi r_{BL}^{2}D\frac{\partial R}{\partial r}|_{r=r_{BL}}$ . (5)

The change in $R_{0}$ is the difference between membrane uptake and diffusive flux at $r=r_{0}$ :

$\frac{dR_{0}}{dt}=-f(R_{0},Q)+D\frac{\partial R}{\partial r}|_{r=r_{0}}$ . (6)

Diffusive transport at micro meter scale and enzymatic process within cells are $ge$nerally
much faster than resource and biomass dynamics [10]. In this case, resource flux through the
three steps is constant, that is, equations (1), (6), and (4b) are at their steady state. Taking the
right hand side of (1) to be $0$, resource flux $J$ through diffusive $aans\mu rt$ is obtained:

$J=4 \pi r_{0}D(R-R_{0})\frac{r_{BL}}{r_{BL}-r_{0}}$, (7)
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which equates with other two steps. Taking right hands sides of (6) and (4b), we have the steady
state resource flux:

$J=4 \pi r_{0}D(\overline{R}-R_{0})\frac{r_{BL}}{r_{BL}-r_{0}}=4\pi r_{0}^{2}f(R_{0},Q)=\frac{4}{3}\pi r_{0}^{3}g(Q)$ . (8)

Then the reduced chemostat system is written by

$\frac{d\overline{R}}{dt}=\kappa(R_{IN}-\overline{R})-JB$ (9a)

$\frac{dB}{dt}=B(\frac{J}{Q}-\theta f_{0}-\kappa)$ . (9b)

The above reduced system was analyzed in [14]. The theory revealed a counterintuitivc rela-
tionship between sizes of resource molecules and the optimal cell size (i.e., size of a competitor
that outcompetes others); the optimal cel] size negatively depends on resource molecule size.

This model can be easily extended to multi-species $com\mu tition$ . In [14], two different-sized
competitors are shown to coexist on two resources of different sizes.

4 Concluding remarks
Ecologists generally expect a positive relationship between size$s$ of prey and predator in food
webs $[1, 13]$ . Then, can we also expect the same positive relationship between sizes of mi-
croorganisms and their resource molecules? The new theory gave the answer to the question.
Changes in resource molecule sizes do change sizes of the consumers, but to the opposite direc-
tion of what we generally expect; larger resource molecules favor smaller consumers. Though
experiments explicitly designed to test this prediction have not been done yet, it is already sup-
ported by several experiments $[8, 9]$ .

In previous theories, trade-offs in the uptake of resources are necessary to achieve coex-
istence [12]. In [14], in contrast, no explicit trade-offs are incorporated in the model; both
resources and consumers are identical except their sizes. Rather than presuming explicit trade-
offs, they are derived from the biophysical principle of resource uptake.

There are infinite variation in sizes of resource molecules, such as various-sized sugars,
amino acids, proteins, and $\mu lysaccharides$ . The theory suggests that variation in size of re-
source molecules alone, regardless of the quality, can promote diversity of microorganisms,
giving a new dimension of ecological niche space– the size of resource molecules. Because
size variation of resource molecules is unlimited, this partly resolves “the paradox ofplankton;’
which questioned the huge diversity of planktonic organisms on limited number of resources
[5].

The analysis of the full model $(4a)-(4c)$ is yet to be done. Further studies on this model may
consider continuous size ranges of both cell and resource molecules, resource fluctuations, or
individual based approach. As the simple Michaelis-Menten kinetics was replaced by the $Dr\infty p$

equation to account for the variable intemal storage of cells during resource uptake [2, 11, 3],
this new model adds another new step to the theory of consumer-resource dynamics.
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