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1. Introduction

hallSportation (i.e., population dispersal), a common phenomenon in human society,

is considered as one of main factors that could cause the outbreak of some diseases such

as influenza and SARS. It is reported that, in 2003, SARS broke out with some infection

in an airplane: There was one person infected with SARS, and $n\dot{i}e$ persons around

the man were infected during the $tral$)$sportation$ . SARS broke out with such a kind of
transport-related infection. A mathematical groundwork would be meaningful and useful

in order to discuss such a transport-related infection. There have been many investigations

concerning the effect of transportation (or population dispersal) on the spread of a disease
(see [1, 2, 4, 5, 7-9, 11-13] and the references therein). However, few studies take account

of the possibility for some individuals to become infective during transportation, and no
paper discusses such a serious effect of transport-related infection in a more precise and

strict way of $theoretical/mathematical$ study about it. In this paper, we propose a multi-

community model with an epidemic central place that can provide an reasonable and

essentially simple idea of mathematical modeling to theoretically discuss the transport-

related disease infection.

2. The model

The first step to model the transport-related infection is to use a disease transmission

model based on the well-known patch models described by ordinary differential equations
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with a geographically divided population (for the case of two patches, see [3]). However,
in such modeling, the transport-related infection has been modeled as an instantaneous
event, which is clearly an oversimplification or a mathematical convention.

Let us change the point of view for transport-related infection. We assume that a
population is divided into the traveling phase where one travels and the non-traveling
phase where one does not travel. Making use of the idea of compartmental modeling,
we consider the mathematical model which is composed with a central place as the trav-
eling phase and $n$ communities as the community-specified non-traveling phase. This is
an extended version of the phase-compartmental model in [6] and is formulated by the
following $4n$ dimensional nonlinear differential equations:

$S_{i}’=B(N)S_{i}- \frac{\gamma S_{i}I_{1}}{S_{i}+I_{i}}+\mu I_{i}-\alpha_{S}^{1}S_{i}+\beta_{S}^{i}\overline{S}_{i}$ ,

$I_{i}’= \frac{\gamma S_{i}I_{1}}{S_{i}+I_{i}}-(\mu+D+\alpha_{b}^{1})I_{1}+\beta_{I}^{i}\overline{I}_{i}$,

$\tilde{\gamma}\tilde{S}_{i}\sum^{n}\tilde{I}_{k}$

$\overline{S}_{i}’=-\frac{k=1}{n}+\alpha_{S}^{i}S_{i}-\beta_{S}^{i}\tilde{S}_{i}$ ,

$\sum_{k=1}(\tilde{S}_{k}+\tilde{I}_{k})$

(1)

$\tilde{\gamma}\tilde{S}_{i}\sum\tilde{I}_{k}n$

$\tilde{I}_{1}’=\frac{k=1}{n}+\alpha_{I}^{i}I_{i}-\beta_{I}^{i}\tilde{I}_{i}$, $i=1,2,$ $\cdots n$ .
$\sum_{k=1}(\tilde{S}_{k}+\tilde{I}_{k})$

$S_{i}$ and $I_{i}$ represent susceptibles and infectives belonging to community $i$ at the non-
traveling phase, and $\tilde{S}_{i}$ and $\tilde{I}_{i}$ do those at the traveling phase. $\tilde{\gamma}$ is the infection rate at

the traveling phase, and $\gamma$ is that in every community at the non-traveling phase. These
$n$ communities are assumed to be identical except for the phase-transition rates between
the community (non-traveling phase) and the traveling phase, $\alpha_{\delta}^{i}$ and $\beta_{\epsilon}^{i}$ for susceptibles,

and $\alpha$} and $\beta_{I}^{i}$ for infectives.
This model can express more realistically the transport-related infection that traveling

individuals are mixed at the traveling phase, and come back to their own community after
the temporal traveling phase. You see that the traveling phase here plays a role of the
central place, defined in the ecology, such that individuals from surrounding communities
tensely interact there to each other. In the epidemic central place, that is, at the traveling
phase, we assume no birth and no death since the time scale for the traveling is taken
natural to be sufficiently smaller than that for the biological $birth/death$ process in the
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human case. Besides, we assume a population growth rate denoted by $B(N)$ for every

community, where $N$ is the total population size in the whole system. We set up the

following basic assumptions about $B(N)$ for $N\in(O, \infty)$ :

(A1) $B(N)$ is continuously differentiable with $B’(N)<0$ ;

(A2) There is a $b>0$ such that $B(b)=0$ ;

(A3) $B(N)=B^{+}(N)-B^{-}(N)$ where $B^{+},$ $B^{-}$ are nonnegative functions.

(A1) and (A2) involve the meaning of a density-dependent effect. (A3) is a technical

assumption for deriving the basic reproduction ratio mentioned in the next section, while it

has little restriction on our model in a biological sense (for example, in a logistic equation,
$B^{+}$ corresponds to the intrinsic growth rate and $B^{-}$ corresponds to the density-depentent

effect). Furthermore, we consider the disease-related death rate $D$ and the recovery rate

$\mu$ at the non-traveling phase. We do not consider the recovery at the traveling phase (i.e.,

in the epidemic central place) because it is little likely that the infected person might

recover during traveling.

3. Basic reproduction ratio

We now introduce the ‘basic reproduction ratio’ which is one of the most important key

concepts in considering epidemiological models. In order to find the basic reproduction

ratio of our model (1), we use a method established by [12], and lastly obtain the basic

reproduction ratio $R\mathfrak{v}$ for (1) as follows:

(2)

where
$( \Theta\rangle=\sum_{k=1}^{n}(\Theta_{k}\frac{\tilde{S}_{k}^{*}}{\sum_{k=1}^{n}\tilde{S}_{k}^{*}})$

with $\Theta_{i}=\frac{\alpha_{J}^{i}+\mu+D}{\beta_{I}^{1}}i=1,$ $\cdots$ , $n$ , which we call the infective transfer index. Here $\tilde{S}_{k}^{*}$

$(k=1, \cdots n)$ are elements of disease free equlibria (DFE) $E_{0}$ given by

$E_{0}=(S_{1}^{*},$ $\cdots S_{n}^{*},0,$ $\cdots 0,\tilde{S}_{1}^{*},$ $\cdots\tilde{S}_{\mathfrak{n}}^{*},0,$ $\cdots 0)$

with
$\sum_{k=1}^{n}(S_{k}^{*}+\tilde{S}_{k}^{*})=b$ , $\alpha_{S}^{i}S_{i}^{*}\cdot=\beta_{S}^{i}\tilde{S}_{i}^{*}$ , $i=1,$ $\cdots n$ .
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As a result, $R_{0}$ is independent of any phase-transition rate of susceptibles, while it

depends on the nulnber of traveling susceptibles at the DFE. The dependence of $R_{0}$ on
the infection rates $\gamma$ and $\tilde{\gamma}$ is illustrated in Figure 1. The curve dividing the region into

two areas for $R_{O}>1$ and for $R_{0}<1$ is given by

$\gamma=\frac{\mu+D}{n}\cross\frac{\tilde{\gamma}\langle\ominus\rangle-(\mu+D)}{\tilde{\gamma}(\langle\Theta\rangle-\frac{1}{n}\sum^{n}k=1_{\beta_{I}}\alpha^{k}\not\leq)-(\mu+D)}$
,

which plays a role of the threshold for the disease spread.

4. Discussion

We successfully obtained the basic reproduction ratio as an explicit formulus of model

parameters and the conventionally defined infective transfer index $\Theta_{i}$ , as shown in (2).

Making use of the obtained basic reproduction ratio $R_{0}$ , we can investigate how the disease

invasion depends on the model structure. In order to have a further information about

the disease invasion, let the infective transfer index be ordered as $\Theta_{1}>\Theta_{2}>\cdots>\Theta_{n}$

without loss of generality. Then, differentiating $R_{0}$ by $\tilde{S}_{1}^{*}$ and by $S_{n}$ , we have

$\frac{\partial R_{0}}{\partial\overline{S}_{1}^{*}}=\frac{\tilde{\gamma}}{2(\mu+D)}(1+\frac{\tilde{\gamma}(\Theta)-n\gamma}{\sqrt{(\overline{\gamma}\langle\Theta\rangle-n\gamma)^{2}+4\gamma\tilde{\gamma}\sum_{k=1_{I}^{\frac{\alpha}{\beta}t}}^{n^{k}}}})\frac{\sum_{k--2}^{n}\overline{S}_{k}^{*}(\Theta_{1}-\Theta_{k})}{(\sum_{k=1}^{n}\tilde{S}_{k}^{*})^{2}}>0$

(3)

$\frac{\partial R_{0}}{\partial\tilde{S}_{\dot{n}}}=\frac{\tilde{\gamma}}{2(\mu+D)}(1+\frac{\overline{\gamma}\langle\Theta)-n\gamma}{\sqrt{(\tilde{\gamma}\langle\Theta\rangle-n\gamma)^{2}+4\gamma\overline{\gamma}\sum_{k=1}^{n}\alpha^{k}\neq\beta_{I}}})\frac{\sum_{k--1}^{n-1}\tilde{S}_{k}^{*}(\Theta_{n}-\Theta_{k})}{(\sum_{k=1}^{n}\tilde{S}_{k}^{*})^{2}}<0$.

This result suggests that, if we decrease $\overline{S}_{i}^{*}$ to suppress the number of traveling suscepti-

bles of community $i$ , the control may make the disease transmission situation worse due

to the decrease in $R_{0}$ caused by it. Therefore, we can suggest that the public health

control against a disease invasion would significantly depend on the nature of commu-

nity structure including the connectivity between the member sub-commnities or the

community-specified mobility of members in each sub-community. More detail discussion

about our investigation from $R_{0}$ will be presented elsewhere.

Acknowledgement

The first author would like to thank the hospitality of the faculty and staff at the

Department of Mathematical and Life Sciences Graduate School of Science, Hiroshima

201



University, during most of the weeks the authors collaborated, under the support by a
Grant-in-Aid for “Support Program for Improving Graduate School Education” in 2007

from the Japan Society of the Promotion of Science.

References

[1] Arino, J., van den Driessche, P., 2003. A multi-city epidemic model. Math. Popul. Stud.

10, 175-193.

[2] Brauer, F., van den Driessche, P., 2001. Models for translation of disease with immigration

of infectives. Math. Biosci. 171, 143-154.

[3] Cui, J., Takeuchi, Y., Saito, Y., 2006. Spreading disease with transport-related infection. $J$.
Theor. Biol. 239, 376-390.

[4] Hethcote, H. W., 1976. Qualitative analises of communicable disease models. Math. Biosci.
28, 335-356.

[5] Rvachev, L., Longini, I., 1985. A mathematical model for the global spread of influenza.

Math. Biosci. 75, 322.

[6] Saito, Y., Hatakeyama, M., 2007. 移動中の感染と Phase-Compartmental Model, RIMS
Kokyuroku of Kyoto University 1551, 47-52

[7] Sattenspiel, L., Diez, K., 1995 A structured epidemic model incorporating geographic mo-
bility among regions. Math. Biosci. 128, 71-91.

[8] Sattenspiel, L., Herring, D. A., 1998 Structured epidemic models and the spread of influenza

in the central Canada subarctic. Human. Biol. 70, 91-115.

[9] Sattenspiel, L., Herring, D. A., 203 Simulating the effect of quarantine on the spread of the

191&19 flu in central Canada. Bull. Math. Biol. 65, 1-26.

[10] van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold en-

demic equilibria for compartmental models of diseaee transmission. Math. Biosci. 180,

29-48.

[11] Wang, W., Mulone, G., 2003. Threshold of disease transmission in a patch environment. $J$.
Math. Anal. Appl. 285, 321-335.

[12] Wang, W., Zhao, X.-Q., 2004. An epidemic model in a patchy environment. Math. Biosci.

190, 97-112.

[13] Wang, W., Zhao, X.-Q., 2005. An age-structured epidemic model in a patchy environment.

SIAM J. Appl. Math. 65, 1597-1614.

202



Figure 1. Illustration of Ro
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