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Abstract

Cooperation, defection, nonparticipation and withdrawal are well-known aspects of be-
havior in game-like activities in free societies. Hauert et al. showed that the voluntary Public
Goods (PGG) game consisting of three pure strategies: cooperation, defection, and nonpar-
ticipation, can lead to the $rock- scissors- paper’$ ’ cycle and maintain levels of cooperation.
Here, we focus on the two-dimensional adaptive dynamics of cooperative investments and
participation rates in the PGG, and consider the situation where individuals have two types
of continuous-valued options: a probability ofjoining the game, and, if they do so, a level of
cooperative investment.

1 Introduction

The reason for the emergence and maintenance of cooperative behavior Is an enduring puzzle in
biology and the social sciences. The nature of this puzzle is shown by social dilemmas, which
may be characterized as follows [1]: groups of cooperators outperform groups of defectors, but
defectors always outperform cooperators in any mixed group. This represents the classical con-
flict of interest between the individual and the community. Many theooetical and experimental
investigations of cooperative behavior have employed the Ramework of the Public Goods game
(PGG) [9], in other words, the multiperson Prisoner’s Dilemma. Wpical PGGs can be described
as foUows. Cooperators in an N-player group invest the same amount in acommon pool and
defectors do nothing at all. The total amount of investment is then multiplied by afactor $r(>1)$
and distributed equally among all members of the group despite the preceding different invest-
ment amounts. With $r<N$, each player is better off defecting than cooperating, irrespective
of the other players’decisions, $i.e.$ , defecuon dominates cooperation. Cooperators are thus evo-
lutionarily doomed by defectors. This is $\bm{t}$ example of asocial dilemma, and equivalent to the
well-known Prisoner’s Dilemma in the case of $N=2$ .

Here we focus on the effects of voluntary participation on the evolution of cooperation. Volun-
tary panicipation appears to be the simplest mechanism that can be justified as an apriori opnon
even under complete anonymity. The voluntary PGG that Hauert et $a1.[4][5]$ have defined consists
of three pure strategies: cooperation, defection, and nonparticipation, in which players opt out of
unpromising joint enterprises and instead rely on asmall but fixed payoff. This system, in which
the $sIze$ of the group participating in the game varies stochastically, leads to arotational dominat-
ing strategy among the three strategies that is comparable to the rock-scissors-Paper’ cycle, and
thus Populations are prevented from ending up in mutual defection.

Instead of such discrete behavioral strategies, we intuitively consider individuals who are able
to make continuously varying degrees of investment levels and also alter their participation rates
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[10], It is natural that the degree of voluntary participation in profitable but risky joint enterprises
is not assumed as all-or-nothing but rather as a continuous variable from the standpoint of diver-
sification of risk, as well as from the viewpoint of co-operative investment. We thus extend the
original voluntary PGG to co-evolutionary processes of two continuous traits.

1.1 The continuous voluntary PGG

In our model, each individual has acontinuous strategy involving two traits, $(c,p)\in \mathbb{R}[0,1]^{2}$ . The
first coordinate $c$ represents the amount of investment that the individual makes in the PGG. The
second, $p$, represents the probability of pamcipation in this unpromising game. Here we consider a
large well-mixed population of constant size $M$ , whose members live on asmall but fixed income
$\sigma$ . In this situation, $N$ individuals are randomly selected and offered the option to pamcipate
in aPGG. Those who participate with probability $P$ can contribute an investment at acost $c$ to
themselves. All individual contributions are added up and multiplied with aconstant factor $r$ with
$1<r<N$ . This amount is then shared equally among all participants. Each $pa\iota ticipant’ s$ payoff
is given as anet benefit that consists ofis or her share less the amount invested. A $nonpaIticipant’s$

payoff is asmall but fixed $\sigma$ independent of outcomes of the PGG, with $0<\sigma<r-1$ (it is better
to be anonparticipant than to be adefector without contributing at all, but better $stiU$ to be in a
group of cooperators making afull investment). If th$ere$ is only one pamcipants, we assume that
this single player has to act as anonparticipant and therefore the payoff is $\sigma$ .

We will refer to the evolutionary game that results from our extension as the “continuous”
voluntary PGG, and the original model defined by $[4][5]$ as the discrete’ voluntary PGG, in order
to distinguish between them. In the next section, we wm attempt amathematical talysis unlizing
the adaptive dynamics theory for co-evolution of the two traits.

2 Adaptive dynamics

We use the mathematical framework of adaptive dynamics $[2][7]$ , to analyze the evolution re-
sulting from a two-dimensional strategy $(c,p)$ . Consider a monomorphic resident in which every
individual uses the same strategy, $x=(c_{x},p_{x})$ . Let us introduce the term invasionfitness $f_{x}(y)$ . It
is the central concept of adaptive dynamics and denotes the growth rate of a rare mutant strategy
$y=(c_{y},p_{y})$ in the environment set by the monomorphic resident. We assume that the growth rate
of a rare mutant $y$ in a monomorphic resident $x$ is determined by the replicator dynamics [7]. The
invasion fitness is thus denoted by

$f_{x}(y)=P(y,x)-P(x,x)$ , (2.1)

where $P(y,x)$ is the payoff of a strategy $y$ interacting with other $N-1$ homogeneous strategies
$x$ , and $P(x,x)$ is the payoff of a homogenous group for $x$ . From the definition of the continuous
voluntary PGG, we denote the payoff function $P(y,x)$ as follows:

$P(y,x)=p_{y}g_{x}(y)+(1-p_{y})\sigma$, (2.2)

wbere $g_{x}(y)$ denotes the rare mutant $y’ s$ expected payoff when $y$ participates in the PGG with
probability $p_{y}$ and $\sigma$ denotes the fixed payoff when $y$ does not do so with probability $1-p_{y}$ .

The following calculations for $f_{x}(y)$ are straightforward, similar to arguments in [5]. We will
estimate the probability that $S$ of the $N$ individuals ($=N-1$ residents $sampled+the$ mutant$y$) are
willing to join the PGG. In the case $S=1$ (no resident individual participates), the mutant obtains
the payoff $\sigma$ according to assumption. This happens with probability $(1-p_{x})^{N-1}$ . Meanwhile,
when $S-1$ individuals among the sampled $N-1$ residents join the PGG $(S>1)$ , the payoff for the
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mutant $y$ is $r((S-1)c_{x}+c_{y})/S-c_{y}$ . This event happens with probability $(_{s-1}^{N-1})(1-p_{x})^{N-S}p_{x}^{S-1}$ .
Hence, $g_{x}(y)$ is given by

$g_{x}(y)$ $= \sigma(1-p_{x})^{N-1}+\sum_{s=2}^{N}(\begin{array}{l}N-lS-1\end{array})(1-p_{x})^{N-S}p_{x}^{S-1}[\frac{r((S-1)c_{x}+c_{y})}{S}-c_{y}]$

$=\sigma+((r-1)c_{x}-\sigma)(1-z^{N-1})-F(z_{x})(c_{y}-c_{x})$ , (23)

where $z_{x}=1-p_{x}$ and $F(z_{x})$ is defined by

$F(z_{x})=1+(r-1)z_{x}^{N-1}- \frac{r(1-z_{x}^{N})}{N(1-z_{x})}$ . (24)

$F(z_{x})$ has been defined for the discrete voluntary PGG; it refers to the advantage of defectors over
cooperators, depending only on the frequency of nonparticipating behavior: $z_{x}=1-p_{x}$ . We note
that the set of roots of $F(z_{x})$ in $[0,1]$ is a singleton set consisting only of $z_{x}=1$ for $r\leq 2$ , and in
addition there is a unique interior root for $r>2$ . Thus, we obtain

$f_{x}(y)=-p_{x}F(z_{x})(c_{y}-c_{x})+((r-1)c_{x}-\sigma)(1-z_{x}^{N-1})(p_{y}-p_{x})-F(z_{x})(c_{y}-c_{x})(p_{y}-p_{x}),$ $(2.5)$

that represents the Taylor expansion around $x=(c_{x},p_{x})$ .
The adaptive dynamics of the strategy $x$ is then govemed by the selection gradient as below,

with the exception of the vicinity of its equilibrium points.

$D(x)=(\begin{array}{l}\underline{\partial}l\theta_{c_{y}}\bigoplus_{p_{y}}^{\partial_{l}}\end{array})=(\begin{array}{lll} -(1- z_{x})F(z_{x})((r -1)c_{x}-\sigma)(1- z_{x}^{N-l})\end{array})$ , (2.6)

so that $\dot{x}=D(x)$ . An example is given in $Fi_{1}re1$ . This vector points in the direcOon of the maxi-
mal increase of the mutant’s advantage over the resident $popula0on$, that is, the adaptive dynamics
suggests the most favorable $direc\dot{O}on[7]$ . Note that, in general, $\dot{x}=mCD(x)$ , where the matrix $C$

is the $va\dot{n}ance-.covariance$ matrix of the difference vector betw$een$ the mutant’s strategy $\bm{t}d$ that of
its ancestor, and $m$ depends on the equilibrium for the population size and the mutational process
[21 $\cdot$ For simplicity, in ffiis Paper we assume both aconstant population size and an appropriate
$distribu\dot{u}on$ of mutations occuning independently and similarly for each $\alpha ait$ so that one can set
$mC=1$ (unit matrix).

Equhbrium points of the adaptive dynamics are called singular strategies, and they are given
by solutions of $D(x)=0$. If there is no such solution, the ffait $x$ is always under dioectional pres-
sure ffom the $s$election gradient. From Eq. (2.6), singular strategies of the continuous voluntary
PGG are given by $\{(\sigma/(r-1), 1-\hat{z})=:Q\}\cup\{p=0\}$ where $\hat{z}$ is the unique interior $r\infty t$ of
$F(z_{x})$ for $r>2$ . For $r\leq 2$ the singular strategIes are given by $p=0$ only. The point $Q$ and the
line $p=\cdot O$ correspond to the interior equilibrium and the $nonpa\iota ticipant$-homogeneous state of the
discrete voluntary PGG, respectively.

When the singular point $Q$ exists, we obtain the Jacobian $ma\alpha ix$ at $Q$ as follows:

$\frac{\partial D(x)}{\partial x}|_{x=Q}=(\begin{array}{lllll} 0 (1- \hat{z})F’(\hat{z})(r -1)(1- \hat{z}^{N-1}) 0\end{array})$ . (2.7)

The off-diagonal components are of opposite sign because $F’(\hat{z})<0[5]$ , and the diagonal ele-
ments are $0$ . This implies that $Q$ is a center surrounded locally by closed obits [6] (see also Fig.1).
Along the singular line $p=0$, other components except for the lower-diagonal component are
equal to $0$ as follows:

$\frac{\partial D(x)}{\partial x}|_{r=(c_{x},0)}=(\begin{array}{llll}0 00 (N -1)((r -1)c_{x}-\sigma)\end{array})$ . (2.8)

227



Figure 1: Selection gradient depicted by Eq. (2.6) for $N=5,$ $r=3,$ $\sigma=1$ . The horizontal axis is
the investment level $c$ . The vertical axis is the participation rate $p$ . $\{Q(0.5,1-\hat{z})\}\cup\{p=0\}$ is a
set of singular strategies. $\hat{z}\approx 0.4613$ . The two dashed lines $\{c=0.5,p=1-\hat{z}\}$ are the isoclines
where the vertical and the horizontal selection pressure vanishes, respectively. The singular point
$Q$ is a center surrounded by closed orbits, i.e,, neutrally stable. The critical point $($0.5, $0)$ divides
the singular line $p=0$ into the left segment of stable fixed points (closed circles) and the right
segment of unstable fixed points (open circles).

Th$e$ sign of the remaining element changes from positive to negative across a critical point $c_{x}=$

$\sigma/(r-1)$ that divides th$e$ line into two segments consisting of stable fixed points (left side) and
unstable fixed points (right side).

3 Discussion

As illustrated in Fig. 1, sufficienUy far out orbits that start from the vicinity of$p=0$ except for the
critical point, are not closed and attracted to $p=0$. Since the directional selection at investment
level $c$ is neutral on $p=0$, what govems the evolution for the direction of $p=0$ is neutral $driR$

that breaks uniformity and causes adiversified population. In the case the induced evolutionary
fate is unpredictable in line with the conc$ept$ of th$e$ selection gradient based on amonomorphic
population. Neutral drift plays akey role also in the evolutionary dynamics in the vicinity of $Q$

where the selection pressure on both the directions of $c$ and $p$ is very weak (or vanishes at $Q$).

According to the adaptive dynamics theory considered, the populauon goes along closed orbits
and cannot reach $Q$ under the assumption that aresident population is monomorphic. However,
if we relax the assumption and consider more realistic situation in which the $muta\mathfrak{a}on$ probability
is not infinitely small, the directional selection pressure in the vicinity of $Q$ is so weak that next
mutations would occur before subsutution of the resident strategy has been completed.

No satisfactory analysis of evolutionary diversification for the vicinity of the singular point,
where directional selection pressure is no longer sufficient to select random mutants, has yet been
published in the case of more than one dimension. Ito and Dieckmann [8] was the first to show
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a natural process of evolutionary diversification in the two-dimensional case by considering co-
evolution of two traits of th$e$ following types, one of which is subject to disruptive selection while
the other is subject to weak directional selection.

Traditionally, the distinct existenc$e$ of cooperators and defectors has been given a priori in
theoretical discussions of social dilemmas. It is an essential theoretical challenge to justify such
an assumption, because defectors outperform cooperators in any mixed group and cooperators
should therefore be eliminated. Doebeli et a1.[3] presented that, in the continuous Snowdrift game
where there is relaxation of social dilemmas, large asymmetries in investment levels can arise from
one-dimensional evolutionary branching. We will approach the issue of evolution of behavioral
diversity in the two-dimensional cas$e$ by using the continuous voluntary PGG Proposed here in the
near future.
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