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Abstract

Reciprocity has been widely studied as a mechanism for explaining the evolution of co-
operation in various fields. Under reciprocity, cooperation can prevail because a donor of
cooperation receives reciprocation from the recipient, called direct reciprocity, or from some-
one else, called indirect reciprocity. Nowak & Sigmund demonstrated that evolutionary dy-
namics of direct reciprocity can display oscillation and chaos in 2-person games. Is dynamic
cooperation as oscillation or chaos observed only in direct reciprocity? We show that indi-
rectly reciprocal cooperation in n-person games can be maintained dynamically as chaos or
oscillation. This is, to our knowledge, the first demonstration of chaos in indirect reciprocity.
Furthermore, this suggests that oscillatory dynamics are widely observed in the evolution of
reciprocity whether it is direct one or indirect one.

1 Introduction

The concept of reciprocity was first proposed by Trivers [1], which claims that cooper-
ation can evolve because a donor of cooperation receives reciprocation from others. Under
direct reciprocity, a cooperator can be directly reciprocated by the recipient of cooperation
in repeated interactions [2, 3, 4]. On the other hand, under indirect reciprocity, a cooperator
obtains returns from someone else, who knows indirectly through social reputation that she is
cooperative, in non-repeated interactions [6,5,7,8,9,10,11, 12, 13, 14]. Indirect reciprocity
has been applicable to cooperation in a few anonymous interactions such as global markets
or on Internet.
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Here, an interesting point in the evolutionary dynamics of direct reciprocity in two-
person games is the fact that the dynamics of the shares of strategies and those of the
overall level of cooperation display oscillation or chaos [8, 15, 16, 17]. In particular, using
two-person iterated prisoners dilemma games, Nowak & Sigmund [16] demonstrated that,
depending on the mutation rate, the evolutionary dynamics change from converging to a
fixed point to oscillation or chaos. Are these dynamics such as oscillation or chaos limited
to the evolutionary dynamics of direct reciprocity in two-person games? Regarding direct
reciprocity in n-person games, Eriksson & Lindgren demonstrated that, in n-person games,
directly reciprocal cooperation can be maintained as oscillation [18] (but not as chaos).

However, whether dynamic cooperation such as oscillation or chaos is observed or not in
indirect reciprocity remains unclear. In the present study, we investigate the evolutionary
dynamics of indirect reciprocity in one-shot n-person prisoner’s dilemma games including
social reputation. Especially, as in the study by Nowak & Sigmund[16], we specifically
examine bifurcations into oscillation or chaos depending on the mutation rate.

2 Model

Consider a population comprising an infinite number of individuals. Each individual
in the population has a reputation, either G (good) or B (bad). At the beginning of each
generation, the reputation of each individual is presumed as G.

Each generation comprises a number of rounds. After the first round, each subsequent
round occurs with probability w (0 « w < 1), i.e., the expected value of the number of
rounds in a generation is 1/(1 — w).

In each round, all individuals are divided randomly into groups, each of which comprises
n-individuals; all play an n-person prisoner’s dilemma game in each group. In this game,
each individual chooses either to “cooperate (C)” or “defect (D)”. In this study, the cost and
the benefit of cooperation are denoted as ¢ and b, respectively, where b > ¢ > 0. Suppose that
the benefit is shared equally among the n — 1 other group members. Then, the payoffs for a
cooperator, V(C | k), and that for a defector, V(D | k), where k is the number of opponents
cooperating in the group (0 £ k < n - 1), are

k k .
V(Clk)-;—:—-l-b—c, V(le)_;_—_lb' (1)

Moreover, the reputation of opponents affects the decision-making process. For this
study, we adopt “image scoring” as a reputation criterion, which prescribes how to judge the
reputation of others based on their past actions. Under image scoring [6, 7], the reputation
of an individual who has cooperated (defected) in the previous round becomes G (B).

In this study, each individual is assumed to decide an action based on the number of her
opponents having reputation G in the group. Such a decision-making rule, called strategy, .
is denoted by an n-dimensional vector P = (po, - ,pn—1) Where px € {0,1}, in which pi
indicates the probability that the individual cooperates when the number of opponents hav-
ing reputation G is k. For example, in 4-person games, strategy (0,0,0,0) called ALLD is
the unconditional defector, and strategy (1,1,1,1) called ALLC always cooperates. More-
over, strategy (0,0,0,1) called the strict discriminator (stDIS) cooperates only when all the
opponents have reputation G, and (0,0,1,1) or (0,1,1,1) called the generous discriminator
(gDIS) cooperates when at least one or two opponents have reputation G. In all, there are -
2" pure strategies, which we number from 0 to 2" ~ 1. The ith strategy is represented by P;
(the ith strategy being the binary expression for ). Furthermore, the shares of the respective
strategies among the population are denoted respectively as zo,:-+,Z2»—1. In the example
of four-person games, Pq corresponds to ALLD, P to stDIS, Pg or Py to gDIS, and Pig
to ALLC.
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B 1: (a)-(f): Evolutionary dynamics of the overall level of cooperation (the initial state is that
Zo = --- = x15 = 1/16). (a) mutation rate, p = 0.000, (b) g = 0.002, (c) p = 0.006, (d)
41 = 0.009, (e) p = 0.010 and (f) p = 0.011.

In addition, we assume that, with the probability € (0 < € <« 1), an individual who
intends to cooperate fails to cooperate because of a mistake etc [19]. Therefore, we replace
1 in elements of the strategy vectors with 1 — . For instance, strategy (1,0,1,0) is replaced
with (1 —€,0,1 —¢,0).

To investigate the evolution of the shares among the population of the strategies, we
consider the natural selection process by which strategies that achieve higher fitness, defined
as the expected total payoff, increase their shares among the population. Furthermore, we
include mutation, the rate of which is measured using u, in the evolutionary dynamics.
(The derivation of the fitness for each strategy and the mathematical formulation of the
evolutionary dynamics are described in {22].)

3 Result & Discussion

Let us introduce the evolutionary dynamics for the group size of n = 4: the benefit of
cooperation is b = 10; the cost of cooperation is ¢ = 1; the probability that each subse-
quent round occurs is w = 0.9; and the probability of implementation error, ¢ = 0.01. No
evolutionarily stable strategy exists for this parameter setting. We also examined the cases
of n = 3,5 and confirmed that the result does not change qualitatively [20]. (When n is
extremely large, it is expected that the frequency of cooperation is lower [21, 23].)
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Figure 1 illustrates the numerical calculation of the evolutionary dynamics of the overall
level of cooperation under various mutation rates u. At the initial state of the evolutionary
dynamics given in each figure, all strategies are present in equal shares: =g = -+ = ;5 =
1/16. Numerical simulations of the evolutionary dynamics starting from 50 random initial
states and also from the population of ALLD (i.e., z0 =1,2; =+ =Z15 = 0) showed that
the resulting attractors in the figure do not depend on the initial states as far as the mutation
rate, u, is not extremely small (under the parameter setting in the figure, 4 > 0.0002), which
suggests that these attractors are global unless u is extremely small.

As shown in Fig. 1, the evolutionary dynamics change qualitatively as the mutation
rate increases. In the case of no mutation (u = 0), the resulting dynamics converges to a
fixed point at which the overall level of cooperation is very low. Moreover, as the mutation
rate increases, the dynamics displays quasi-periodic oscillation. The larger the mutation
rate, the more complicated the dynamics become. The dynamics bifurcate into chaos, and
subsequently revert to oscillation, and to convergence to a fixed point when the mutation
rate increases further.

Here, how are the oscillation and chaos formed and maintained? We describe the dynam-
ics of the shares of the strategies resulting in the oscillation from the population of uncondi-
tional defectors (ALLD) to answer this question. First, (0,1,0,0) and (0,0, 1,0) strategists
invade the ALLD population. The (0,1,0,0) and (0,0,1,0) strategists earn almost equal
fitness to that for ALLD because they do not cooperate both in the first round where all
individuals have good reputation and after the first round where all ALLD opponents have
a bad reputation (note that, in the population almost entirely consisting of ALLD, most op-
ponents are ALLD strategists whose reputation is good at the first round and bad after the
first round). For that reason, they are not exploited by ALLD, whereas the other strategists
are exploited by ALLD. Therefore, by the effect of mutation, (0, 1,0,0) and (0,0, 1,0) strate-
gists increase, whereas ALLD strategists decrease. (When slight differences arise in fitness,
mutation draws the evolutionary dynamics to the center of the state space where strategy
shares are almost equivalent.) Next, once the shares of (0,1,0,0) and (0,0, 1,0) strategists
increase to some degree, the strictest discriminators, stDIS, who cooperate only when all
the opponents have good reputation, can increase their share by exploiting the (0,1,0,0)
and (0,0, 1,0) strategists. When the share of st DIS strategists rise to a certain degree, they
can overcome the ALLD strategists and become predominant because the st DIS strategists
punish defectors strictly. That is, although stDIS can not invade the ALLD population
alone (23], they can invade the ALLD population by exploiting other strategies which obtain
almost the same fitness as that for ALLD in the population mostly consisting of ALLD.

However, stDIS strategists, once they become predominant, harm each other as a result
of triggering error defections because of their excessive strictness. For that reason, they can
not earn the high level fitness. Therefore, the stDIS strategists are vulnerable to invasion
by more generous strategists, generous discriminators (9DIS), who cooperate when at least
one or two opponents have a good reputation, or by unconditional cooperators (ALLC).
Finally, once the generous strategists prevail over the population, ALLD strategists invade
the population again. This mechanism explains the emergence of the oscillation from the
population of ALLD. Moreover, once the evolutionary dynarmics reach the oscillatory at-
tractor, the share of ALLD strategists is at most 40%, so st DIS strategists can invade the
ALLD population without the assistance of (0,1,0,0) and (0,0, 1,0) strategists.

The mechanism for the formation of the chaos from the ALLD population is almost
the same as that for the oscillation. In the chaotic attractor, in addition to the generous
discriminators, (0,1,0,1) and (1,0, 1,0) strategists invade the population predominated by
the strictest discriminators, which makes the cycle irregular (chaos).

So far, we have investigated the evolutionary phenomena of indirect reciprocity in n-
person games. The analyses have shown that indirectly reciprocal cooperation in n-person
games can be formed and maintained dynamically as oscillation or chaocs. This is, to our
knowledge, the first demonstration of chaos in indirect reciprocity. Furthermore, the evo-
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lutionary dynamics bifurcate as the mutation rate increases. Similar phenomena have been
observed in the evolution of the other type of reciprocity, i.e., direct reciprocity [16, 18].
Considering these results, the result of this paper suggests that dynamics as oscillation or
chaos are widely observed in the evolution of reciprocal cooperation under dilemma games
with strategic mutation whether it is direct one or indirect one [24].
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