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Abstract

Reciprocity has been widely studied as a mechanism for explaining the evolution of co-
operation in various fields. Under reciprocity, cooperation can prevail because a donor of
cooperation receives reciprocation $k_{oI}n$ the recipient, called direct reciprocity, or from some-
one else, called indirect reciprocity. Nowak&Sigmund demonstrated that evolutionary dy-
namics of direct reciprocity can display oscillation and chaos in 2-person games. Is dynamic
cooperation as oscillation or chaos observed only in direct reciprocity? We show that indi-
oectly reciprocal cooperation in n-person games can be maintained dynamically as chaos or
oscillation. This is, to our knowledge, the first demonstration of chaos in indirect reciprocity.
Ftirthermore, this suggests that oscillatory dynamics are widely observed in the evolution of
reciprocity whether it is direct one or indirect one.

1 Introduction
The concept of reciprocity was first proposed by Trivers [1], which claims that cooper-

ation can evolve because a donor of cooperation receives reciprocation from others. Under
direct reciprocity, a cooperator can be directly reciprocated by the recipient of cooperation

in repeated interactions [2, 3, 4]. On the other hand, under indirect reciprocity, a cooperator

obtains returns from someone else, who knows indirectly through social reputation that she is
cooperative, in non-repeated interactions [6, 5, 7, 8, 9, 10, 11, 12, 13, 14]. Indirect reciprocity
has been applicable to cooperation in a few anonymous interactions such as global markets
or on Internet.
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Here, an interesting point in the evolutionary dynamics of direct reciprocity in two-
person games is the fact that the dynamics of the shares of strategies and those of the
overall level of cooperation display oscillation or chaos [8, 15, 16, 17]. In particular, using
two-person iterated prisoners dilemma games, Nowak&Sigmund [16] demonstrated that,
depending on the mutation rate, the evolutionary dynamics change from converging to a
fixed point to oscillation or chaos. Are these dynamics such as oscillation or chaos limited
to the evolutionary dynamics of direct reciprocity in two-person games? Regarding direct
reciprocity in n-person games, Eriksson&Lindgren demonstrated that, in n-person games,
directly reciprocal cooperation can be maintained as oscillation [18] (but not as chaos).

However, whether dynamic cooperation such as oscillation or chaos is observed or not in
indirect reciprocity remains unclear. In the present study, we investigate the evolutionary
dynamics of indirect reciprocity in one-shot n-person prisoner’s dilemma games including
social reputation. Especially, as in the study by Nowak &Sigmund[16], we specifically
examine bifurcations into oscillation or chaos depending on the mutation rate.

2 Model
Consider a population comprising an infinite number of individuals. Each individual

in the population has a reputation, either $G$ (good) or $B$ (bad). At the beginning of each
generation, the reputation of each individual is presumed as $G$ .

Each generation comprises a number of rounds. After the first round, each subsequent
round occurs with probability $w(0\ll w<1)$ , i.e., the expected value of the number of
rounds in a generation is $1/(1-w)$ .

In each round, all individuals are divided randomly into groups, each of which comprises
n-individuals; all play an n-person prisoner’s dilemma game in each group. In this game,
each individual chooses either to “cooperate (C) or “defect (D). In this study, the cost and
the benefit of cooperation are denoted as $c$ and $b$ , respectively, where $b>c>0$ . Suppose that
the benefit is shared equally among the $n-1$ other group members. Then, the payoffi for a
cooperator, $V(C|k)$ , and that for a defector, $V(D|k)$ , where $k$ is the number of opponents
cooperating in the group $(0\leq k\leq n-1)$ , are

$V(C|k)= \frac{k}{n-1}b-c,$ $V(D|k)= \frac{k}{n-1}b$ . (1)

Moreover, the reputation of opponents affects the decision-making procaes. For this
study, we adopt “image scorinj’ as areputation criterion, which praecribae how to judge the
reputation of others based on their past actions. Under image scoring $[6, 7]$ , $t1_{1}e$ reputation
of an individual who hae cooperated (defected) in the previous round becomes $G(B)$ .

In this study, each individual is assumed to decide an action based on the nunlber of her
opponents having reputation $G$ in the group. Such adecision-makin$g$ rule, called stratew,
$i\epsilon$ denoted by an $n$-dimensional vector $P=(p_{0}, \cdots,p_{n-1})$ where $p_{k}\in\{0,1\}$ , in which $p_{k}$

indicatae the probability that the individual cooperatae when the nulnber of opponents hav-
ing reputation $G$ is $k$ . For example, in 4-person gamae, strate$gy(0,0,0,0)$ called ALLD is
the unconditional defector, and strategy (1, 1, 1, 1) called ALLC always cooperatae. More-
over, strategy $(0,0,0,1)$ called the strict discriminator $(stDIS)$ cooperates only when all the
opponents have reputation $G$ , and $(0,0,1,1)$ or $(0,1,1,1)$ called the generous discriminator
$(gDIS)$ cooperatae when at least one or two opponents have reputation G. In all, there are
$2^{n}$ pure strategiae, which we number from $0$ to $2^{n}-1$ . The ith stratey is $repraeented$ by $P_{i}$

(the $ith$ strategy being the binary $expr\infty eion$ for $i$ ). Furthermore, the $share8$ of the raepective
strategiae among the population are denoted raepectively as $x_{0},$ $\cdots,x_{2^{\iota}-1}$ . In the example
of four-person games, $P_{0}$ corresponds to ALLD, $P_{1}$ to $stDIS,$ $P_{\}$ or $P\tau$ to $gDIS$, and $P\iota\epsilon$

to ALLC.
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$H^{\backslash }1:(a)-(f)$ : Evolutionary dynamics of the overall level of cooperation (the initial state is that
$x_{0}=\cdots=x_{15}=1/16)$ . (a) mutation rate, $\mu=$ 0.000, (b) $\mu=$ 0.002, (c) $\mu=$ 0.006, (d)

$\mu=0.009,$ $(e)\mu=0.010$ and (f) $\mu=0.011$ .

In addition, we assume that, with the probability $\epsilon(0<\epsilon\ll 1)$ , an individual who
intends to cooperate fails to cooperate because of a mistake etc [19]. Therefore, we replace
1 in elements of the strategy vectors with $1-\epsilon$ . For instance, strategy $(1, 0,1,0)$ is replaced
with $(1-\epsilon, 0,1-\epsilon,0)$ .

To investigate the evolution of the shares among the population of the strategies, we
consider the natural selection process by which strategies that achieve higher fitness, defined
as the expected total payoff, increase their shares among the population. Furthermore, we
include mutation, the rate of which is measured using $\mu$ , in the evolutionary dynamics.
(The derivation of the fitness for each strategy and the mathematical formulation of the
evolutionary dynamics are describ$ed$ in [22].)

3 Result &Discussion
Let us introduce the evolutionary dynamics for the group size of $n=4$ : the benefit of

cooperation is $b=10$ ; tfe cost of cooperation is $c=1$ ; the probability that each subse-
quent round occurs is $w=0.9$ ; and the probability of implementation error, $\epsilon=0.01$ . No
evolutionarily stable strategy exists for this parameter setting. We also examined the cases
of $n=3,5$ and confirmed that the result does not change qualitatively [20]. (When $n$ is
extremely large, it is expected that the frequency of cooperation is lower $[21, 23]$ .)

232



Figure 1illns’trates the numerical calculation of the evolntionary dynamics of the overall
level of cooperation under various Inntation rates $\mu$ . At the $i_{11}itia1$ state of $tl$)$e$ evolutionary
$dy\iota)amics$ given in each figure, all strategies are present in equal shares: $x_{0}=\cdots=x_{15}=$
$1/16.$ Nulnerical simulations of the evolutionary dynamics starting from 50 random initial
states and also from the population of ALLD (i.e., $x_{0}=1,$ $x_{1}=\cdots=x_{15}=0$ ) $sllowed$ that
the resulting attractors in the figure do not depend on the $i_{11}itia1$ states as far as the mutation
rate, $\mu$ , is not extrenuely $s\iota nall$ (under the $para\iota neter$ setting in $t1_{1}e$ figure, $\mu>0.0002$ ), which
suggests that these attractors are global unless $\mu$ is extremely sInall.

As shown in Fig. 1, the evolutionary dynamics change qualitatively as the mutation
rate $i_{I1}creases$ . In the case of no mutation $(\mu=0)$ , the resulting dynamics converges to a
fixed point at which the overall level of cooperation is very low. $Mor\infty ver$ , as the Inutation
rate increases, the dynalnics displays quasi-periodic oscillation. The larger the mutation
rate, the lnore complicated the dynamics become. The dynamics bifurcate into chaos, and
subsequently revert to oscillation, and to convergence to afixed point when the mutation
rate increasae further.

Here, how are the oscillation and chaos formed and $maintai_{I1}ed$?We daecribe the dynam-
ioe of the sharoe of the strategiae raeulting in the oscillation from the population of uncondi-
tional defectors (ALLD) to answer this quaetioll. First, $(0,1,0,0)$ and $(0,0,1,0)$ strategists
$i_{l1}vade$ the ALLD population. The $(0,1,0,0)$ and $(0,0,1,0)$ strategists eam almost equal
$fitnes^{\neg}s$ to that for ALLD because they do not cooperate both in the first round where all
individuak have good reputation and $af\mathfrak{b}ert1_{1}e$ first round where all ALLD opponents have
abad reputation (note that, in the population almost entirely consisting of ALLD, most op-
ponents are ALLD strategists whose reputation is good at the first round and bad a&r the
first round). For that reason, they are not exploited by ALLD, whereas the other strategists
are exploited by ALLD. Therefore, by the effect of mutation, $(0,1,0,0)$ alld $(0,0,1,0)$ strate-
gists increase, whereas ALLD strategists $decre\epsilon se$ . (When slight differencoe arise in fitnoes,
mutation draws the evolutionary dynamics to the center of the state space where strategy
shares are almost equivalent.) Next, once the sharoe of $(0,1,0,0)a\iota ld(0,0,1,0)$ strategists
increase to some degree, the strictest discriminators, $stDIS$, who cooperate only when all
the opponents have good reputation, can increase their share by exploiting the $(0,1,0,0)$
alld $(0,0,1,0)$ strategists. When the share of $stDIS$ strategists rise to acertain degree, they
can overcome $t1$)$e$ ALLD strategists and become predominant because the $stDIS$ strategists
punish defectors strictly. That $i_{8}$ , although $stDIS$ can not invade the ALLD population
alone [23], they can invade the ALLD population by exploiting other strategies $w1_{1}ich$ obtain
almost the same fitness as that for ALLD in the population mostly cotlsistIng of ALLD.

However, $\epsilon tDIS$ strategists, once they become predominant, harm each other as aresult
of triggering error defectioo because of their exc\’esive $strictne8S$. For that reason, they can
not earn the high level fitnaes. Therefore, the $stDISstrategi_{8}ts$ are vulnerable to invasion
by more generous strategists, generous $discri_{1}ninators(gDIS)$ , who cooperate when at least
one or two opponents have agood reputation, or by uncollditional cooperators (ALLC).
Finally, once $t1_{1}e$ generous strategists prevail over the population, ALLD strategists invade
the population again. This lnechanisln explains the emergence of the oscillation $kom$ the
population of ALLD. Moreover, once the evolutionary $dyna$)$nics$ reach the oscillatory at-
tractor, the share of ALLD strategists is at most 40%, so $stDIS$ strategists can invade the
ALLD population without the assistance of $(0,1,0,0)$ and $(0,0,1,0)$ strategists.

The $mec1_{1}anism$ for the formation of the chaos from the ALLD population is almost
the $san$)$e$ as $t1_{1}at$ for the oscillation. In the chaotic attractor, in addition to the generous
discriminators, $(0,1,0,1)$ and $(1, 0,1,0)$ strategists invade the population predominated by
the strictaet discriminators, which nuakes the cycle irregular (chaos).

So far, we have investigated the evolutionary phenolnena of indirect reciprocity in n-
person games. The analysae $1_{1}ave$ shown that indirectly reciprocal cooperation in n-person
garnae can be formed and $lnaintailled$ dynaInically as oscillation or chaos. This is, to our
knowledge, the first demonstration of chaos in indirect reciprocity. Furtherlnore, the evo-
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lutionary dynamics bifurcate as the mutation rate increases. Similar phenomena have been
observed in the evolution of the other type of reciprocity, i.e., direct reciprocity $[16, 18]$ .
Considering these results, the result of this paper suggests that dynamics as oscillation or
chaos are widely observed in the evolution of reciprocal cooperation under dilemma games
with strategic mutation whether it is direct one or indirect one [24].
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