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Abstract

植物は季節や環境変動、簿命などによって様々な死亡サイクルを持つ。例えば、60年以
上の寿禽を持つといわれるササは、死期が近づくと一斉に開花結実して一斉に枯死する竹の一
種である。ササは、生態系の遷移を著しく遅\langle し、環境を均一化させることで生物の多様性を
大きく下げる。ササが優占になると、被覆により樹木の実生や藁本植物の生育が妨げられる。
このように、ササが競争に非常に強いのは、その一斉死の特徴が原因の一つであると雷われて
いる。ササだけではなく、植物の様々な死亡サイクルが生息地や栄養分、光などを巡り競争す
る植物の共存に大きな影響を与えるに違いない。ここでは、まず、死亡サイクルが競争する 2
つの植物に与える影響を同じ死亡周期をもつ場合とそうでない場合について罐論する。また、
ササ刈りと同時に競争種も一定に減らすことがササの持続的生存を助ける可能性とササの一斉
死が必ずしも競争に有利ではないことを考える。

1 Introduction

In the forest community, the interactions of plants and canopy give an effect to the community
structure and dynamics of forest. Plants coexist with competing to dominate over the open
space for reproduction and seeding, and obtain water or nutrition. Such a coexistence with the
competition is affected by environmental or hereditary elements such as seasonal variations, life
span and so on.

The seasonal effect between two competitive plant species has been studied in many lit-
eratures ([5], [9], [10]), and has been considered to be important to study the dynamics and
coexistence of plants. On the other hand, the life span of plants can be considered as the ele-
ment determining the community structure of forest in a long-time scale. The lfe span of plants
has much to do with the death rate of the plants. The death rate of population is affected by the
life span of each individual as well as the enviroIlUlental elements such as seasonal variations.

For example, the dominance and simultaneous death of Sasa, the dwarf bamboo, h&s a great
influence on the regeneration of beech in Japan ([7], [8]). Sasa is a monocarpic plant and a sort
of bamboo distributed widely in Japan. It is flowers then die simultaneously in a wide area after
rhizomatous vegetative reproduction during a long period. It is reported that the life span of
Sasa is grater than 60 years ([1], [15]). Sasa maintains low death rate for a long time and has
one peak of high death rate by simultaneous death,

In this paper, we consider the effect of the mortality cycle for two competitive plants. Cli-
matic changes or simultaneous withering can vary the death rates of plants. What effect is given
by the mortality cycle to competitive plants? Which mortality $cvclc\backslash$ is the most advantageous to
competition? Through mathematical analysis and numerical $simulatio\iota ls$ , we propose the answer
about the $q\uparrow\lambda est,i\dot{\iota}$)$1lS$ above.
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Finally, we discuss the effect for humans to mow Sasa. Sasa is usually known as a very
strong plant for competition because other plants almost cannot invade an area where Sasa has
already spread out. People of the past in Japan often mows Sasa in order to keep the woods for
livelihood. We show the effect that humans mow Sasa, which can make Sasa be stronger when
it competes against the canopy tree of long periodic death rate or the weeds of short periodic
death rate.

2 Model

The model that we consider here is given as follows.

$\frac{d}{dt}S=e_{1}S-d_{1}(t)S-a_{1}S^{2}-b_{1}WS$,

$\frac{d}{dt}W=e_{2}W-d_{2}(t)W-a_{2}W^{2}-b_{2}SW$

(1)

where
$d_{1}(t)= \gamma_{1}[\frac{1+\sin(2\pi t/T_{1})}{2}]^{\beta_{1}}$ , $d_{2}(t)= \gamma_{2}[\frac{1+\sin(2\pi t/T_{2})}{2}]^{\beta_{2}}$ .

Here, $S(t)$ and $W(t)$ denote the densities of competing plants. $e_{i}$ and $a_{i}(i=1,2)$ are the
reproductive increase rates and intra-specific competition rates of each plant-species. $b_{1}$ and
$b_{2}$ are inter-specific competition rates. $d_{i}(t)(i=1,2)$ are the death rates of the $T_{1}$ -periodic
functions of time. $T;(i=1,2)$ are the period of death rate which imply the longevity of S-
species and W-species, respectively. $\gamma_{i}(i=1,2)$ are the maximum values of death rates. The
parameters $\beta_{i}(i=1,2)$ determine the patterns of distributions of death rates. For example, if $\beta_{1}$

is sufficiently large, then the death of the plant $S$ is considered to occur simultaneously. Figure
1 shows the graphs of the death rate depended on $\beta_{i}$ with $\gamma_{i}=1$ and $T_{i}=10(i=1,2)$ . Note
here that all of parameters in the system (1) are positive values. In what follows, let

$[d_{i}]= \frac{\gamma_{i}}{T_{i}}\int_{0}^{T_{1}}[\frac{1+\sin(2\pi t/T_{i})}{2}]^{\beta}:dt$

denotes the average of $d_{i}(t)(i=1,2)$ .

$Fi_{1}re1$ : Dependence of death rate on $\beta s$ .

37



3 The effect of the mortality cycle in two competitive plants

In the system (1), we have the solutions $E_{0}=(0,0),$ $E_{S}=(\overline{S}, 0)$ , and $E_{W}=(0,\overline{W})$ . Here $\overline{S}$ is
the $T_{1}$-periodic solution of the periodic logistic equation;

$\frac{d}{dt}S=(e_{1}-d_{1}(t))S-a_{1}S^{2}$ ,

provided $e_{1}>[d_{1}]$ , and $\overline{W}$ is the $T_{2}$-periodic solution of the periodic logistic equation;

$\frac{d}{dt}W=(e_{2}-d_{2}(t))W-a_{2}W^{2}$

provided $e_{2}>[d_{2}]$ ([3]).
The system (1) has a positive periodic solution $E_{*}=(S_{*}, W_{*})$ provided $e_{1}>[d_{1}]$ and $e_{2}>[d_{2}]$

([2]). From Theorem 2 and Theorem 4 of [4], we have the following results.

Proposition 1 $E_{0}$ is stable if $e_{1}<[d_{1}]$ and $e_{2}<[d_{2}]$ . $E_{0}$ is unstable if $e_{1}>[d_{1}]$ or $e_{2}>[d_{2}]$ .
Proposition 2 Suppose that $e_{1}>[d_{1}]$ . The periodic solution $E_{S}$ is locally asymptotically stable
if and only if

$[d_{2}]>e_{2}-[b_{2}\overline{S}]$ . (2)

and is unstable if $[d_{2}]<e_{2}-[b_{2}\overline{S}]$

Proposition 3 Suppose that $e_{2}>[d_{2}]$ . The periodic solution $E_{W}$ is locally asymptotically stable
if and only if

$[d_{1}]>e_{1}-[b_{1}\overline{W}]$ (3)

and is unstable if $[d_{1}]<e_{1}-[b_{1}\overline{W}]$ .
Proposition 4 Suppose that $e_{1}>[d_{1}]$ and $e_{2}>[d_{2}]$ , the folloutng conditions are satisfied.

$a_{1}>b_{1}$ and $a_{2}>b_{2}$ .

Then the positive periodic solution $E_{*}$ is locally uniformly stable.

Proposition 4 implies that the two species can coexist if the intra-specific competition of the
species is severer than the inter-specific competition.W-species (S-species) cannot succeed in
invading if the condition (2) (the condition (3)) is satisfied.

Proposition 2 and Proposition 3 show that the greater the average of death rate of the
invasive species is, the more advantageous the resident species is. On the other hand, the lesser
the average of death rate of the invasive species is, the easier the invasion is.

First, we $veri\phi$ the effect of the parameter $\beta_{i}$ with numerical simulations where $T_{1}=T_{2}=30$ .
The parameter vdues of the figures 2, 3, 4 are given by $e_{1}=3,e_{2}=2,a_{1}=2,a_{2}=1,\gamma_{1}=$

1.5, $\gamma_{2}=1,$ $b_{1}=1.5,b_{2}=1$ and th $=1$ .
The figures 2, 3, 4 show that S-species cannot invade the habitat of W-species with $\beta_{1}=1$ ,

but S-species can coexist with W-species when $\beta_{1}$ becomes large. However, if $\beta_{1}$ is sufficiently
large, the two species cannot coexist at the same time. S-species always can persist but W-
species appears only periodically.

Remark 1 In Figure 2, W-species is advantageous to compete against S-species when $\beta_{1}=\$ .
However, S-species becomes more advantageous than W-species when $\beta_{2}$ is large enough. The
death rate of Sasa has the valu$e$ of $\beta_{i}$ large enough. Thus, a plant of small $\beta_{i}$ which has the
same period utth Sasa is difcult to invade an area where Sasa has already spread out. Sasa is
advantageous to plants which has the same period with itself.
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Figure 2: The case of $\beta_{1}=1$ . The Figure 3: The case of $\beta_{1}=10$. $Fi_{1}re4$ : The case of $\beta_{1}=300$ .
dotted line and the solid line denote The two species can coexist all the The two species can coexist but not
the densities of S-species and W- time. always. W-species appears only pe
species respectively. S-species van- riodically.
ishes as time goes by.

In what follows, we comsider the effect of the period of death rates, $T_{i}$ with numerical simula-
tions. We choose the parameter values as $e_{1}=3,$ $e_{2}=2,$ $a_{1}=2,$ $a_{2}=1,\gamma_{1}=1.5,\gamma_{2}=1,b_{1}=1$

and $b_{2}=1$ . We also choose $T_{1}=30,$ $\beta_{1}=100$ in $d_{1}(t)$ , and $\beta_{2}=1$ in $d_{2}(t)$ . Let us consider the
two cases; $T_{2}=10$ and $T_{2}=200$ . Note here that

$\frac{1}{mT_{i}}\int_{0}^{mT}:d_{i}(t)dt=\frac{1}{T_{i}}\int_{0}^{T_{i}}d_{1}(t)dt$ , $m$ : natural number.

Thus, we have the same average of death rates $d_{2}(t),$ $[d_{2}]=0.5$ , for $T_{2}=10$ and $T_{2}=200$ . The
average of death rates $d_{1}(t)$ is given by $[d_{1}]=0.085$ .

First, let us consider the corresponding averaged system of the system (1) as follows:

$\frac{d}{dt}S(t)=(e_{1}-[d_{1}])S-a_{1}S^{2}-b_{1}WS$,

$\frac{d}{dt}W(t)=(e_{2}-[d_{2}])W-a_{2}W^{2}-b_{2}SW$
(4)

The system (4) is the well-known Lotka-Volterra system ([13]), and the two species can coexist,
and the equilibrium of the coexistence is globally asymptotically stable when $a_{2}(e_{1}-[d_{1}])$ –

$b_{1}(e_{2}-[d_{2}])>0$ and $a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-[d_{1}])>0$ . This condition holds when $a_{1}>b_{1}$ and
$a_{2}>b_{2}$ , that is, the intra-specific competition is stronger than the inter-specific competition.

Now, the numerical simulation results are given by the following figures 5,6,7.

$*=$
$S(t)$

$\vee-\aleph’$
.

名.

.. $W(t)$

.
$-$ $-$ $-$

$\sim_{ti}$渦 $-$ $-$ $-$

Figure 5: The case of average Figure 6: The case of the periodic Figure 7: The case of the periodic
death rate system. The two species system (1). $T_{1}=30,$ $\beta_{1}=100,T_{2}=$ $8y_{8}tem(1)$ . $T_{1}=30,$ $\beta_{1}=10,T_{2}=$

coexist, but W-species maintains 10 and $\beta_{2}=1$ . Two species can 200 and $\beta_{2}=1$ . W-species has the
very small density as time goes to. coexist. period that it goes to extinction.

In Figure 5, the two species coexist, but W-species almost dies out and remains only slightly
as time goes to infinity when we choose the death rate as the average of it. In Figure 6, however,
the periodic death rate makes W-species coexist with S-species and have greater density than
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that of Figure 5. We give the greater period $T_{2}$ of W-species in Figure 7 than that of Figure 6.
Then, Figure 7 shows that two specie can coexist but not always. W-species has a period where
it goes to extinct.

Remark 2 When the two species have the same periods of death rates, the smaller $\beta_{i}$ is advan-
tageous to compete because the average of death rate becomes smaller (Figure 1 and Figure 2).
However, Figure 6 shows that W-species can have the higher density than that of the case of the
average death rate when it has a proper period $T_{2}$ (here $T_{2}=30$) when $\beta_{2}$ is greater than $\beta_{1}$ . If
$T_{2}$ is large enough, then W-species is more disadvantageous to competition than that of the case
of $T_{2}=30$ because it has $a$ extinct period. Even though W-species has the same average death
rate in Figure 6 and Figure 7, the longer period gives the disadvantage for competition.

Remark 3 For the averaged system (4), we have the following properties $(/13J)$ :
(i) Either the equilibrium $(0, (e_{2}-[d_{2}])/a_{2})$ or the equilibrium $((e_{1}-[d_{1}])/a_{1},0)$ is globally

asymptotically stable if $\{a_{2}(e_{1}-[d_{1}])-b_{1}(e_{2}-[d_{2}])\}\{a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-[d_{1}])\}<0$ ,
(ii) A positive interior equilibrium enists if $\{a_{2}(e_{1}-[d_{1}])-b_{1}(e_{2}-[d_{2}])\}\{a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-$

$[d_{1}])\}>0$ , and it is unstable if $a_{2}(e_{1}-[d_{1}])-b_{1}(e_{2}-[d_{2}])<0$ and $a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-[d_{1}])<0$ .
However, we should notice that a nontrevial positive periodic solution can exist in the system

(1) even if $\{a_{2}(e_{1}-[d_{1}])-b_{1}(e_{2}-[d_{2}])\}\{a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-[d_{1}])\}<0$ is satisfied. Moreover, $a$

nontrivial positive periodic solution can exist in the case of either $a_{2}(e_{1}-[d_{1}])-b_{1}(e_{2}-[d_{2}])<0$

or $a_{1}(e_{2}-[d_{2}])-b_{2}(e_{1}-[d_{1}])<0([12J)$ . That is, the periodic death rate may cause the two
species to coexist even if the comsponding averaged system wotdd force either of the two species
to extinction.

4 Sasa is really advantageous to competitor ?

Sasa flowers then die simultaneously after rhizomatous vegetative reproduction during greater
than 60 years. It is reported that understory bamboo abundance influence long-term stand
structure and development of canopy tree by suppressing three recruitment ([14]). Thus Sasa is
usually considered to be very strong to compete.

The dynamics of Sasa have been studied in many papers ([6], [7], [8], [11], [14]), especially as
a lattice-structured model ([6]) and an individual based model ([7]). In Japan, Sasa produces a
inhibiting effect on the regeneration of beech and has a very harmful effect on the sustainability
of beech stand, which depends on the longevity of Sasa ([6], [8]). In this section, we discuss
the dynamics of Sasa with a deterministic model of ordinary differential equations by numerical
simulations.

First, let us note that $[d_{i}]$ is a non-increasing function for $\beta_{i}$ because $(1/2)+(1/2)\sin(2\pi t/T_{1})\leqq$

1. Thus, $[d_{i}]$ becomes small when $\beta_{i}$ becomes large. In Section 3, we also have known that stabil-
ity results depend on the average death rates of the two species. A plant which dies simultane-
ously such as Sasa has a sufficiently large $\beta_{i}$ , and thus we can consider Sasa to be advantageous
to compete. However, we show that the simultaneous death of Sasa is not decisive cause for the
advantage of Sasa by numerical simulations.

In what follows, $S(t)$ denotes the density of Sasa in the system (1). Note that Sasa maintains
low death rate for a long time and has one peak of high death rate by simultaneous death. Let
us choose a proper the parameter values which implies the life pattern of Sasa as follows:

$e_{1}=3$ , $\gamma_{1}=3$ , $a_{1}=1$ , $\beta_{1}=50$ . (5)

Here, we set the life span of Sasa at 60 years, that is, $T_{1}=60$ . We also consider the two kinds
of competitive plants agaimst Sasa; A canopy three of a long longevity and a weed of a short
longevity, which are denoted by $W(t)$ in the system (1). A canopy three which are forested in
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a similar time can have a high death rate in the end of the time of longevity. Thus, we set
$T_{2}=300$ years and $\beta_{2}=15$ in the case of canopy tree. In the case of some weeds of short
longevity, we choose $T_{2}=1$ year and $\beta_{1}=1$ . The other parameter values are given by

$e_{2}=3$ , $\gamma_{2}=1$ , $a_{2}=1.5$ , $b_{1}$ (canopy) $=1.44$ , $b_{1}$ (weed) $=1.67$ , $b_{2}=0.5$ . (6)

The time variations of the densities of the three species without a competitor are given by Figure
8.

Figure 8: Dynamics of Sasa, Canopy three and Weed without a competitor. The left and right figures describe
the density’s variation of each species from $0$ year to 200 years and from 200 years to 400 years, respectively. The
weeds have very small perturbations.

Now, we consider the effect that humans mow Sasa as well as the competitive plants of it.
We suppose that the mowing by humanI is done constantly, and thus the decreasing rates by
mowing of Sasa and the competitive plant are given by constants. The model discussed here is
as follows:

$\frac{d}{dt}S(t)=(e_{1}-d_{1}(t)-a_{1}S-b_{1}W)S-c_{1}S$,

$\frac{d}{dt}W(t)=(e_{2}-d_{2}(t)-a_{2}W-b_{2}S)W-c_{2}W$,
(7)

where $q(i=1,2)$ are the decreasing rates for humans to mow Sasa and W-species.
Let us choose the values of $c_{1}$ and $c_{2}$ as 0.7 and 1.2, respectively. Then, the simulation

results, Figure 9 and Figure 10, show that Sasa can still exist if humans mow the competitors
as well as Sasa, and it is advantageous to the competitors because the densities’ variations of
the competitors are determined by the period of Sasa.

Figure 9: The case that Sasa competes to Figure 10: The case that Sasa competes to
canopy three when humans mow Sasa. weeds when humans mow Sasa.
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Now, let us remove the effect by mowing in the system (7). We choose the same parameter
values above, (5) and (6). And we choose $c_{i}=0(i=1,2)$ . Then the numerical results are given
by the figures 11, 12.

Figure 11: The case that Sasa competes to Figure 12: The case that Sasa competes to Weed
Canopy three without mowing. with mowing.

Figure 11 and Figure 12 show that Sasa is disadvantageous to the two competitor, canopy
three and weed. As a results, the effect that humans mow Sasa can make Sasa to be stronger
to compete against the canopy three of long periodic death rate and the weed of short periodic
death rate.

Remark 4 The average death rates of Sasa, canopy three and weed are given by $[d_{sasa}]=0.239$ ,
$[d_{\infty n\varphi y}]=$ 0.145 and $[d_{weed}]=0.5$ , respectivdy. When Sasa competes urith canopy three, the
property (i) of Remark 3 is satisfied for the parameter values chosen in Figure 11. In the case
that Sasa competes with weed, the property (ii) of Remark 3 is satisfied for the parameter values
chosen in Figure 12. The simulation results of Figure 11 and Figure 12 show that a nontrivial
positive periodic solution exists in the system (1) even if the corresponding averaged system would
fonce either of the two species to extinction.
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