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Abstract

Notion of composition of cellular automata (CA for short) on a group G is introduced by means of
transition functions and translated in terms of local transition rules. Although the Boolean algebra
Tv (resp. Lv) of transition functions (resp. local transition rules) of the same locality (resp. support)
V C G is not closed under the composition, any families {Ly } of Boolean algebras indexed by product
closed increasing families of subsets of G are shown to carry filtration structures compatible with the
composition. As a corollary, graded algebra structures on the Boolean algebra of local transiton rules
are induced. Similar filtrations for transition functions are considered, however, grading is not defined
in this case.

Composition of CAs can be used to reduce a complex behaved dynamics into simpler ones when
the CA under consideratoin is composed of others. As an example, the rule 90 CA is shown to be
factorized into the square of XOR (exclusive or).

This work was partly supported by a grant of Knowledge Cluster Initiative implemented by
Ministry of Education, Culture, Sports, Science and Technology(MEXT).

1 Cellular automata on groups

In what follows, we denote by 2 the Boolean algebra consisting of two constants 0 and 1.

In this work, for the sake of generality, we formulate CA as dynalmical systems on groups by their
features of locality and homogenuity. Notion of CA on groups was first treated as special cases for CA on
graphs named Caylay graphs which represent groups ([1], [2], [3]), The following rather direct definition
of CA on groups is a slight modification of that found in {3] but we do not assume any finiteness of
gnerators of groups.

Let G be a group. By regarding its power set ¥ = 2 as the configuration space, a local transition
rule with the support V C G is defined as a family £ of subsets of V. The role of £ is explained as
follows. Let ¢’ be the evolution of a configuration ¢ € €. Then the state at any site g € ¢’ is determined
according to whether the state pattern of ¢ around g tranlated onto V around the unit element e by g~
is in £ or not. More explicitly,

e » d={geG|glenVesg}.
Such a transition function is characterized as a tranformation T : ¢ — € commutes with the G-action:
T(ac) = a(T(c)), (a€eG,ce¥),
where the action of a € G on a configuration ¢ € € is given by ac = {ag | g € ¢}. The usual infinite (resp.

periodic with the size N') 1-dimensional CA is obtained by considering a symmetric interval V = [—r,r]
in the Abelian group G = Z (resp. Zy: the residue ring modulo N).
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2 Algebraic structure

For a given set X and a Boolean algebra B we consider the point-wize Boolean algebra structure on the
set BX of all B-valued functions defined on X. Namely, it is defined by

(f Vv 9)(z) := f(z) V g(z), (fFA9)(z) := f(z) Ng(z), - (=H)(2) := =(f(z))-
for f, g € BX and z € X. Then we have
f<g & f(z)<g(z) (Vze€X)

For B = 2, the Boolean algebra structure of BX coincide with that of set lattice and V, A, = and
<, respectively become union, intersection, complement and inclusion. The set 7g of all transition
functions on G is a subalgebra of the Boolean algebra [2¢ — 26] = (26)(3), On the other hand, the
set Ly = [2¥ — 2] of all local transition rules with the support V is regarded as a Boolean algebra as
2(3"). All of XB, Tg and Ly are complete.

For any pair of subsets V C W C G, by virture of 2 € 2%, Ly can be naturally regarded as a
sublattice of Lw. We remark that the complementation depends on the algebra to which the element
belongs. When the support should be explicitely indicated, we write as —y .

Now suppose that an increasing sequence § = {V;} (i € N) of subsets of G is given. Then we have a
filiration of the space L of all local transition rules on G. Here the word filtration means that

1<j = EV‘Cﬁvj. (1)

As it will be seen in the next section (Theoreml), Ly is isomorphic to a subalgebra 7y of the Boolean
algebra T¢ of all transition functions. Thus 7¢ also carries a siilar filtration.

3 Correspondence between local transition rules and transition
functions :

For a transition rules £ € Ly with the support V, we define a transition function on G by
Te(e) = {9€G|genVeL} (ce¥)

It can be easily verified that Ts commutes with G-action.

To consider a converse correspondence, we introduce for transition functions a notion corresponding
to supports of local transition rules. Let T : € — ¥ be a transition function and V C G. We say that T'
is local at a site g € Gon V if

cnNV=nV = geT(c)iff geT(c)

is satisfied for any configurations ¢, ¢’ € €. We call V' a domain of locality of T at g. We denote the set
of all transition functions local at a site g on V by Ty v. Ty v is a complete Boolean subalgebra of 7g.
For simplicity, we denote by 7v instead of 7. v for the unit element e. Then it can be easily shown
that 7y = 7;,9V-
Now we assign a local transition function £y € Ly with the support V to each transition function
T €Ty by .

er = {ece2V|eeT(c)}.
By virtue of commutativity of T" with G-action,
er = {g'ce¥|ce2?,geT(c)}
holds for an arbitrary g € G.

Theorem 1 Both of the mappings 7v 3T — £r € Ly and Ly 3 £ — Tg € Ty are isomorphisms of
Boolean algebrals and each of them is the inverse of each other.



99

Proof. It is straightforwardly veryfied that these two mappings are Boolean algebra homomorphisms.
Thus we show the latter part. Let T' € Ti,. Then by defintion,

Ter(e)={9€G|lgenVeser}={geG|ecT(glenV)}
since T is local at e on V,
={9€G|ecT(g0)}
furthermore, since T commutes with the G-action,
={9€G| geT(c)}=T(c)
On the other hand, for £ € Ly,

er, ={ce2¥ | eeTe(c)} ={ce2V | cnVeg}=2c
Thus T — £7, £ — Tg¢ are mutually inverse of each other. g.e.d.

As mentioned at the end of the previous section, Ly is a sublattice of Lw for V C W. Similarly, 7y
is a sublattice of Ty . More precisely, we have the following.

Proposition 2 Let VC W CG.

(1) Ly is an ideal of Lw, i.e., Ly is a sublattice of Ly and if M C £ (£ € Ev, M € Lw) then
Me Lw.

(2) 7v is an Boolean subalgebra of Tw, i.e., Ly is a sublattice of Ly and if T € Ty then T = —wT.

It follows from this proposition that the two embeddings £y C Lw and Ty C Tw are not compatible
with the isomorphisms Ly & Ty and Ly & Ty obtained by Theoreml. In fact, if we denote by TW the
transition function corresponding to £ € Ly regarded as an element of Ly, then TW < Te. Sularly,
denoting by £} the local transition rule corresponding to T' € 7y regarded as in T, we have £1 C .
Consequently, though a filtration

i<j = TWCT, )

of Te for an increasing sequence of subsets § = {Vi}iez of G is obtained as well as the filtration (1) of
Lg, (2) is a filtration by Boolean subalgebras while (1) is a filtration by ideals. One can go on to the
grading from the former always but from the latter may not.

4 Composition of local transition rules
We define the product of V, W C G by
VoW = {vweG|veV,weW}.

This is a non-commutative version of Minkowski addition @ for Abelian groups ([4]). Then we define the
local composition of £ € Ly, M € Ly by

LoM = {ce2VW | s, (M) € £}.
Here 0. : V — 2% is a function defined by
oc(v) = vienw

for ¢ € 28" and 0. 1(9M) denotes the inverse image of the set M C 2% with respect to this function.
Finally, £ ¢ 9t is the set of all configurations ¢ such that this inverse image coincides with a member of
£. By definition, Lo M € Lyvgw.

The following theorem ensures us to call this as local composition:
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Theorem 3 Let £ € Ly, M € Lw. Then the composition Ts oTay of Te € Ty and Ty € Tw is a unique
transition function that is local at e on V ® W satisfying

T,cOTgn = Tgogm

Proof. To begin with, we show that T¢ o Tay € Ty gw. It is clear that the composition commutes with
the G-action. Thus it suffices to show that it is local at e on V ® W. We remark that by the definitions
of Ton(c) and o,

Tm(e)NV = {veV| o.(v) e M} (3)

for any configuration ¢, Suppose that two configurations ¢, ¢’ satisfies eN(V®W) = ¢'N(V@W). Then
for any v € V, since vyW C V ® W, it follows in particular that ¢ N vW = ¢’ NvW. This means that
0c(v) = 0/ (v). Thus from the above remark we have

Tmm(e) NV = Tm(c)NV.
On the other hand, since
e € Te(Tm(c)) if Tm(e)NVeg (4)
and the similar equivalence holds for c,
e € Te(Tm(c)) iff e € Te(Tm(c))

holds. This implies that T o Tyy is local at eon V @ W.
Now put M = L1071 Then by virtue of Theorem 1, 9 is the unique local transition rule with the
support V ® W satisfyin Tix = T o Tygy. Thus all we have to show is that M coincides with £ o 9. For

N={ce2"®W | ec (Te(Tm(c))}

={ce2V®W | Tm(c)nV € £} , (by (4))
={ce2V®W | {ve V| oc(v) e M} € £} (by (3))
={ce2V® | g."1(M) € £} = LoM.
5 Filtration and gradings
Suppose that an increasing sequence § = {V; }iez of subsets of G satisfies
VioV; C Vi (5)
Then the filtrations (1) of L and (2) of Tg, respectively satisfies
Ly,oLy; C Ly, (6)
and
TvioTy; €Ty, (7

As remarked at the end of section 3, since the filtration of the Boolean algebra L¢ is the one comsisiting
of ideals (by Propsition2), we obtain the following graded Boolean algebra:

Z = &5,
' where %; denotes the quotient Boolean algebra defined by
& = ‘CVqt / CV‘—l
which can be regarded as the set of local transition rules that is essentially supported by V;. . is
accompanied with the product
Lo, C Liyj

induced from the local composition. We call .# the graded Boolean algebra of local transition rules (with
respect to §). At this moment, it is not clear how much the algebraic structure of .# depends on the
choice of §.
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6 Examples

Consider usual 1-dimensional CAs. Then G = Z (for infinite case) or Z), (for N-periodic case). If one
wants to consider the symmetric transition rules, by taking

_ )0 (i<0)
o= {{—z‘,...,o,...,i} (i >0)

(for N-periodic case, when i > N/2 put V; = G), the sequence § = {V;} becomes an increasing sequence
satisfying (5). In fact, in this case equalities
VieV; = Vi
are satisfied.
Since by the above example, only domains of odd length appear, we consider the following domains

of one-sided type:
v =0 <0
{0,...,i—1,i} (1>0)

Here and in what follows, we put V; = G when N > i for the N-periodic case. Again, the sequence
§ = {Vi} is increasing and satisfies (5) by equatities. By identifying 2% with 2°+!, we represent each
local transition rule £ € Ly, as the (i + 1)-variabe function £(zo,...,z;) defined by

1 ((zoy...,%;) € £)
L(zo,y...,25) = .
(G020 {o (@0 £.2)
Then the corresponding transition function for £ is
Tg:(en) = (ch)y €= Ll(Cny---sCnsi)-

Here and in what follows, the indices are taken to be modulo N for the N-periodic case.
_ The Wolfram number for £ € Ly, is defiend by the number whose binary expression with the length
2¢+1 jg given by

£(1,...,1)---£0,...,0)

and is calculated by :
Z £(ag,...,ai)- 2 k=052 7"
0,-.-,0i €2
Since XOR in the title is the element of Ly, such that
(0,0) —» 0, 0,1) > 1, (1,0) » 1, (1,1) — 0,

its Worfram number is 0110 in binary expression, that is, 6. Similarly, the rule 90 indicates the local rule
in Lv, with the function form

(0,0,0) — 0, (0,0,1) = 1, (0,1,0) — 0, 0,1,1) = 1,
(1,0,0) — 1, (1,0,1) = 0, (1,1,0) = 1, (1,1,1) » 0.

We note that every local transition rule must be reffered to by its Wolfram number with the degree 1.
The local compositon £09M € Ly,,, of £ € Ly, and M € Ly, is now simply expressed in terms of
functions as

(£ oM)(o, ... 1 Titi) = LOUZoy. .. Ti)se. oy DUTiy ...y Titkj))-
Let £ = XOR? = XOR ¢ XOR € Ly,. Then by £(z,y, z) = XOR(XOR(z, y), XOR(y, 2)),

£(0,0,0) = XOR(0,0) = 0, £(0,0,1) = XOR(0,1) =1,
£(0,1,0) = XOR(1,1) =0, £(0,1,1) = XOR(1,0) = 1,
£(1,0,0) = XOR(1,0) = 0, £(1,0,1) = XOR(1,1) =0,
£(1,1,0) = XOR(0,1) =1, £(1,1,1) = XOR(0,0) = 0.

Hence £ has the Wolfram number 90 of degree 2. Thus we have established the equality in the title.
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7 Concluding remarks

This work was first motivated by seaching a Normal Form of (local transition rules) of CAs. As Boolean
functions, Conjunctive and Dijunctive Normal Forms are well-known. But they are redundant. For
example, since the local transiton rule with the Wolfram number 51 of degree 2 can be represented as

(0,0,0) — 1, (0,0,1) — 1, (0,1,0) — 0, (0,1,1) — 0,
(1,0,0) — 1, (1,0,1) — 1, (1,1,0) — 0, (1,1,1) —» 0

as a function, it becomes
(—zo Az A —122) Vv (—ﬁto Az A a:g) \Y (.’to A=z A —1;52) Vv (mo A=z A 3:2) (8)
in Conjunctive Normal Form. By factorizing,

(8) = (mxo A —x1) A (—Z1 VZI) V (T A ~xy) A (21 V T2)
= (-xo A 1) V (2o A —21) = (—zp V 20) A -2
= .

Namely, the variables ¢ and z; are eliminated and it happens to depend only on one variable zy. It is
of degree 0 in our term. Such a phenomenon motivates us to investigate the degree of Boolean functions
as the number of essetial variables. Hence our aim is to find simplest represetation of Boolean functions.

The independency on the latter variables are made clear by moving onto the quotient Boolean algebra.
That is, if £(xo,...,%;) € Ly, is independent of z;, it is contained in Ly, , and is mapped to 0 in
% = Ly, /Lyv,_,. Unfortunately, with the increasing sequences in the examples we can not describe the
independency on the former variablesf.

Although the rule 90 with degree 2 is simplest in the sense that the number of its variables cannot
be reduced, it can be factorized into the composition of double XORs, that is the rules 6 with degree 1.
The fact that XOR can not be factraized any more is observed as follows. The possibilities for making
local rules with degree 1 by local composition are only twe cases of the composition of ones with degree
-1 with degree 2 and of the composition of ones with degree 0 with degree 1. For the former case, since
for the local transiiton rules of degree —1 only two trivial constants 0 and 1 are available. On the other
hand, for the latter case, there are 4 functions for degree 1. Two of them are reduced to the trivial
constants and the other two are the identity transformation and its negation. So XOR has no non-trivial
factorization and thus we can conclude that it is one of the simplest local transition rules of complex
behavior.
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