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Abstract
Notion of composition of ceUular automata (CA br short) on a group $G$ is introduoed by means of

transition fimctions and translated in terms of local transition rules. Although the Boolean algebra
$\mathcal{T}v$ (resp. $\mathcal{L}_{V}$ ) of transition functions (resp. local transition rules) of the same locality (resp. support)
$V\subseteq G$ is not closed under the composition, any families $\{\mathcal{L}_{V}\}$ of Boolean algebras indexed by product
closed increasing $famili\infty$ of subsets of $G$ are shown to carry filtration structures compatible vith the
composition. As a $\infty roUary$, graded algebra structures on the Boolean $a$]$gebra$ of local trmsiton rules
are induced. Similar flltrations for transition functions $u^{I}e\infty nsidered$, however, ydin$g$ is not defined
in this case.

Composition of CAs can be used to reduce a $\infty mplex$ behaved dynamics into simpler ones when
the CA under consideratoin is $\infty mp_{08}d$ of others. As an example, the rule 90 CA is shown to be
factorized into the square of XOR (exclusive or).

This work was partly supported by a grant of Knowledge Cluster Initiative implemented by
Ministry of Education, Culture, Sports, Science and Ibchnology(MEXT).

1 Cellular automata on groups
In what follows, we denote by 2 the Boolean algebra $\infty oi_{8}ting$ of two $\infty nstant_{8}0$ and 1.

In this work, for the sake of generality, we formulate CA as dynalmical systems on groups by their
features of locality and homogenuity. Notion of CA on groups was first treated as special cases for CA on
graphs named Caylay gmphs which represent groups ([1], [2], [3]), The following rather direct definition
of CA on groups is a slight modiflcation of that found in [3] but we do not wsume any finiteness of
gnerators of groups.

Let $G$ be a group. By regarding its power set $\varphi=2^{G}$ as the configuration space, a local transition
rule with the support $V\subseteq G$ is defined as a family $\mathfrak{L}$ of subsets of $V$ . The role of $\mathfrak{L}$ is explained as
follows. Let $d$ be the evolution of a configuration $c\in\not\in$ . Then the state at any site $g\in c’$ is determined
according to whether the state pattern of $c$ around $g$ tranlated onto $V$ around the unit element $e$ by $g^{-1}$

is in $\mathfrak{L}$ or not. More explicitly,

$c$ $rightarrow$ $c’=\{g\in G|g^{-1}c\cap V\in \mathfrak{L}\}$ .

Such a tramition $fimct\dot{w}n$ is characterized $a8$ a tranformation $T;ffarrow\varphi$ commutes with the G-action:

$T(ac)$ $=$ $a(T(c))$ , $(a\in G,c\in\varphi)$ ,

where the action of $a\in G$ on a $\infty nfigurationc\in\varphi$ is given by $ac=\{ag|g\in c\}$ . The usual infinite (resp.
periodic with the size $N$) l-dimensional CA is obtained by considering a symmetric interval $V=[-r,r]$
in the Abelian group $G=Z$ (resp. $Z_{N}$ : the residue ring modulo $N$).
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2 Algebraic structure
For a given set $X$ and a Boolean algebra $B$ we consider the point-wize Boolean algebra structure on the
set $B^{X}$ of all $B$-valued functions defined on $X$ . Namely, it is defined by

$(f\vee g)(x):=f(x)\vee g(x)$ , $(f\wedge g)(x):=f(x)\wedge g(x)$ , $(\neg f)(x):=\neg(f(x))$ .
for $f,$ $g\in B^{X}$ and $x\in X$ . Then we have

$f\leq g$ $\Leftrightarrow$ $f(x)\leq g(x)$ $(\forall x\in X)$ .
For $B=2$ , the Boolean dgebra structure of $B^{X}\infty incide$ with that of set lattioe and V, $\wedge,$ $\neg$ and

$\leq$ , respectively $be\infty me$ union, intersection, complement and inclusion. The set $\mathcal{T}_{G}$ of all transition
functions on $G$ is a subalgebra of the Boolean algebra $[2^{G}arrow 2^{G}]=(2^{G})^{(2^{G})}$ . On the other hand, the
set $\mathcal{L}_{V}=[2^{V}arrow 2]$ of all local transition rules with the suPport $V$ is regarded as a Boolean algebra as
$2^{(2^{V})}$ . All of $X^{B},$ $\mathcal{T}_{G}$ and $\mathcal{L}_{V}$ are $\infty mplete$ .

For any pair of subsets $V\subseteq W\subseteq G$, by virture of $2^{V}\subseteq 2^{W},$ $\mathcal{L}_{V}$ can be naturally regarded as a
sublattice of $\mathcal{L}_{W}$ . We remark that the $\infty mplementation$ depends on the algebra to which the element
belongs. When the support should be explicitely indicated, we write as $\neg V$ .

Now suppose that an increasing sequence $= $\{V_{i}\}(i\in N)$ of subsets of $G$ is given. Then we have a
filtration of the space $\mathcal{L}c$ of all local transition rules on $G$ . Here the word filtration means that

$t\leq j$ $\Rightarrow$ $\mathcal{L}_{V_{l}}\subseteq \mathcal{L}_{V_{f}}$ . (1)

As it will be seen in the next section $(Th\infty reml),$ $\mathcal{L}_{V}$ is isomorphic to a subalgebra $\mathcal{T}_{V}$ of the Boolean
algebra $\mathcal{T}_{G}$ of all transition functions. Thus $\mathcal{T}c$ also carries a siilar flltration.

3 Correspondence between local transition. rules and transition
functions

For a transition rules $\mathfrak{L}\in \mathcal{L}_{V}$ with the support $V$ , we define a transition function on $G$ by

$T_{\mathfrak{L}}(c)$ $=$ $\{g\in G|g^{-1}c\cap V\in \mathfrak{L}\}$ $(c\in t)$ .
It can be easily verified that $T_{\mathfrak{L}}\infty mmutoe$ with G-action.

To consider a converse correspondence, we introduoe for transition functions a notion $\infty rr\infty ponding$

to supports of local transition rules. Let $\tau_{\ddagger}\varphiarrow y$ be a transition function and $V\subseteq G$ . We say that $T$

is local at a site $9\in G$ on $V$ if

$c\cap V=c’\cap V$ $\Rightarrow$ $g\in T(c)$ 近 $g\in T(c’)$

is satisfied for any $\infty nfigurationsc,$ $c’\in\varphi$ . We call $V$ a domain of locality of $T$ at $g$ . We denote the set
of all transition functions local at a site $g$ on $V$ by $\mathcal{T}_{g,V}$ . $\mathcal{T}_{g^{\gamma}}$, is a complete Boolean subalgebra of $\mathcal{T}_{G}$ .

For simplicity, we denote by $\mathcal{T}_{V}$ instmad of $\mathcal{T}_{\epsilon,V}$ for the unit element $e$ . Then it can be $ea8ily$ shown
that $\mathcal{T}_{V}=\mathcal{T}_{g,gV}$ .

Now we assign a local transition function $\mathfrak{L}\tau\in \mathcal{L}_{V}$ with the support $V$ to each transition imction
$T\in \mathcal{T}_{V}$ by

$\mathfrak{L}_{T}$ $=$ $\{c\in 2^{\gamma}|e\in T(c)\}$ .
By virtue of $\infty mmutativity$ of $T$ with G-action,

$\mathfrak{L}_{T}$ $=$ $\{g^{-1}c\in\Psi|c\in 2^{gV}, g\in T(c)\}$

holds for an arbitrary $g\in G$ .
Theorem 1 Both of the mappingn $\mathcal{T}v\ni T$ }$arrow \mathfrak{L}_{T}\in \mathcal{L}_{V}$ and $\mathcal{L}_{V}\ni \mathfrak{L}Iarrow T_{\mathfrak{L}}\in \mathcal{T}_{V}$ are isomorphisms of
Boolean algebrals and each of them is the inverse of each other.

98



Proof. It is straightforwardly veryfled that these two mappings are Boolean algebra homomorphisms.
Thus we show the latter part. Let $T\in \mathcal{T}_{V}$ . Then by defintion,

$T_{\mathfrak{L}_{T}}(c)=\{g\in G|g^{-1}c\cap V\in \mathfrak{L}_{T}\}=\{g\in G|e\in T(g^{-1}c\cap V)\}$

since $T$ is local at $e$ on $V$,

$=\{g\in G|e\in T(g^{-1}c)\}$

furthermore, since $T$ commutes with the G-action,

$=\{g\in G|g\in T(c)\}=T(c)$ .
On the other hand, for $\mathfrak{L}\in \mathcal{L}_{V}$ ,

$\mathfrak{L}\tau_{r}=\{c\in 2^{V}|e\in T_{\mathfrak{L}}(c)\}=\{c\in 2^{V}|c\cap V\in \mathfrak{L}\}=\mathfrak{L}$.
$Th_{U8}Trightarrow \mathfrak{L}_{T},$ $\mathfrak{L}rightarrow T_{l}$ are mutually inverse of each other. $\underline{q.e.d.}$

As mentioned at the end of the previou8 section, $\mathcal{L}_{V}$ is a sublattice of $\mathcal{L}_{W}$ for $V\subseteq W$. Similarly, $\mathcal{T}_{V}$

is a sublattice of $\mathcal{T}_{W}$ . More precisely, we have the following.

Propositlon 2 Let $V\subseteq W\subseteq G$.
(1)

$\mathfrak{M}\in \mathcal{L}_{W}\mathcal{L}_{V}i\epsilon an$.
ideal of $\mathcal{L}_{W},$ $i.e.,$ $\mathcal{L}_{V}$ is a sublattice of $\mathcal{L}_{W}$ and if $\mathfrak{M}\subseteq \mathfrak{L}(\mathfrak{L}\in \mathcal{L}_{V}, \mathfrak{M}\in \mathcal{L}w)$ then

(2) $\mathcal{T}_{V}$ is an Boolean subalgebra of $\mathcal{T}_{W},$ $i.e.,$ $\mathcal{L}_{V}$ is a sublattioe of $\mathcal{L}_{V}$ and if $T\in \mathcal{T}_{V}$ then $\neg VT=\neg wT$ .

It follows kom this proposition that the two embeddings $\mathcal{L}_{V}\subseteq \mathcal{L}_{W}$ and $\mathcal{T}v\subseteq \mathcal{T}_{W}$ are not $\infty mpatible$

with the isomorphisms $\mathcal{L}_{V}\simeq \mathcal{T}_{V}$ and $\mathcal{L}_{W}\cong \mathcal{T}_{V}$ obtained by $Th\infty reml$ . In fact, if we denote by $T_{\mathfrak{L}}^{W}$ the
transition function corresponding to $\mathfrak{L}\in \mathcal{L}_{V}$ regarded as an element of $\mathcal{L}_{W}$ , then $T_{\mathfrak{L}}^{W}\leq T_{\mathfrak{L}}.$ S\"ularly,
denoting by $\mathfrak{L}_{T}^{W}$ the local transition rule corresponding to $T\in \mathcal{T}_{V}$ regarded as in $\mathcal{T}_{W}$ , we have $\mathfrak{L}_{T}\subseteq \mathfrak{L}_{T}^{W}$ .
Consequently, though a filtration

$i\leq j$ $\Rightarrow$ $\mathcal{T}_{V}\subseteq \mathcal{T}v_{j}$ . (2)

of $\mathcal{T}_{G}$ for an increasing sequence of subsets $ff=\{V_{i}\}_{i\in Z}$ of $G$ is obtained as well as the flltration (1) of
$\mathcal{L}_{G},$ (2) is a filtration by Boolean subalgebras while (1) is a filtration by ideals. One can go on to the
grading from the former always but from the latter may not.

4 Composition of local transition rules
We define the product of $V,$ $W\subseteq G$ by

$V\otimes W$ $=$ $\{vw\in G|v\in V, w\in W\}$ .
This is a $non-\infty mmutative$ version of Minkowski addition $\oplus$ for Abelian groups ([4]). Then we deflne the
local composition of $\mathfrak{L}\in \mathcal{L}_{V},$ $\mathfrak{M}\in \mathcal{L}_{W}$ by

$\mathfrak{L}0\mathfrak{M}=\{c\in 2^{V\Phi W}|\sigma_{c}^{-1}(\mathfrak{M})\in \mathfrak{L}\}$ .
Here $\sigma_{e}$ : $Varrow 2^{W}$ is a function defined by

$\sigma_{\epsilon}(v)$ $=$ $v^{-1}c\cap W$

for $c\in 2^{V\Phi W}$ and $\sigma_{e}^{-1}(\mathfrak{M})$ denotes the inverse image of the set $\mathfrak{M}\subseteq 2^{W}$ with respect to this function.
Finally, $\mathfrak{L}0\mathfrak{M}$ is the set of all $\infty nfi_{1}rationsc$ such that this inverse imsge $\infty incid\infty$ with a member of
$\mathfrak{L}$ . By deflnition, $\mathfrak{L}0\mathfrak{M}\in c_{v_{\Phi W}}$ .

The following $th\infty oem$ ensures us to call this as local $\infty mpoeition$ :
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Theorem 3 Let $\mathfrak{L}\in \mathcal{L}_{V},$ $\mathfrak{M}\in \mathcal{L}_{W}$ . Then the composition $T_{\mathfrak{L}}\circ T_{\mathfrak{M}}$ of $T_{\mathfrak{L}}\in \mathcal{T}_{V}$ and $T_{\mathfrak{M}}\in \mathcal{T}_{W}$ is a unique
transition function that is local at $e$ on $V\otimes W$ satisfying

Tbo T軌 $=$ $T_{\mathfrak{B}\mathfrak{M}}$ .
Proof. To begin with, we show that $T_{\mathfrak{L}}\circ T_{\mathfrak{M}}\in \mathcal{T}_{V\Phi W}$ . It is clear that the composition commutes with
the G-action. Thus it suffices to show that it is local at $e$ on $V\otimes W$ . We remark that by the definitions
of $T_{\mathfrak{M}}(c)$ and $\sigma_{c}$ ,

$T_{\mathfrak{M}}(c)\cap V$ $=$ $\{v\in V|\sigma_{e}(v)\in \mathfrak{M}\}$ (3)
for any $\infty nfigurationc$ , Suppose that two configurations $c$ , c’ satisfies $c\cap(V\otimes W)=c’\cap(V\otimes W)$ . Then
for any $v\in V$, sinoe $vW\subseteq V\otimes W$, it follows in particular that $c\cap vW=c’\cap vW$ . This means that
$\sigma_{c}(v)=\sigma_{d}(v)$ . Thus from the above remark we have

$T_{\Phi l}(c)\cap V$ $=$ $T_{\mathfrak{M}}(c’)\cap V$

On the other hand, sinoe
$e\in T,c(T_{\mathfrak{M}}(c))$ iff $T_{\mathfrak{M}}(c)\cap V\in \mathfrak{L}$ (4)

and the similar equivalenoe holds for $c’$ ,
$e\in T_{\mathfrak{L}}(T_{\mathfrak{M}}(c))$ iff $e\in T_{\mathfrak{L}}(T_{\mathfrak{M}}(d))$

holds. This implies that $T_{L}\circ T_{\mathfrak{M}}$ is local at $e$ on $V\otimes W$ .
Now put $\mathfrak{N}=\mathfrak{L}_{T_{l}oT_{\varpi}}$ . Then by virtue of $Th\infty rem1,$ $\Re$ is the unique local transition rule with the

support $V\otimes W$ sati8fyin $T_{\Re}=T_{\mathfrak{L}}\circ T_{\mathfrak{M}}$ . Thus all we have to show is that $\Re$ coincides with $\mathfrak{L}0\mathfrak{M}$ . For
$\mathfrak{R}=\{c\in 2^{V\Phi W}|e\in(T_{\mathfrak{L}}(T_{\mathfrak{M}}(c))\}$

$=\{c\in 2^{\gamma_{\Phi W}}|T_{\mathfrak{M}}(c)\cap V\in \mathfrak{L}\}$ (by (4))
$=\{c\in 2^{V\Phi W}|\{v\in V|\sigma_{\epsilon}(v)\in \mathfrak{M}\}\in \mathfrak{L}\}$ (by (3))
$=\{c\in 2^{VQW}|\sigma_{c}^{-1}(\mathfrak{M})\in \mathfrak{L}\}=\mathfrak{L}0\mathfrak{M}$.

$\underline{q.e.d.}$

5 Filtration and gradings
Suppose that an increasing sequenoe $ff=\{V_{1}\}:\in z$ of subsets of $G$ satisfies

$V_{1}\otimes V_{j}$ $\subseteq$ $V_{i+j}$ . (5)
Then the filtrations (1) of $\mathcal{L}_{G}$ and (2) of $\mathcal{T}c$ , respectively satisfies

$\mathcal{L}_{V\iota}0\mathcal{L}_{V_{j}}$ $\subseteq$ $\mathcal{L}_{V_{1+j}}$ (6)
and

$\tau_{V}\circ\tau_{v_{j}}$ $\subseteq \mathcal{T}_{V_{l+J}}$ . (7)
As remarked at the end of section 3, sinoe the flltration of the Boolean algebra $\mathcal{L}_{G}$ is the one comsisiting
of ideals (by Propsition2), we obtain the following graded Boolean algebra:

$\mathscr{L}$ $=$ $\oplus:\mathscr{L}:$ ,
where $\mathscr{L}$: denotes the quotient Boolean algebra defined by

薪 $=$ $\mathcal{L}_{V}/\mathcal{L}_{V_{1-\text{、}}}$

which can be regarded as the set of local transition rules that is essentially supported by $V_{1}$ . $g$ is
accompanied with the product

$\mathscr{L}_{i}0\mathscr{L}_{j}$ $\subseteq$ $g_{i+j}$

induced from the local $\infty mposition$. We call $g$ the graded Boolean dgebm of local transition rules (with
respect to $S$). At this moment, it is not clear how much the algebraic structure of $\mathscr{L}$ depends on the
choioe of $ $\cdot$
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6 Examples
Consider usual l-dimensional CAs. Then $G=\mathbb{Z}$ (for infinite case) or $\mathbb{Z}_{N}$ (for N-periodic case). If one
wants to consider the symmetric transition rules, by taking

$V_{:}$ $=$ $\{\begin{array}{ll}\emptyset (i<0)\{-i, \ldots,0, \ldots,i\} (i\geq 0)\end{array}$

(for N-periodic case, when $i>N/2$ put $V_{1}=G$), the sequenoe $ff=\{V\}$ becomes an increasing sequenoe
satisfying (5). In fact, in this case equalities

$V_{i}\otimes V_{j}$ $=$ $V_{i+j}$

are satisfied.
Since by the above example, only domains of odd length appear, we $\infty n8ider$ the $f_{0}u_{ow\dot{m}gdoma\dot{m}s}$

of onesided type:

$V_{1}$ $=$ $\{\begin{array}{ll}\emptyset (i<0)\{0, \ldots,i-1,i\} (i\geq 0)\end{array}$

Here and in what follows, we put $V_{1}=G$ when $N\geq i$ for the N-periodic case. Again, the sequenoe
$ff=\{V_{1}\}$ is increasing and satisfies (5) by equatities. By identifying $2^{V_{l}}$ with $2^{i+1}$ , we represent each
local transition rule $\mathfrak{L}\in \mathcal{L}_{V}$ as the $(i+1)$-variabe function $\mathfrak{L}(x_{0}, \ldots,x:)$ defined by

$\mathfrak{L}(x_{0}, \ldots,x:)=\{\begin{array}{ll}1 ((xx)\in \mathfrak{L})0 ((x_{0}, \ldots,x:)\not\in \mathfrak{L})\end{array}$

Then the corresponding transition function for $\mathfrak{L}$ is
$T_{\mathfrak{L}}$ : $(c_{n})rightarrow(c_{n}’)$ , $c_{n}’=\mathfrak{L}(c_{\mathfrak{n}}, \ldots, c_{n+:})$ .

Here and in what follows, the indices are taken to be modulo $N$ for the N-periodic case.
The Wolftam number for $\mathfrak{L}\in \mathcal{L}_{V_{i}}$ is defiend by the number whose binary expression with the length

$2^{1+1}$ is given by
$\mathfrak{L}(1, \ldots, 1)\cdots \mathfrak{L}(0, \ldots,0)$

and is calculated by

$\sum_{a_{0,\ldots\prime}\epsilon\iota\in 2}$

$\mathfrak{L}(a_{0}, \ldots,a_{1’})$ . $2^{\Sigma_{rarrow 0^{a_{f}2^{-h}}}^{1}}$ .

Since XOR in the title is the element of $\mathcal{L}_{V_{1}}$ such that
$(0,0)rightarrow 0$ , $(0,1)rightarrow 1$ , $(1,0)rightarrow 1$ , $(1, 1)rightarrow 0$ ,

its Worfram number is 0110 in binary expression, that is, 6. Similarly, the rule 90 indicates the local rule
in $\mathcal{L}_{V_{l}}$ with the function fom

$(0,0,0)rightarrow 0$, $(0,0, 1)rightarrow 1$ , $(0,1,0)rightarrow 0$, $(0,1,1)rightarrow 1$ ,
$(1,0,0)rightarrow 1$ , $(1,0, \dot{1})\succ 0$ , $(1, 1, 0)\succ\rangle$ $1$ , $(1, 1, 1)\mapsto 0$.

We note that every local transition rule must be re\Re r\’e to by it8 Wolfram number with the degree $i$ .
The local compositon $\mathfrak{L}0\mathfrak{M}\in \mathcal{L}_{V}:+$; of $\mathfrak{L}\in \mathcal{L}_{V_{l}}$ and $\mathfrak{M}\in \mathcal{L}_{V_{f}}$ is now simply expressed in terms of

functions as
$(\mathfrak{L}0\mathfrak{M})(x_{0}, \ldots,x_{t+j})$ $=$ $\mathfrak{L}(\mathfrak{M}(x_{0}, \ldots, x_{j}), \ldots,\mathfrak{M}(x_{i}, \ldots,x_{t+j}))$.

Let $\mathfrak{L}=XOR^{2}=XOR\circ XOR\in \mathcal{L}_{V_{2}}$ . Then by $\mathfrak{L}(x,y, z)=XOR(XOR(x,y),XOR(y, z))$ ,
$\mathfrak{L}(0,0,O)=XOR(O,0)=0$ , $\mathfrak{L}(0,0,1)=XOR(O, 1)=1$ ,
$\mathfrak{L}(0,1,0)=XOR(1,1)=0$ , $\mathfrak{L}(0,1,1)=XOR(1,0)=1$ ,
$\mathfrak{L}(1,0,O)=XOR(1,0)=0$ , $\mathfrak{L}(1,0,1)=XOR(1,1)=0$ ,
$\mathfrak{L}(1,1,O)=XOR(O, 1)=1$ , $\mathfrak{L}(1,1,1)=XOR(O,0)=0$ .

Henoe $\mathfrak{L}$ has the Wolham number 90 of degree 2. Thus we have established the equality in the title.
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7 Concluding remarks
This work was first motivated by seaching a Normal Form of (local transition rules) of CAs. As Boolean
functions, Conjunctive and Dijunctive Normal Forms are well-known. But they are redundant. For
example, since the local transiton rule with the Wolfram number 51 of degree 2 can be represented as

$(0,0,0)rightarrow 1$ , $(0,0,1)rightarrow 1$ , $(0,1,0)arrow\rangle$ $0$ , $(0,1,1)\succarrow 0$ ,
$(1, 0,0)rightarrow 1$ , $(1, 0,1)rightarrow 1$ , $(1, 1, 0)\vdash\star 0$, $(1, 1, 1)rightarrow 0$

as a function, it becomes

$(\neg x_{0}\wedge\neg x_{1}\wedge\neg x_{2})\vee(\neg x_{0}\wedge\neg x_{1}\wedge x_{2})\vee(x_{0}\wedge\neg x_{1}\wedge\neg x_{2})\vee(x_{0}\wedge\neg x_{1}\wedge x_{2})$ (8)

in Conjunctive Normal Form. By factorizing,

(8) $=(\neg x_{0}\wedge\urcorner x_{1})\wedge(\neg x_{1}\vee x_{2})\vee(x_{0}\wedge\neg x_{1})\wedge(x_{1}\vee x_{2})$

$=(\neg x_{0}\wedge\neg x_{1})\vee(x_{0}\wedge\urcorner x_{1})=(\neg x_{0}\vee x_{0})\wedge\neg x_{1}$

$=\urcorner x_{1}$ .
Namely, the vaniables $x_{0}$ and $x_{2}$ are elimnated and it happens to depend only on one variable $x_{0}$ . It is
of degree $0$ in our term. Such a phenomenon motivates us to investigate the degree of Boolean functions
as the number of essetial variables. Henoe our aim is to find simplest represetation of Boolean functions.

The independency on the latter variables are made clear by moving onto the quotient Boolean algebra.
That is, if $\mathfrak{L}(x_{0}, \ldots,x_{i})\in \mathcal{L}_{V_{l}}$ is independent of $x_{i}$ , it is contained in $\mathcal{L}_{V_{l-1}}$ and is mapped to $0$ in
$\mathscr{L}_{:}=\mathcal{L}_{V}/\mathcal{L}_{V:-1}$ . Unfortunately, with the increasing sequences in the examples we can not describe the
independency on the fomer vaniablesf.

Although the rule 90 with degree 2 is simplest in the sense that the number of its variables cannot
be reduced, it can be factorized into the $\infty mposition$ of double XORs, that is the rules 6 with degree 1.
The fact that XOR can not be factraized any more is observed as follows. The pos8ibi1ities for making
local rules with degree 1 by local composition are only twe cases of the composition of ones with degree
$-1$ with degree 2 and of the $\infty mposition$ of ones with degree $0$ with degree 1. For the former case, sinoe
for the local transuton rules of degree-l only two trivial $\infty n8tants0$ and 1 are available. On the other
hand, for the latter case, there are 4 functions for degree 1. Two of them are reduoed to the trivial
constants and the other two are the identity transformation and its negation. So XOR has no non-trivial
factorization and thus we can $\infty nclude$ that it is one of the simplest local $tran8ition$ rules of complex
behavior.
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