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Abstract

We study several extensions of the notion of alternation from contextifree grammars to
context-semsitive and arbitrary phrase-structure grflmmars. Thereby new grmnmatical
characterizations are obtained for the class of languages that are accepted by alternating
pushdown automata.

In this paper we consider two different ways for deiing derivation relation in alter-
nating phrasestructure grammars to prove that they are In fact equivalent in a weak
sense. Some other resudts stated in this paper have been reported in [11] without proof.

1 Introduction

Alternation is a powerful concept that was first introduced by Chandra and Stockmeyer $[1, 2]$

for general Taring machines and then by Ladner, Lipton, and Stockmeyer $[6, 7]$ for pushdown
automata. Thereafter this notion has been studied for a variety of other devices. In particular,
in [9] one of the authors introduced the concept of altemating $conte,xt$-free grammars (ACFG
for short) by distinguishing between existential and universal variables (nonterminals) with
the aim of deriving a grammatical characterization for the class of languages that ffe accepted
by alternating pushdown automata (APDA for short).

As no such characterization was obtained in [9], further studies of the notion of alternation
for context-free grammars and pushdown automata followed (see, e.g., [3, 10, 12]). Also
Okhotin’s conjunctive grammars [14] can be interpreted as a variant of ACFGs in which
the effect of universal steps is localized. In [4] the class of languages that are accepted by
APDAs was finally characterized through linear-erasing ACFGs. Further, inspired by the
notion of $r,onte\ovalbox{\tt\small REJECT}$-free grammar with states of Kasai [5], the state-altemating context-free
grammar (sACFG for short) was introduced in [10] by distIngllishing between ristential and
universal states. Thus, while in an ACFG the variable on the lefthand side of a production
determines whether this production is to be used in an existential or a umiversal fashion, it is
the states that make this distinction in an sACFG. For each ACFG $G$ , an sACFG $G’$ can be
constructed such that $G$ and $G’$ generate the same language, but it is still open whether or not
the converse is true. At least for linear context-free grammars, and therewith in particular for

*This paper is intended to suuunarize the authors’ original paper [13] by omittUg the $pr\infty b$ for all the
results.
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right-linear (that is, reglllar) grammars, it has been shown that the two notions of alternatIon
have the same express’ive power. Actllally, both types of alternating $rigt-lInear$ grammars
jtlst generate the reglllar $1ang_{l1}ages$ . $Ft_{1}rther$ , it $t_{l1}rned$ ollt that sACFGs working in leftmost
derivation mode generate exactly those langllages tllat are accepted by APDAs [10]. In this
way another grammatical characterization for this $clas\cdot s$ of langllages $wa\epsilon$ obtained.

In [12] the authors studied adifferent way of defining the notion of altemation for push-
down automata. tstead of $disting_{l1}ishingbetween\cdot exis’te\iota itia1$ and universal states as in $[6, 7]$ ,
here the pllshdown $sy\iota nbols$ are llsed for thi8 purpose. The $statele,ss$ varIant of this so-called
$stack$-altemating pushdown automaton accepts exactly those langllages that are generated
by ACFG8 in leftmost derivation mode [12]. However, in general stark-altemating pushdown
automata are eqllivalent in $expr\infty sIve$ power to the original variant of the APDA. It is $know\iota 1$

that the claes of langllages these alltomata accept coincIdae with the determInistic time com-
plexity class ETIME $= \bigcup_{c>0}DTIME(c^{n})$ as $weU$ as with the altemating space complexity
class ALINSPACE, that is, the class of langllages that are accepted by altematin9 $line,ar$

$bound\epsilon,d$ automata (ALBA) $[2, 7]$ . A8 in the ckssical (non-altepating) setting $p_{11}shdown$

alltomata correspond to $context- h\infty gr8mmars$ and linear bollnded alltomata corroepond to
context-sensItive grammars, the above reslllts raise the $q_{Ue8}tion$ abollt the exPressive power
of alteaating $context-sensltive$ grunmars.

In this paper we carry the notion of alternation over to general $phra8e$ structure and
context-8eoitive grammar8. In fact, we consider both types of alternation for grammars men-
tioned above. By distin$g_{11}ishing$ between existential and $\iota miversal$ variables we obtain the al-
temating Phmse-stmr,tur” gmmmars (APSG) and the altemating contea-sensitive gmmmars
(ACSG). By considering $\Psi^{ammars}$ with states, for which we $disting_{11}sh$ between existential
and llniversal statae, we obtain the $state- altema\hslash ng$ phrase-structure grammars (sAPSG)
and the $state- altema\hslash ngronte_{l}xt$-sensitive grammars (sACSG). For $stat\triangleright altematingy$am-
mars it is rather strnightforward to define the notiom of derivation. However, for the other
type of altelating $\Psi^{ammam}$ theoe are $\tau’\pi ious$ diffeoent ways for defining the corraeponding
derivation relation. We $wiU$ cooider two such definitions, and we $wiU$ prove that they are in
fact eqllivalent in aweak sense, that is, for afixed alternating $g\iota ammar$ the two definition8
yield different languagae, but to each alteaatin$g$ grammar working with the one notion of
derivation, there is another grrnmar of the sune tyPe that is working with the other notion
of derivation, and that generatae the $8\mathfrak{W}\iota e$ langllage. In addition, we $wiU$ consider two $mod\infty$

of derivation: leflmost derivations and $unr\epsilon,st_{7};_{C,}te\Lambda$ derivations.
Acttlally, it $wiUt_{l1}rn$ ollt that for phrase-8tn1ct11re and for context-sen8itive grammars,

the state-altepating variant is eqllivalent to the alternating $\tau\prime ri\bm{r}t$ . Thi8 $eq_{l1}ivalen\infty$ i8
valid for both leRmost derivations and lorestricted derivation8. With raepect to unrestricted
derivatioo APSG8 jllst give another characterization for the clas8 $RE$ of recursively enumer-
able languagae. However, with r\’epect to leftmost derivatioo, they have the sune generative
power ae $sACFGs$ . This can be interpreted as the counterpart to the $corr\infty ponding$ raeult
for non-alternating grammars, which $8tate8$ that in leftmost mode generd $phras\triangleright stmcture$

grammars can only generate $contex\triangleright free$ languages [8]. Our second main raelllt 81ate\S that
with respect to llnr\’etricted derivations ACSGs generate exactly those language8 that are
accepted by altemating linear bollnded automata. As ALBA8 and APDAs accept the same
languagae, we $8ee$ that APSGs (working in $leftmo8t$ mode) and ACSGs (working in $1lnr\triangleright$

stricted mode) give new $y$ammaticd characterIzations for the clae8 of lan$g_{t1}ages$ that are
accepted by APDAs. Finally, when working in leftmoet mode, ACSGs generate a $subcla\epsilon s$ of
this class of $1\bm{m} g_{l1}agae$ . It remain$s$ open, however, whether thi8 is aproper $subcla\epsilon s$ . $The8e$

facts $sh_{o1}4d$ be compared to the fact that no $inc1_{U8}ion$ relation $i_{8}$ known betwaen the class
of $lmguag\alpha$ generated by sACFGs (or ACFG8) in leftmost mode $u1d$ the $cla8S$ of $1ang_{11}ag\infty$

generated by sACFGs (or ACFG8) in tgrestricted mode.
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In Section 2 the basic definitions of altemating and state-alternating grammars are given,
and two different ways of defining the notion of $der^{u}ivation$ for alternating grammars are
considered. In the remaining sections we state without proof relationships among various
types of altemating grammars and state-alternating grammars.

2 Two Types of Alternating Grammars
An altemating $phr\cdot ase- strur,ture$ gmmmar is agrammar $G=(V, U, L^{\backslash }, P, S)$ , where $V$ is aset
of variables (or nonterminak), $U\subseteq V$ is aset of universal variabl\’e, while the variabloe in
$V\backslash U$ are called enistential, $\Sigma$ is aset of terminals, $S$ is the start symbol, and $P$ is aset
of prodllctions, where $(\ell, r)\in P$ impli\’e that $l,$ $r\in(V\cup\Sigma)^{*}$ , and $\ell$ contains at leaet one
varIable. If $|\ell|\leq|r|$ holds for all prodllctioo $(\ell, r)\in P$ , then $G$ is called an altemating
conted-sensitive grammar, and if $\ell\in V$ holds for all production8 $(\ell,r)\in P$, then $G$ is called
an altemating conte,xt-ffee grammar. By APSG (ACSG, ACFG) we denote the class of $ag$

altemating $phrase- strtlct_{l1}re$(context-sensitive, context-free) grammars.
It remains to specify the way in which derivations are performed by an altematIng grtl-

mar G. In particular, we mtlst determine away to distingllish between existential td
llniversal derivation steps. There are variotls options.

FIrst of all we can llse aspecific nonterminal occtlrring In asentential form $\alpha$ to $determ\dot{i}e$

whether $\alpha it_{8}elf$ is existential or lgiversal. For example, $\cdot$ we could use the leftmost variable
occllrrin$g$ in $\alpha$ for that, that is, if $\alpha=xA\beta$ , where $x\in\Sigma^{*},$ $A\in V$ , and $\beta\in(V\cup\Sigma)$ , then
we call $\alpha$ an $existe,ntial$ sentential $fom$ if $A\in V\backslash U$ , and we $caJl\alpha$ auniversal sentential
$fom$ if $A\in U$ . To apply aderIvation step to $\alpha$ , we $nondetermini_{8}tIcally$ choose asllbstring $\ell$

of $\alpha$ that occllrs as the left-hand side of one or more nlles of P. Now if $\alpha$ is existential, then
one of these nlles is chosen, and $\alpha=\gamma\ell\delta$ is rewrItten into $\gamma r\delta$ , where $(\ell, r)\in P$ Is the rule
chosen. If $\alpha$ is llniversal, then let $(\ell, r_{1}),$

$\ldots,$
$(\ell,r_{m})$ be those $\Gamma tlles$ of $P$ with left-hmd side $\ell$ .

Now $aUthe8e$ Prodtlctions ar$e$ applied simllltanmllsly, thlls givin$g$ afinite nllmber of sllccoesor
sentential forms $\gamma r_{1}\delta,$ $\ldots,\gamma r_{m}\delta$ . In this way aderivation is not ahnear chain, $b_{l1}t$ it has the
form of atree. Aterminal word $w$ can be derived&om $G$ , if there exists afinite derivation
tree in the above sense sllch that the root is labeUed with the start symbol $S$ and all leaves
are labeUed with $w$ . Observe that In this way the rules themselvae we neither $exi_{8}tentia1$

nor llniversal, $b_{l1}t$ that it pllr$e1y$ depends on the type of the leftmost variable in the actud
sentential form whether the next derivation step is existential or llniversal. Below we $wiU$ llse
the $Ilotation\Rightarrow_{G}^{c}$ to denote this derivation $r$elatIon. By $L^{c}(G)$ we denote the $1an_{1^{age}}$ that
Is generated by $G_{t1}sing$ this relation.

Alternatively, we can llse adistingllished occllrrence of avariable in the $1ef\triangleright hand$ side
of arllle to declare that rllle as being existential or lgiversal. Of course, this mllst be done
in aconsistent way, that is, for all rlllae $wIth$ the same $1ef\triangleright hand$ side, the same variable
occllrrence mllst be chosen. Then for $\alpha=\gamma\ell\delta$ , if $\ell$ is $exi_{8}tentIa1$ , then $\alpha$ is rewrItten into
$\gamma r\delta$ , where $(\ell, r)\in P$ is one of the rules with left-hand side $\ell,$ $\bm{t}d$ If $\ell$ is universal, then $\alpha$

$i_{8}$ rewritten simllltaneously into $\gamma r_{1}\delta,$ $\ldots,\gamma r_{m}\delta$, where $(\ell, r_{1}),$
$\ldots,$

$(\ell, r_{m})$ are all the rul\’e in
$P$ with leffi-hand side $\ell$ . Here we use the following convention: $\ell$ Is llniversal (or existential,
resp.) if the leftmost variable occurring in $\ell$ is llniversal (or $existent\ddagger d$, raep.). We $wiUu8e$
the $notation\Rightarrow G$ to denote this derivation relation. By $L(G)$ we denote the language that is
generated by $G$ llsing this derivation relation.

The $fo\mathbb{I}owing$ exrnple demonstrates that the derivation $re1ations\Rightarrow_{G}^{C}and\Rightarrow GwiU$ in
general yield different languagae.
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Example 2.1. Let $G=(\{S, A, B\}, \{B\}, \{a, b, c\}, P, S)$ with $P=\{Sarrow AB,$ $Aarrow a,$ $Aarrow$

ab, $Barrow c,$ $Barrow bc$}. Then with $re$spect $to\Rightarrow_{G}^{c}$ $G$ generates the $1an_{i^{lage}}L^{c}(G)=$

{ $ac,$ $abc$, abbc}, while with respect $to\Rightarrow G$ , we only obtain the language $L(G)=\{abc\}$ . The
reason is the fact that with respect $to\Rightarrow_{G}^{c}$ , the rules with left-hand side $B$ can be applied in
existential fashion as long as the variable $A$ is stin present in the actual sentential form.

However we have the fonowing $re$sults [13].

Proposition 2.2. For each altemating phrase-structure grammar $G$ , there nists an alter-
nating phrase-structure grammar $G’$ such that $L(G’)=L^{c}(G)$ .

Proposition 2.3. For each altemating phrase-structure gmmmar $G$ , there nists an alter-
nating phrase-structure grammar $G’$ such that $L(G’)=L(G)$ .

These results also hold for the special cffle of alteaating context-sensitive grammars.

Proposition 2.4. For each alternating context-sensitive grammar $G$, there exists an alter-
nating contexrt-sensitive grammar $G’$ such that $L(G’)=L^{c}(G)$ .
Proposition 2.5. For each dtemating context-sensitive grammar $G$ , there exists an alter-
nating contpxt-sensitive grammar $G’$ such that $L^{c}(G’)=L(G)$ .

Thus, we see that for context-sensitive as $wen$ as for general phrase-structure grammars,
both definitions of alteaation yield the same expressive power. Therefore we restrict our
attention in the rest of this paper to alternating grammars for which the leftmost variable
occurring in the lefthand side of a production determines whether the production itself is
existential or universal.

In addition to the unrestricted derivation mode, we are also interested in the so-cffled
leftmost derivation $mode$. A derivation step $\alpha=\gamma^{p}\delta\Rightarrow G\beta$ , respectively $\alpha=\gamma\ell\delta\Rightarrow G$

$(\gamma r_{1}\delta, \ldots,\gamma r_{m}\delta)$ , is called leftmost if $\gamma\in\Sigma$ , that is, this step involves the leftmost variable
occurrence in $\alpha$ . By $L_{1m}(G)$ we denote the language consisting of all terminal words that $G$

generates by leftmost derivations. It is obvious that with respect to leftmost derivations the
above two definitions of the derivation process of an alternating grammar coincide, if in both
definitions the leftmost variable occurrence is chosen.

In [8] it is shown that the language $L_{{\rm Im}}(G)$ is context-free if $G=(V, L^{1}, S, P)$ is a $phras\triangleright$

stnlcture grammar such that each rule $(\ellarrow r)\in P$ has the structure

$\ell=x_{0}A_{1}x_{2}\cdots x_{n-1}A_{n}x_{n}arrow x_{0}\beta_{1}x_{2}\cdots x_{n-1}\beta_{n}x_{n}=r$

for some $n\geq 1$ , where $x_{0},x_{i}\in L^{\backslash r},$ $A_{i}\in V$ , and $\beta_{i}\in(V\cup\Sigma)^{*}$ for ell $1\leq i\leq n$ . To obtain
a corresponding result, we restrict our attention to alternating phrase-structure grammus
$G=(V, U, \Sigma, P, S)$ that satisfy th$e$ following condition, when we consider leftmost derivations:
each nlle $(\ellarrow r)\in P$ has the form $\ell=xA\alphaarrow x\beta=r$ , where $x\in L^{1}\cdot,$ $A\in V$ , and
$\alpha\cdot,\beta\in(V\cup\Sigma)^{*}$ . It is likely that this restriction limits the expressive power of alternating
grammars, but this question remains to be studied in detail. Obviously, this restriction
contains the above restriction as a special case, and it is satisfied by all grammrs for which
the lefthand side of each production begins with a nonterminal.

We denote the class of languages generated by grammars of typeX in leftmost derivation
mode by $\mathcal{L}_{1m}(X)$ , while $\mathcal{L}(X)$ is us$ed$ to denote the claes of languages generated by these
grammars in unrestricted derivation mode.

In [10] dso the state-altemating rontest-free gmmmar (sACFG) was introduced. Anal-
ogously, we define the state-altemating phrase-structure grammar as an -tuple $G=(Q,$ $U$ ,
$V,$ $\}_{\lrcorner}^{\backslash },$ $P,$ $S,$ $q_{0},$ $F$), where $Q$ is a finite set of state8, $U\subseteq Q$ is a set of universal states, while
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the states in $Q\backslash U$ are called $e,xistential$ states, $V$ is afinite set of varlables, $\Sigma$ is aset of
terminals, $S\in V$ is.tlle start symbol, $q_{0}\in Q$ is the imitial state, and $F\subseteq Q$ is aset of final
states. Finally, $P$ is afinite set of prodllctions of the form $(p, P)arrow(q, r)$ , where $p,$ $q\in Q$ ,
$p\in(V\cup\Sigma)^{*}\cdot V\cdot(V\cup\Sigma)^{*}$ , and $r\in(V\cup\Sigma)^{*}$ . The derivation $relation\Rightarrow_{G}^{*}$ is defined on
the set $Q\cross(Vu\Sigma)^{*}$ of $e,xtended$ sentential foms. Let $p\in Q$ and $\alpha\in(V\cup\Sigma)^{*}$ . If $p$ is
an existential state, that $\ddagger s,$ $p\in Q\backslash U$ , then $(p, \alpha)\Rightarrow G(q, \alpha_{1}r\alpha_{2})$ , if $\alpha=\alpha_{1}\ell\alpha_{2}$ , and there
exists aprodllctIon of the form $(p, P)arrow(q, r)$ . If $p$ is allniversal state, $\alpha$ has the factorization
$\alpha=\alpha_{1}p_{\alpha_{2}}$ and $(p, P)arrow(q_{i}, r_{i})(1\leq i\leq k)$ are $aU$ the $prod_{t1}ctioo$ with lefthand side $(p, \ell)$ ,
tllen $(p, \alpha)\Rightarrow G((q_{1}, \alpha_{1}r_{1}\alpha_{2}),$

$\ldots,$
$(q_{k}, \alpha_{1}r_{k}\alpha_{2}))$ , that is, $aUthes\cdot eprod_{l1}ctions$ are applied in

parallel to the chosen occllrrence of the substring $\ell$ , and following this step $aU$ these senten-
$tIal$ forms are rewritten filrther, independently of each other. In this way aderivation tree is
obtained.

The langllage $L(G)$ that is generated by $G$ consists of all words $w\in L^{1}{}^{t}for$ which there
exists aderivation tree 611ch that the root is labeUed with $(\infty, S)\bm{t}d$ all leaves are labefed
with pairs of th$e$ form $[p, w$ ) with $p\in F$ . Note that the labek of diffeoent leavae may differ
in their first components.

$If|P|\leq|r|$ holds for $aUprod_{l1}ctions(p, P)arrow(q, r)$ of $P$ , then $G$ is cffied astate-altemating
$conte,xt$-sensitive grammar, and If $\ell\in V$ for an prodllctions $(p, \ell)arrow(q,r)$ of $P$ , then $G$ is a
$state- altema\hslash ng$ context-ffee, grammar. By sACFG, sACSG, and sAPSG we denote the classes
of state-alternating context-free, context-sensitive, and general $phras\triangleright structtlre$ grammars,
respectively. As before we are interest$ed$ In the expr\’esive power of these grammars with
respect to the leflmost and the unraetrIcted derivation modes. It is known that the $clm$ of
ltgtlages $\mathcal{L}_{{\rm Im}}(sACFG)$ coincides with the $cMs$ of $1ang_{1}ages$ that are accepted by alternating
pllshdown alltomata ([10]Theorem 6.4).

3 Alternation Versus State-Alternation
First we consider the generative power of altemating grammars with respect to the leftmost
derivation mode. Recall that we require that each production of an altemating grammar is
of the form $(xA\alphaarrow x\beta)$ , where $x\in L^{1*},$ $A\in V$ , and $\alpha,\beta\in(V\cup\Sigma)^{*}$ . For state-alternating
grammars, we require analogously that each production is of the form $((p, xA\alpha)arrow(q, x\beta))$ ,
where $p$ and $q$ are states.

Lemma 3.1. $\mathcal{L}_{1m}(A\csc)\subseteq \mathcal{L}_{{\rm Im}}(sA\csc).\cdot$

An analogous result holds for alternating phrase-stnicture grammars.

Lemma 3.2. $\mathcal{L}_{{\rm Im}}(APSG)\subseteq \mathcal{L}_{{\rm Im}}(sAPSG)$ .
However, for APSGs we even have the following result.

Lemma 3.3. $\mathcal{L}_{1m}(APSG)\subseteq \mathcal{L}_{1m}(sACFG)$ .
Next we see that also the converse of Lemma 3.1 holds.

Lemma 3.4. $\mathcal{L}_{{\rm Im}}(sA\csc)\subseteq \mathcal{L}_{1m}(A\csc)$ .
Combining Lemmas 3.1 and 3.4 we obtain the following equivalence.

$Th\infty rem3.5$ . $\mathcal{L}_{\mathfrak{l}m}(A\csc)=\mathcal{L}_{1m}(sA\csc)$ .
The proof above can also be adapted to the case of alternating phrase-structure grammars,

which yields the foUowin$g$ result.
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Lemma 3.6. $\mathcal{L}_{1m}(sAPSG)\subseteq \mathcal{L}_{1m}(APSG)$ .
From Lemmas 3.3 and 3.6 and the facts that $\mathcal{L}_{1m}(sACFG)\subseteq \mathcal{L}_{1m}(sAPSG)$ and that

$\mathcal{L}_{1m}(sACFG)=\mathcal{L}(APDA)[10]$ we obtain the following equivalence.

Theorem 3.7. $\mathcal{L}_{1m}(APSG)=\mathcal{L}_{1m}$(sAPSG) $=\mathcal{L}_{1m}(sACFG)=\mathcal{L}(APDA)$ .
As $\mathcal{L}_{1m}$ (ACSG) $\subseteq \mathcal{L}_{{\rm Im}}$ (APSG) holds, Theorem. 3.5 and Theor$em3.7$ yield the following

conseqllence.

Corollary 3.8. $\mathcal{L}_{1m}(A\csc)=\mathcal{L}_{1m}(sA\csc)\subseteq \mathcal{L}_{{\rm Im}}(sACFG)=\mathcal{L}(APDA)$ .

Now we turn to the unrestricted derivation mode. We have the following equalities, where
RE denotes the class of recursively enumerable languages.

Corollary 3.9. (a) $\mathcal{L}(A\csc)$ $=$ $\mathcal{L}(sA\csc)$ .
(b) $\mathcal{L}(APSG)$ $=$ $\mathcal{L}(sAPSG)$ $=$ RE.

4 ACSGs and Alternating Linear Bounded Automata
An altemating linear bounded automaton, ALBA for short, $M$ is alinear bounded automaton
for which some of its states are distinguished as universal states.

It is known that $\mathcal{L}(ALBA)=\mathcal{L}(APDA)[2,7]$ . The next lemma shows that ACSGs are of
sufficient expressive power to generate all languages that are accepted by ALBAs.

Lemma 4.1. $\mathcal{L}(ALBA)\subseteq \mathcal{L}(sACSG)$ .
Also we have the converse of Lemma 4.1, which can also be proved by an appropriate

modification of the standard construction of a linear bounded automaton from a monotone
gramm下 X.

Lemma 4.2. $\mathcal{L}(sA\csc)\subseteq \mathcal{L}(ALBA)$ .
Thus, we obtain the following theorem.

Theorem 4.3. $\mathcal{L}(sA\csc)=\mathcal{L}(ALBA)$ .
By Corollary 3.9 (a) this yields the following consequence.

Corollary 4.4. $\mathcal{L}(A\csc)=\mathcal{L}(sA\csc)=\mathcal{L}(ALBA)=\mathcal{L}(APDA)=\mathcal{L}_{1m}(sACFG)$ .
From Corollaries 3.8 and 4.4, the $f_{0}g_{oW}ing$ inclusion follows.

Corollary 4.5. $\mathcal{L}_{{\rm Im}}(A\csc)\subseteq \mathcal{L}(A\csc)$ .
It remains to consider the converse of the above inclusion. By Corollary 4.4 this is $equiva$

lent to the question of whether the inclusion $\mathcal{L}_{1m}(sACFG)\subseteq \mathcal{L}_{1m}$ (ACSG) holds. Unfortunately
this problem remains unsettled in this paper. As each $\epsilon$.-free sACFG is context-sensitive, at
least the following special case holds.

Corollary 4.6. $\mathcal{L}_{1m}$ ( $\epsilon$-free $sACFG$) $\subseteq \mathcal{L}_{1m}(A\csc)$ .
The diagram in Figure 1 depicts the inclusion relations among the classes of languages

we have discussed in this paper.
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$RE^{-}\mathcal{L}(APSG)-\mathcal{L}(sAPSG)$

$ET|ME^{-}\mathcal{L}(APDA)|-\mathcal{L}(ALBA)$

$\Vert$

$\mathcal{L}_{{\rm Im}}(sACFG)-\mathcal{L}(A\csc)-\mathcal{L}(sA\csc)=\mathcal{L}_{{\rm Im}}(APSG)=\mathcal{L}_{{\rm Im}}(sAPSG)$

$\bigwedge_{:,j}$

$A:.\cdot:$:

$jIi:.\cdot::j$

$\mathcal{L}_{{\rm Im}}(A\csc)\bigwedge_{:,:}:.:-\mathcal{L}_{1m}(sA\csc)$

$\mathcal{L}_{1m}(ACFG)$ $\mathcal{L}_{{\rm Im}}(\epsilon- free\phi\subseteq FG)$

$\sim|$
CFL

Figure 1: Inclusion relations among language classes defined by various typae of altemating
grammars. An arrow denotes a proper inclusion, while a dotted arrow denotes an inclusion
that is not known to be proper.

5 Concluding Remarks
We have generalized the notion of alternation from context-free grammars to general phrase-
structur$e$ grammars. Our main result shows that with respect to the leftmost derivation mode
alternating $phrase-stnlct_{11}re$ grammars are just as $expre8sive$ as state-alternating context-
free grammars, and that altemating context-sensitive grammars working in the unrestricted
derivation mode have the same expressive power, too. In this way we have obtained new
grammar-based characterizations for the class of languages that ar$e$ accepted by alternating
pushdown automata.
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