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Abstract

We study several extensions of the notion of alternation from context-free grammars to
context-sensitive and arbitrary phrase-structure grammars. Thereby new grammatical

characterizations are obtained for the class of languages that are accepted by alternating
pushdown automata.

In this paper we consider two different ways for defining derivation relation in alter-
nating phrase-structure grammars to prove that they are in fact equivalent in a weak
sense. Some other results stated in this paper have been reported in [11] without proof.

1 Introduction

Alternation is a powerful concept that was first introduced by Chandra and Stockmeyer [1, 2]
for general Turing machines and then by Ladner, Lipton, and Stockmeyer [6, 7] for pushdown
automata. Thereafter this notion has been studied for a variety of other devices. In particular,
in [9] one of the authors introduced the concept of alternating context-free grammars (ACFG
for short) by distinguishing between ezistential and universal variables (nonterminals) with
the aim of deriving a grammatical characterization for the class of languages that are accepted
by alternating pushdown automata (APDA for short).

As no such characterization was obtained in [9], further studies of the notion of alternation
for context-free grammars and pushdown automata followed (see, e.g., [3, 10, 12]). Also
Okhotin’s conjunctive grammars [14] can be interpreted as a variant of ACFGs in which
the effect of universal steps is localized. In [4] the class of languages that are accepted by
APDAs was finally characterized through linear-erasing ACFGs. Further, inspired by the
notion of context-free grammar with states of Kasai [5], the state-alternating context-free
grammar (SACFG for short) was introduced in [10] by distinguishing between ezistential and
universal states. Thus, while in an ACFG the variable on the lefthand side of a production
determines whether this production is to be used in an existential or a universal fashion, it is
the states that make this distinction in an sSACFG. For each ACFG G, an sACFG G’ can be
constructed such that G and G’ generate the same language, but it is still open whether or not
the converse is true. At least for linear context-free grammars, and therewith in particular for

*This paper is intended to summarize the authors’ original paper [13] by omitting the proofs for all the
results.
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right-linear (that is, regular) grammars, it has been shown that the two notions of alternation
have the same expressive power. Actually, both types of alternating right-linear grammars
just generate the regular languages. Further, it turned out that sACFGs working in leftmost
derivation mode generate exactly those languages that are accepted by APDAs [10]. In this
way another grammatical characterization for this class of languages was obtained.

In [12] the authors studied a different way of defining the notion of alternation for push-
down automata. Instead of distinguishing between.existential and universal states as in [6, 7],
here the pushdown symbols are used for this purpose. The stateless variant of this so-called
stack-alternating pushdown automaton accepts exactly those languages that are generated
by ACFGs in leftmost derivation mode [12]. However, in general stack-alternating pushdown
automata are equivalent in expressive power to the original variant of the APDA. It is known
that the class of languages these automata accept coincides with the deterministic time com-
plexity class ETIME = (J.,o DTIME(c") as well as with the alternating space complexity
class ALINSPACE, that is, the class of languages that are accepted by alternating linear
bounded automata (ALBA) [2, 7]. As in the classical (non-alternating) setting pushdown
automata correspond to context-free grammars and linear bounded automata correspond to
context-sensitive grammars, the above results raise the question about the expressive power
of alternating context-sensitive grammars.

In this paper we carry the notion of alternation over to general phrase structure and
context-sensitive grammars. In fact, we consider both types of alternation for grammars men-
tioned above. By distinguishing between existential and universal variables we obtain the al-
ternating phrase-structure grammars (APSG) and the alternating context-sensitive grammars .
(ACSG). By considering grammars with states, for which we distingush between existential
and universal states, we obtain the state-alternating phrase-structure grammars (sAPSG)
and the state-alternating context-sensitive grammars (sACSG). For state-alternating gram-
mars it is rather straightforward to define the notion of derivation. However, for the other
type of alternating grammars there are various different ways for defining the corresponding
derivation relation. We will consider two such definitions, and we will prove that they are in
fact equivalent in a weak sense, that is, for a fixed alternating grammar the two definitions
yield different languages, but to each alternating grammar working with the one notion of
derivation, there is another grammar of the same type that is working with the other notion
of derivation, and that generates the same language. In addition, we will consider two modes
of derivation: leftmost derivations and unrestricted derivations.

Actually, it will turn out that for phrase-structure and for context-sensitive grammars,
the state-alternating variant is equivalent to the alternating variant. This equivalence is
valid for both leftmost derivations and unrestricted derivations. With respect to unrestricted
derivations APSGs just give another characterization for the class RE of recursively enumer-
able languages. However, with respect to leftmost derivations, they have the same generative
power as sACFGs. This can be interpreted as the counterpart to the corresponding result
for non-alternating grammars, which states that in leftmost mode general phrase-structure
grammars can only generate context-free languages [8]. Our second main result states that
with respect to unrestricted derivations ACSGs generate exactly those languages that are
accepted by alternating linear bounded automata. As ALBAs and APDAs accept the same
languages, we see that APSGs (working in leftmost mode) and ACSGs (working in unre-
stricted mode) give new grammatical characterizations for the class of languages that are
accepted by APDAs. Finally, when working in leftmost mode, ACSGs generate a subclass of
this class of languages. It remains open, however, whether this is a proper subclass. These
facts should be compared to the fact that no inclusion relation is known between the class
of languages generated by sACFGs (or ACFGs) in leftmost mode and the class of languages
generated by sACFGs (or ACFGs) in unrestricted mode.
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In Section 2 the basic definitions of alternating and state-alternating grammars are given,
and two different ways of defining the notion of derivation for alternating grammars are
considered. In the remaining sections we state without proof relationships among various
types of alternating grammars and state-alternating grammars.

2 Two Types of Alternating Grammars

An alternating phrase-structure grammar is a grammar G = (V, U, X, P, S), where V is a set
of variables (or nonterminals), U C V is a set of universal variables, while the variables in
V N\ U are called eristential, L is a set of terminals, S is the start symbol, and P is a set
of productions, where (¢,7) € P implies that £, € (V U X)*, and £ contains at least one
variable. If || < |r| holds for all productions (£,7) € P, then G is called an alternating
context-sensitive grammar, and if £ € V holds for all productions (¢,r) € P, then G is called
an alternating context-free grammar. By APSG (ACSG, ACFG) we denote the class of all
alternating phrase-structure(context-sensitive, context-free) grammars.

It remains to specify the way in which derivations are performed by an alternating gram-
mar G. In particular, we must determine a way to dlstmgmsh between existential and
universal derivation steps. There are various options.

First of all we can use a specific nonterminal occurring in a sentential form a to determine
whether o itself is existential or universal. For example, we could use the leftmost variable
occurring in a for that, that is, if @ = 2AB, where z € £*, A € V, and f € (VUZX)*, then
we call o an existential sentential form if A € V \ U, and we call o a universal sentential
form if A € U. To apply a derivation step to o, we nondeterministically choose a substring £
of a that occurs as the left-hand side of one or more rules of P, Now if « is existential, then
one of these rules is chosen, and o = v£§ is rewritten into yrd, where (¢,7) € P is the rule
chosen. If « is universal, then let (¢,71),..., (¢{,7m) be those rules of P with left-hand side 2.
Now all these productions are applied simultaneously, thus giving a finite number of successor
sentential forms yryd,...,yr,d. In this way a derivation is not a linear chain, but it has the
form of a tree. A terminal word w can be derived from G, if there exists a finite derivation
tree in the above sense such that the root is labelled with the start symbol S and all leaves
are labelled with w. Observe that in this way the rules themselves are neither existential
nor universal, but that it purely depends on the type of the leftmost variable in the actual
sentential form whether the next derivation step is existential or universal. Below we will use
the notation =>g to denote this derivation relation. By L¢(G) we denote the language that
is generated by G using this relation.

Alternatively, we can use a distinguished occurrence of a variable in the left-hand side
of a rule to declare that rule as being existential or universal. Of course, this must be done
in a consistent way, that is, for all rules with the same left-hand side, the same variable
occurrence must be chosen. Then for a = 44, if £ is existential, then « is rewritten into
vré, where ({,7) € P is one of the rules with left-hand side £, and if £ is universal, then o
is rewritten simultaneously into yrid,...,yrmd, where (£,71),..., (¢{,ry) are all the rules in
P with left-hand side £. Here we use the following convention: £ is universal (or existential,
resp.) if the leftmost variable occurring in £ is universal (or existential, resp.). We will use
the notation =>g to denote this derivation relation. By L(G) we denote the language that is
generated by G using this derivation relation.

The following example demonstrates that the derivation relations =¢ and =>g will in
general yield different languages.
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Example 2.1. Let G = ({5, A4, B}, {B},{a,b,c},P,S) with P = {§ — AB,A — a,A —
ab,B — ¢,B — bc}. Then with respect to =&, G generates the language L¢(G) =
{ac, abe, abbc}, while with respect to =>g, we only obtain the language L(G) = {abc}. The
reason is the fact that with respect to =%, the rules with left-hand side B can be applied in
existential fashion as long as the variable A is still present in the actual sentential form.

However we have the following results [13].

Proposition 2.2. For each alternating phrase-structure grammar G, there ezists an alter-
nating phrase-structure grammar G’ such that L(G') = L%(G).

Proposition 2.3. For each alternating phrase-structure grammar G, there ezists an alter-
nating phrase-structure grammar G’ such that L¢(G') = L(G).

These results also hold for the special case of alternating context-sensitive grammars.

Proposition 2.4. For each alternating context-sensitive grammar G, there exists an alter-
nating contert-sensitive grammar G’ such that L(G') = L¢(G).

Proposition 2.5. For each alternating contezt-sensitive grammar G, there erists an alter-
nating context-sensitive grammar G’ such that L°(G’) = L(G).

Thus, we see that for context-sensitive as well as for general phrase-structure grammars,
both definitions of alternation yield the same expressive power. Therefore we restrict our
attention in the rest of this paper to alternating grammars for which the leftmost variable
occurring in the lefthand side of a production determines whether the production itself is
existential or universal.

In addition to the unrestricted derivation mode, we are also mterested in the so-called
leftmost derivation mode. A derivation step a = y£0 =>¢ f, respectively a = y€§ =g
(yr1d, . ..,vrmd), is called leftmost if v € X*, that is, this step involves the leftmost variable
occurrence in a. By Lim(G) we denote the language consisting of all terminal words that G
generates by leftmost derivations. It is obvious that with respect to leftmost derivations the
above two definitions of the derivation process of an alternating grammar coincide, if in both
definitions the leftmost variable occurrence is chosen.

In [8] it is shown that the language Lin(G) is context-free if G = (V, X, S, P) is a phrase-
structure grammar such that each rule (£ — ) € P has the structure

£=x9A123 Tn 1 AnTn — Tof1T2" Tn_1PnZn =T

for some n > 1, where zg,z; € X*, A; € V, and B; € (VU X)* for all 1 £ 7 < n. To obtain
a corresponding result, we restrict our attention to alternating phrase-structure grammars
G = (V,U, L, P, S) that satisfy the following condition, when we consider leftmost derivations:
each rule ({ — r) € P has the form £ = zAa — z = r, where z € X*, A € V, and
a,B8 € (VUZX)*. It is likely that this restriction limits the expressive power of alternating
grammars, but this question remains to be studied in detail. Obviously, this restriction
contains the above restriction as a special case, and it is satisfied by all grammars for which
the lefthand side of each production begins with a nonterminal.

We denote the class of languages generated by grammars of type X in leftmost denvatmn
mode by Lim(X), while £(X) is used to denote the class of languages generated by these
grammars in unrestricted derivation mode.

In [10] also the state-alternating context-free grammar (sACFG) was introduced. Anal-
ogously, we define the state-alternating phrase-structure grammar as an 8-tuple G = (Q, UV
V, Y, P, S, q, F), where Q is a finite set of states, U C Q is a set of universal states, while
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the states in @ \ U are called eristential states, V is a finite set of variables, ¥ is a set of
terminals, S' € V is the start symbol, go € Q is the initial state, and F C Q is a set of final
states. Finally, P is a finite set of productions of the form (p,¢) — (gq,r), where p,q € Q,
te (VUI)*-V.(VUX)*, and r € (VUX)*. The derivation relation =, is defined on
the set Q@ x (V UZX)* of extended sentential forms. Let p € Q and o € (VUX)*. Ifpis
an existential state, that is, p € Q \ U, then (p, a) =¢ (¢, o1ras), if @ = ajfay, and there
exists a production of the form (p, £) — (g, 7). If p is a universal state, o has the factorization
a = ajfay, and (p,£) — (¢, ;) (1 < i < k) are all the productions with lefthand side (p, £),
then (p, a) =¢ ((q1, ar12), ..., (g, @17k02)), that is, all these productions are applied in
parallel to the chosen occurrence of the substring £, and following this step all these senten-
tial forms are rewritten further, independently of each other. In this way a derivation tree is
obtained.

The language L(G) that is generated by G consists of all words w € X* for which there
exists a derivation tree such that the root is labelled with (gg,S) and all leaves are labelled
with pairs of the form (p, w) with p € F. Note that the labels of different leaves may differ
in their first components.

If || < |r| holds for all productions (p, £) — (g, r) of P, then G is called a state-alternating
context-sensitive grammar, and if £ € V for all productions (p, £) — (q,r) of P, then G is a
state-alternating contezt-free grammar. By sACFG, sACSG, and sAPSG we denote the classes
of state-alternating context-free, context-sensitive, and general phrase-stricture grammars,
respectively. As before we are interested in the expressive power of these grammars with
respect to the leftmost and the unrestricted derivation modes. It is known that the class of
languages Lim(SACFG) coincides with the class of languages that are accepted by alternating
pushdown automata ([10] Theorem 6.4).

3 Alternation Versus State-Alternation

First we consider the generative power of alternating grammars with respect to the leftmost
derivation mode. Recall that we require that each production of an alternating grammar is
of the form (xAa — z3), where z € ¥*, A € V, and «, 8 € (V U X)*. For state-alternating
grammars, we require analogously that each production is of the form ((p, zAa) — (g, 3)),
where p and g are states.

Lemma 3.1. Lim(ACSG) C Lm(sACSG).

An analogous reéult holds for alternating phrase-structure grammars.
Lemma 3.2. Lim(APSG) C Lim(sAPSG).

However, for APSGs we even have the following result.
Lemma 3.3. Lim(APSG) C Lim(sACFG).

Next we see that also the converse of Lemma 3.1 holds.
Lemma 3.4. Lim(sACSG) C Lim(ACSG).

Combining Lemmas 3.1 and 3.4 we obtain the following equivalence.
Theorem 3.5. Lim(ACSG) = Lim(sACSG).

The proof above can also be adapted to the case of alternating phrase-structure gramma.rs,
which yields the following result.



108

Lemma 3.6. £ (sAPSG) C Lin(APSG).

From Lemmas 3.3 and 3.6 and the facts that L£im(sACFG) C Ljn(sAPSG) and that
Lim(sACFG) = L(APDA) [10] we obtain the following equivalence.

Theorem 3.7. Lim(APSG) = Lim(SAPSG) = Lim(SACFG) = L(APDA).

As Lim(ACSG) C Ljm(APSG) holds, Theorem.3.5 and Theorem 3.7 yield the following
consequence.

Corollary 3.8. Lin(ACSG) = Lim(sACSG) C Lin(sACFG) = L(APDA).

Now we turn to the unrestricted derivation mode. We have the following equalities, where
RE denotes the class of recursively enumerable languages.

Corollary 3.9. (a) L(ACSG) = L(sACSG).
(b) L(APSG) = L(sAPSG) = RE.

4 ACSGs and Alternating Linear Bounded Automata

An alternating linear bounded automaton, ALBA for short, M is a linear bounded automaton
for which some of its states are distinguished as universal states.

It is known that L(ALBA) = L(APDA) [2, 7]. The next lemma shows that ACSGs are of
sufficient expressive power to generate all languages that are accepted by ALBAs.

Lemma 4.1. L(ALBA) C L(sACSG).

Also we have the converse of Lemma 4.1, which can also be proved by an appropriate
modification of the standard construction of a linear bounded automaton from a monotone
grammar.

Lemma 4.2. L(sACSG) C L(ALBA).
Thus, we obtain the following theorem.

Theorem 4.3. L(sACSG) = L(ALBA).
By Corollary 3.9 (a) this yields the following consequence.

Corollary 4.4. L(ACSG) = L(sACSG) = L(ALBA) = L(APDA) = £, (sACFG).
From Corollaries 3.8 and 4.4, the following inclusion. follows.

Corollary 4.5. £;n(ACSG) C L(ACSG).

It remains to consider the converse of the above inclusion. By Corollary 4.4 this is equiva-
lent to the question of whether the inclusion Lim(sACFG) C L£in(ACSG) holds. Unfortunately
this problem remains unsettled in this paper. As each &-free sSACFG is context-sensitive, at
least the following special case holds.

Corollary 4.6. Lin(e-free sSACFG) C Lim(ACSG).

The diagram in Figure 1 depicts the inclusion relations among the classes of languages
we have discussed in this paper.
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RE =—==== £(APSG) == L(sAPSG)

ETIME L(APDA) === L(ALBA)

L.m(s,;\CFG) =—— £(ACSG) L(sACSG) == Lin(APSG) = L (SAPSG)
A

i L....(A;CSG) = Lim(SACSG)

H
H
H

Lim(ACFG)  Lim(e-free SACFG)

CFL

Figure 1: Inclusion relations among language classes defined by various types of alternating
grammars. An arrow denotes a proper inclusion, while a dotted arrow denotes an inclusion
that is not known to be proper.

5 Concluding Remarks

We have generalized the notion of alternation from context-free grammars to general phrase-
structure grammars. Our main result shows that with respect to the leftmost derivation mode
alternating phrase-structure grammars are just as expressive as state-alternating context-
free grammars, and that alternating context-sensitive grammars working in the unrestricted
derivation mode have the same expressive power, too. In this way we have obtained new
grammar-based characterizations for the class of languages that are accepted by alternating
pushdown automata. '
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