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1 lntroduction
Givcn a $co\bm{o}ected_{\Psi}phG=(V.E)$ and asubset ofvertices $X_{1}\subseteq V$, it is easy to consffuct the decomposition

$D=(X_{1},\ldots,X_{l})$ such that $X_{l}$ is the $set\cdot of$ vertices. of distance $i-1\theta omX_{1}$ for each $1\leq j\leq t,$ $wh\alpha et$ is thc
largest integer $satisqingX_{t}\neq\emptyset.$ We $cal1X_{i}’ s$ by levels and denote the number of lcvels in $D$ (i.e. t) $by|D|.$ We call
the decomposition by the distance stmcure with initial set $X_{1}ofG$, and denote it by $D(X_{1},G)$ or simply $D(X_{1})$

or more simply $D$ if it is clear $\theta om$ the contcxt. The width $ofD,$ denoted by $pdw_{D}(G),$ $\ddagger s$ deflned as $\max_{0\leq l\leq},$ $K_{l}|$ .
The path distance width of$G,$ denoted by $pdw(G),$ is defined as $\min x_{1}crPdw_{D(X_{t})}(G)$ . It is known that $\epsilon ven$ for
the oees $T$ the optimization problem computing $pdw(T)$ is NP-hard and does not admit aPTAS $[8, 9]$ . It is not
known whethrr or not the problem is $flx\epsilon 4$ parameter Wactable, $i.e.$ , whether there $\epsilon xists$ an algoriffi\iota n that solve
the decision problem, $pdw(G)\leq k$ or not, with runhing time $O(f(k)n^{c}),$ $wh\epsilon rec$ is aconstant and $indep\epsilon ndent$ of
$k$, and $f$ is any figction.

The problem computing path distance width is related to the problcm computing bandwuth. It is $\epsilon a\epsilon y$ to see that
for any $\Psi PhG$ the bandwidth of $G$ i\S at most $2pdw(G)-1$ . But the difference between $th\epsilon m$ can bo arbiffarily large
[9]. From the point ofvicw $of_{\Psi}aph$ algorithm design the problem computing bandwidth is an atffactive subject of
research because thc problem is iown to be acQmputationally hard $probl\epsilon m$:the problem is NP-complete $\epsilon ven$

for the $\theta ees$,has no consunt factor approximation. and flxed parameter inGactable $[7, 1]$ . It would be important to
cdcrstand better what makes problems hard. We suspect that the problem computing path distance width is also
ahard problem.

For complete k-ary $\alpha ees.$ several graph $paramete\iota 8$ have $b\epsilon\epsilon n$ studied, such as bandwidth [6], antibandwidlh [2],
edge-bandwidth [3]. hamonious chromatic $numb\epsilon r[4].$ vertex $bocda\iota y- width[5]$ .

Smithlinc showed that the $densi\psi$ lower bound dotennines the bandwidth ofthe complete k-ary $tr\epsilon es[6]$ . Smith-
line showed that the $densi\nu$ lower bound $bw(G)\geq\lceil^{V}ffl_{(}^{G|}\overline{\varpi}^{1}1^{dete\min es}$ the bandwidth ofthe complete k-ary trees
[6], where diam$(G)$ is the diameter of acoaected yaph G. Thc deoity lower bocd is based on the pigeon
hole principle. The path distance width also has a $low\epsilon r$ bound based on the pigeon hole principle, that i\S ,
$pdw(G)\geq\lceil_{\varpi^{L_{\varpi}^{V}}}\cdot i^{G}\#_{+1}\rceil$. We refer to thc lowcr $bound|$ for $pdw(G)$ also as deoity lower bound. It would also $bc$

an $int\epsilon restingque\epsilon hon$ whether the density lower bocd detemines the path distance width of the complete k-ary
tecs or not The problem has $b\epsilon en$ lefl as an open problem [8].

$\bm{i}$ this $pap\epsilon r$ we $consid\epsilon r$ the path distance width ofcomplete k-ary ffees. We first show $\bm{i}at$ path distance width
of complete k-ary Pers does not coincide with the deoity lower bocd, more $pr\epsilon cisely,$ we give abettGr $1ow\epsilon r$

bound for complete k-ary Pees. Tben we show an upper bound ofcomplete $k- aryoe\epsilon s$ for which the ratio between
the upper bound and $dcnsi\dot{t}y$ lower bocd is $ind\epsilon pendent$ of the $d\epsilon pthd$.
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2 Notations
The depth ofa(sub)tree is the number of edges in $a\cdot longest$ path $\theta om$ the root to aleaf. Let $T_{k.d}$ donote the

complete k-ary $kee$ of depth $d,$ $T$ be asubtree of $T_{kd}$, and $\acute{D}$ be adistance sgucture of $T_{k.d}$. $T$ is callcd complete if
$T$ is acomplcte k-ary $\theta ee$ and the leaves of $T$ are also leaves in $T_{k,d}$ . Acomplete subtree $T$ is called an unfolded
sub#ee in $D$ if all leaves of $T$ are in the same levcl $\ell$ of $D$ for some $1\leq\ell\leq|D|$ and the $1\epsilon vel$ of the root of $T$

is $\ell-$ (the depth of $T$). An cfolded $sub\alpha eeT$ in $D$ is called maximal if there is no unfolded subaee in $D$ that
properly contain8 T. We denote the width of level $t$ by $D(\ell)=|X_{\ell}|$ and the $1\epsilon vel$ of avertex $v$ by $1eve1_{D}(v)=\ell$ if
$v\in X_{t}$ .

Asibling of avertex $v\in V(T_{k,d})$ is avertex that ha8 the same parent as $v$. Asibling sublree $T’$ of acomplet6
$sub\theta eeT$ of $T_{k,d}$ is acomplete subttee such that the root of $T’$ is asibling of the root of $T$ .

Let $v$ be a $v\epsilon rtex$ of $T_{k.d}.$ The height of $v,$ denoted by height(v), is the distance Rom $v$ to the nearest leaf. Note
that not thefarthest leaf. For example the height of aleaf is zcro and the height ofth6 root of $T_{kd}$ is $d$.

For convenience we denote the following thrco fimctions:

$f(k)=2(k-1)/k$,
$\mu(k.\phi=\lfloor\log_{k}(f(k)(d-\lfloor\log_{k}(f(k)\phi\rfloor))\rfloor$ ,
$g(k,m)=(h^{m}-1)/f(k)+m+1$ .

3 Lower bound
In this section we give a lower bound for complete k-ary trees. It is easy to derive the following density lower

bound:
$pdw(\tau_{u})\geq[\frac{|V(T_{kd})|}{diam(r_{u})+1}1=\lceil\frac{k^{d+1}-1}{(k-1)(2d+1)}\rceil\cdot$

In this paper, we show a $bett\epsilon r$ lower bound,

$pdw(T_{kd})\geq\lceil\frac{|V(T_{k,d})|}{diam(T_{1.d})+1-2\mu(k.\phi}]=\lceil\frac{k^{d+1}-1}{(k-1)(2d+1-2\mu(k,\phi)}]$ .

The following two lemmas are the main tools for deriving our lower bound.

Lemma 3.1. Let $D=(X_{1}, \ldots,X_{1q})$ be a distance structure of $T_{l.d}andX_{t}$ be a level containing a leafv of $T_{k.d}$.
Then there is a maximal unfolded subtree ofdepth at least $\lceil(f-3)/21$ in $D$.
Proof. It is easy to see that thcre is a unique maximal unfolded subtree $T$ (in $D$) containing $v$. We show that $T$ is a
desired maximal unfolded subPee. SuPpose that $T\neq T_{k,d}$ (Otherwise it is trivial). Because $T$ is maximal, $X_{1}$ has
a vertex $u$ in a sibling subtree of $T$. Let $d_{r}$ denote the depth of $T$. The distance between $v$ and $u$ is at most $2dr+2$
and at least 1-1, so the lemma hold8. $0$

Lemma 3.2. Let $D=(X_{1}, \ldots.X_{1}q)$ be a distance structure of $T_{k,d}$. $IfX_{|D|}$ has an internal vertex $u$ of $T_{kd}$. then
$|D|\leq d+1$ .
Proof. Because $u\in X_{1q}$ is an intemal veflex, there are two vertex disjoint paths (except u) from $u$ to $X_{1}$ . Since
two paths have the length at least $|D|-1,$ $T_{kd}$ has a path of length $2(|D|-1)$ . As $T_{kd}$ has $diamet\epsilon r2d$, we have
that $|D|\leq d+1$ . $0$

From the above lemmas, we can obtain thc new lower bound for a distance $sPuct\iota re$ that has a large enough
number oflevels.

CoroUary 3.3. Let $D=(X_{1}\ldots..X_{1}q)$ be a distance structure of $T_{kd}$. $If|D|\geq d+2$. then $pdw_{D}(T_{kd})\geq k^{f\langle|D|-3)\prime 2\rceil}$.
Proof From Lemma 3.2, $X_{1}q$ has no internal vertex. So, there is a maximmal unfolded subtree $T$ of depth at least
$\lceil(|D|-3)/2]$ from Lemma 3.1. The lemma follows from the number of T’8 leaves. $o$
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By combining Corollary 3.3 and the deoity lower $bo$und fomula, we have the following lower bound for a
complete $k\neg ary$ tree $T_{k,d},.not$ for a distance structure $D$ .
Corollmry 3.4. $pdw(T_{k.d}) \geq\min\{\lceil\frac{|r(r_{u})|}{d+1}\rceil,\min_{t=d+2}^{2d+1}$ mqx $\{k^{\lceil(t-3)/2\rceil}.\lceil\frac{|r(r_{u})|}{t}]\}\}$ .

We will state the above corollary in the closed form. From a basic calculation we have the following lemma.

Lemma 3.5. $\min_{\ell=d+2}^{2d+1}$ max $\{k^{\lceil(\ell-3)/2\rceil},$ $r\frac{|r(r_{kd})|}{l}\rceil\}\geq\lceil\frac{|V(T_{k,d})|}{2d+1-2\mu(k.d)}]$ .
For $d\geq 1$ , we have the following lcmma.

Lemma 3.6. $r\frac{|r(r.)|}{d+1}\rceil\geq r\frac{|r(r_{V})|}{2d+1-2\mu(k\delta}\rceil$ .

Now, we are ready to state the lower bound in closed forn.

Theorem 3.7. $pdw(T_{k,d}) \geq r\frac{|r(r_{u})|}{2d+1-2\mu(k,d)}]$ .

Ptoof From Corollary 3.4, Lemma 3.5, and 3.6. $o$

4 UPper. bound
We have a naive uPPer bound $pdw(T_{k.d})\leq k^{d}/2$ (a half of the number of leaves): But this uPper bound is

so far from our lower $bound\approx k^{d}/(2(d-\log_{k}\phi)$ . In fact, the ratio $\frac{\#/2}{\kappa/(2td-1ou\emptyset)}dcP\epsilon nds$ on the $d\epsilon pthd$. So it
would be nice to have an uPPer bound for which the ratio is $ind\epsilon Pendent$ of the dePth $d$. In this section, for even
numbers $k\geq 4$ , we will show a better $uPPer$ bound which ensure that the ratio is $ind\epsilon p\epsilon ndent$ of the depth $d$.
For odd numbers $k$, a similar uPPer bound can be derived by Performing a similar calculation as in the evcn case.
However, in the detailed calculation, the odd case is much more troublesome than the even case. The reason why
the even case can be handed easily is that $g(k,m)$ takes a nonnegativc integer for any nonnegative integer $m$ if $k$

is an even natural number. So in what follows, we will consider a k-ary tree $T_{k.d}$ for an even number $k,\geq 4$ . For
corrvenience let $m$ be 仕鳩 number such that $g(k,m)\leq d=g(k, m)+a<g(k,m+1)$ . Then $\mu(k.d)=m$ from Lemma
APpendix A. 1.

To show our uPper bound, we give a廿 ansformation $F$ from ($k$.d){to」肥欧 $V(T_{k.d})$ such that

1. $pdw_{D\{X)}(T_{k.d})$ is close to the lower bound for $pdw(T_{kd})$ , and
2. $pdw_{D(X^{*})}(T_{kd})$ can be estimated accurately.

We also show that the ratio $\ovalbox{\tt\small REJECT}_{ow\alpha undm\infty rm}^{(r_{ii})}pdw$ is at most $k^{2}+1$ (independent ofthe depth). Our $F(k,d)$ consists
of vertices of height zero or one. This makes estimation of $pdw_{D(F(k.\phi)}(T_{k.d})$ feasible. To descnibe $F$, we need a
concept of“release : We first consider the $setX^{0}$ of all vcrtices ofheight zero and one both as an initial set; Then
we release (remove) vertices from $X^{0}$ step by step; Then finally we have the desired set $X^{*}$ . The procedure of
release i.e. $F$ is described in Figure 2. We will call $F$ by IbffROVBboeNT.

Now we make a detail explanation of the ffansformation $IMPR0VBbrT$. Let $D^{0}$ the distance structure $D(X^{0}).It$

is easy to $s$ee that

$D^{0}(t)=\{\begin{array}{ll}k^{d}+k^{d-1}, (\ell=1)k^{d-t}, (2\leq\ell\leq\phi 0. (otherwise)\end{array}$

As explained before, to obtain the initial set $X^{\cdot}$ , we release some vertices in $p$ step by $st\epsilon p$. Let $X^{*}\subset X\in P$

be an initial set that appear8 in the process ofthe step by $st\epsilon p$ releasing. A complete subtree $TofT_{k.d}$ is unrdeased
at $X$ if {$v|v\in V(T),height(v)=0$ or $1$ } $\subseteq X$ . Let $\beta$ be a BFS ordering of $V(T_{kd})$ started from the root of $T_{k4}$ .
For two unreleas$ed$ complete subtrees $T_{1}$ and $T_{2}$ at $X$ (not necessarily be ofthe same size), $T_{1}$ is to the left of $T_{2}$ if
$\min\{\beta(v)|v\epsilon V(T_{1})\}<\min(\beta(v)|v\in V(T_{2}))$ . An unreleased complete subtree $T$ is the Ieflmost ofdepth $j$ atX if
$T$ is of depth $j$. $T$ is unreleased at $X$, and there is no unreleased complete subtree $T’$ of depth $j$ such that $T’$ is to
the left of $T$.
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The transformation IMPROVEMENr uses a procedure $re1ease_{i}0$). The procedure $release_{j}(’)$ removes some verticcs
from $X$ in the following way: (1) Let $T_{j}$ be the leftmost unreleased complete subtree of depth $j,$ (2) select an
arbitrary vertex $v\in V(T_{j})$ with height$(v)=i,$ (3) release vertices $X\cap V(T)\backslash \{v\}$ firom $X$. In our transformation
$i\in\{0,1\}$ . The results of transformations $release_{0}(3)andre1ease_{1}(3)$ are depicted in Fig. 1.

Fig. 1 Examples ofthe $ffan\epsilon formations(k=4)$ .

Now we axe ready to state the whole transformation IMPROVBfflNr. This ransfomation starts from the initial
structure $D^{0}$ , and output the resultant structure $D=D(X^{*})$ . We aPply the long sequence of the ffansfomations
$release_{0}$ and $re1\epsilon ase_{1}$ altematively. See Fig. 2 for the complete definition ofImnovRT.

kansformationhr$r(k,d)$

Build the initial $\epsilon ffuctureD^{0}$ ;
$r\epsilon 1eas\epsilon_{0}(d-\mu(kFixaBFSord\epsilon\dot{n}n_{d+l);}\beta started$

from the root;

repeat $k-1$ times
$release_{1}(d-\mu(k,\phi);release_{0}(d-\mu(k.\phi)$;

end
for $j=d-\mu(k,\phi-1$ to 3$k/2+a+1$ do

repeat $(k-1)k^{i-\mu(k.\phi-j-1}$ times
$release_{1}(f);rel\epsilon aseo0)$ ;

end
end
Output the resultant structure $D$ ;

Fig. 2 The transformation IMpROVEMENT.

We should show that noeROVBImNT is applicable, that is, there exists an unreleased complete subtrce of depth $j$

whenever $release_{t}0$) $(i\in\{0.1\})$ is called in hoeROVRT. First we estimate the number of complete subtrees that
are used in $IbPROVBhoeNr$.
Proposltlon 4.1. Let $q_{l}^{k}U\cdot d$) be the number of times $release_{t}( \int)$ is called in IMPROVfflRT$(k.d)$. and $J$ be the set
$U|3k/2+a+1\leq j\leq d-\mu(k.\phi-1)$ . Then,

$q_{i}^{k}0,\phi=\{\begin{array}{ll}1. (i=0, j=d-\mu(k,d)+1)k-1, (i=0,1, j=d-\mu(k,\phi).(k.-1)1^{d-\mu(kd\vdash j-1}, (i=0,1, j\epsilon J).0. (otherwise)\end{array}$

Lemma 4.2. There exists an unreleased complete subtree of$d\epsilon Pthj$ whenever $nlease_{l}0$) $(i\in\{0,1\})$ is called in
IIIW塾口灯.

Pmof. In this proof we denote a complete subtree of $d\epsilon pthd-\mu(k,d)-1$ by unit. We count how many unit
IMpROVEMENT consumes. Note that $T_{kd}$ contains $h^{\mu(kae)+1}$ disjoint units and that for each iteration of for loop,
$IhoeROVH\mathfrak{W}\aleph T$ consumes $2(k-1)k^{d-\mu(k,\phi-j-1}$ released complete subtrees of $de\acute{p}thj$. We will refer to the set of
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released complete subtrees as block. From Proposition 4.1, the number ofused complete subtrees of dePth $j$ is,

$\{\begin{array}{ll}1, 0=d-\mu(k,\phi+1)2(k-1), 0=d-\mu(k,o\text{り})2(k-1)k^{d-\mu\langle k.\phi-j-1}, (3 k/2+a+1\leq j\leq d-\mu(k,\text{の一}1)0. (otherwisc)\end{array}$

For the deepest complete subtree, $k^{2}$ units are used. For the complete subtrees of depth $d-\mu(k.\phi, u(k-1)$

units are used. For the complete subtrccs ofdepth $j(3k/2+a+1\leq j\leq d-\mu(k,\phi-1),$ $2(k-1)$ units are used
in each block. So the number ofunits that are used in IhoeROVBhRr is:

$k^{2}+2k(k-1)+2(k-1)$ (($d-\mu(k$,力 $-1)-(3k/2+a+1)+1$)

$=k^{2}+2k(k-1)+2(k-1)(\sim g(k,m)-m-1-3k/2)$

$=k^{2}+2k(k-1)+2( k-1)((\frac{k(k^{m}-1)}{2(k-1)}+m+1)-m-1-3k/2I$

$=k^{m+1}=\mu+$ .
This number and the number ofunits contained in Tkd are the same. $o$

We consider the difference between $D^{0}$ and $D^{\cdot}$ . Recall that vertices in an initial set are in level 1, not $0$ .
$Propo\iota lAon4.3$ . For arry vertct $v\not\in X^{0}$ . $l\epsilon\nu elffl(v)=height(v)$.
$Propo\iota lAon4.4$ . For $a\varphi$ vertcc $v,$ $levelffl(v)\leq level_{D}\cdot(v)$.
Lemma45. Ifa vertex $v\not\in P$ has a descendantu such thatu $\in X^{*}mdhetght(u)=1$. then $levelffl(v)=lev\epsilon l_{\theta}(v)$.

Proof. From Proposition4.3 and Proposition 4.4, height(v) $\leq$ level$D(v)$. It is easy to see that
$1\epsilon ve1_{D}\cdot(v)\leq 0$

$dist(u.v)+1=heigc(v)$. Thus $1eve1_{D}\cdot(v)=height(v)=1eve1ffl(v)$ .
CoroUary 4.6. For a vertex $v$. if $l\epsilon vel_{D^{0}}(v)\neq level_{D}\cdot(v)$ then $v$ is in a complete subtree that was released by the
algorithm IwnovBhRT.

Pmof. Lct $T_{v}$ be acomplete subtree with root $v$, and $h1_{\nu}$ be the set {$u|u$ is $d\epsilon\epsilon cendantu$ of $v,$ $height(u)=1$ }.
From $L_{G}mma4.5.X^{*}\cap h1_{v}=\emptyset$. This means that for each $u\in h1_{v}$ there is auniquc released complete $subff\epsilon oT(u)$

such that $T(u)$ contaio $u$ and $T(u)$ was released by $IMPROVBM\Re T$. $T(u)=T(w)$ for any $u,w\in h1_{\nu}$ implies that $v$ is
in acomplete subPee teleased by MPROVBhmr.

Now we show that there is no other case. Suppose for $con\alpha adiction$ that there are two complete $subP\epsilon e\epsilon$

$T(u),$ $T(w)$ such that $T(u),$ $T(w)$ are contained in $T_{v}$ . Note that $T(u).T(w)CT_{v}$ . Wlthout loss of $generali|y_{1}$ we
can assume that $T(w)$ and $T(u)w\epsilon re$ releas$ed$ consecutively. $T\cdot hen$ one of $T(u)$ and $T(w)wa8$ released by

$applyin_{O}g$
$release_{1}$ . Thi8 contradicts $X^{*}\cap h1_{v}=\emptyset$ .

From Corollary 4.6, wo can estimate the width of levels in the $r\epsilon sultants\theta ucture.$ Let $C^{k}0\cdot 0$ be the width of
level $\ell$ in $crel\epsilon ased$ complete subtree of $d\epsilon pthj$, i.e., the width $ofl\epsilon vel\ell$ in the distance $sPuct\iota reD(A.T_{t\sqrt{}})$,
$wh\epsilon re$ $A$ is the vertices ofheigt 1 or 2in $T_{tJ}$ . And let $S_{/}^{k}(j.\ell)$ be the width $ofl\epsilon vel\ell$ in complete subtoee ofdcpth
$jrol\epsilon ascd$ by $relcase_{i},$ $i.e.$ .the width oflevel $\ell$ in the distance sffucture $D(\{v\}, T_{k\sqrt{}}).$ where $v$ is a $v\epsilon R\epsilon x$ ofheight 1
in $T_{k\sqrt{}}.$ Then

$D^{\cdot}( \ell)=D^{0}(1)+\sum_{ie10,1\}}\sum_{j\cdot 3k/2+a+1}^{d.-\mu(k.\phi+1}q_{i}^{k}(/,\emptyset(S_{i}^{k}(j,\ell)-C^{k}(j,\mathfrak{h})$ .
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For convenience we denote $P_{i}(d,\ell)$ and $C^{k}(d,l\gamma$ such that

$P_{i}(d, \ell)=\sum_{j=3k\prime 2+g+1}^{d-\mu(k.d)+1}q_{i}^{k}0,.d)\cdot S_{i}^{k}0^{t)}$ ,

$C^{k}(d,t)=D^{0}( \ell)-\sum_{/e\{0.1\}}\sum_{j\cdot 3k\prime 2+a+1}^{d-\mu(kd)+1}qf(j$,oり. $C^{k}(j,\ell)$ .

Then we can restate the width of $D^{\cdot}$ .
Proposition4.7. $D^{\cdot}(t)=P_{0}(d,l\gamma+P_{1}(d,t)+C^{k}(d$. ?$)$.

We can easily verify that the following two lemmas hold (See also Fig. 1).

Lemma 4.8.

$s_{oU^{I)=}}^{k},\{\begin{array}{ll}k^{L(t-1)\prime 2\rfloor}, (1 \leq\ell\leq j+1)k^{\lfloor(t-1)\prime 2\rfloor}-k^{t-\text{ノ}-2}, (j+2\leq f\leq 2j+1)0. (otherwise)\end{array}$

Lemma 4.9.

$s:0\cdot 0=\{\begin{array}{ll}1, (\ell=1)k+1, (t=2)k^{(t/2\rfloor}. (3\leq\ell\leq J)k^{\lfloor\ell/2\rfloor}-k^{\ell-\int-1}. U+1\leq\ell\leq 2_{J})0. (otherwise)\end{array}$

Now, we have the exact value of$s^{k}U,0$ . In what follows, more $simpl\epsilon r$ upper bound is sufficient.

CoroUary 4.10.

$s_{00^{\ell)\leq}}^{k},\{\begin{array}{ll}k^{1t\ell-1)/2\rfloor}, (1 \leq\ell\leq 2j+1)0, (otherwise)\end{array}$

$s_{1}^{k}O^{\ell)\leq}\{\begin{array}{ll}k+1, (=1,2)k^{\lfloor t\prime 2\rfloor}. (3\leq\ell\leq 2_{J})0. (otherwise)\end{array}$

Lemmm 4.11.

$P_{o(d},c\gamma\leq\{\begin{array}{ll}2k^{d-\mu(k.\phi}, (1\leq\ell\leq 2d- 2\mu(k,\text{カー} 1)k^{d-\mu(kd)}. (\ell=2d-2\mu(k.\phi)k^{d-\mu(kd)+1}. (2d- 2\mu(k,\text{力} +1\leq\ell\leq 2d-2\mu(k,\phi+3)0. (otherwise)\end{array}$

Lemma4.12.

$P_{1}^{k}(d$,り $\leq\{\begin{array}{ll}2\nu^{-\mu(kd)}-k^{d-\mu(kd)-1}, (l\leq 1\leq 2d- 2\mu(k,\text{カー} 1)k^{d-\mu(k,d)+1}-k^{d-\mu(k\rho)}. (\ell=2d-2\mu(k,\phi)0. (otherwis\epsilon)\end{array}$

Lemma 4.13.

$P_{0}(d.t)+P_{1}(d.t)\leq\{\begin{array}{ll}k^{d-\mu(kd)+1}-k^{d-\mu(k,\phi-1}, ( 1\leq\ell\leq 2d-2\mu(k.\text{の一}1)k^{d-\mu(k.\phi*1}, (2d-2\mu(k d)\leq\ell\leq 2d-2\mu(k,\phi+3)0. (otherwise)\end{array}$
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Proposition4.14.

$c^{k}O\cdot f)=\{\begin{array}{ll}k^{j}+k^{j-1}, (\ell=1)k^{j-t},. (2\leq\ell\leq J)0. (otherwise)\end{array}$

Lemma 4.15.
$C^{k}(d,I)\leq\{\begin{array}{l}\ovalbox{\tt\small REJECT}(3k/2+a+2\leq\ell\leq 0\end{array}$

CoroUary 4.16. $pdw_{\theta}(T_{k.d})\leq k^{d-\mu(k.d)+1}$ .
Theorem 4.17. $pdw(T_{kd})\leq k^{d-\mu\langle kd)+1}$ .
Theorem 4.18. 7he ratio between upper bound in Theorem 4.17 and lower bound in Theorem 3.7 is at most $k^{2}+1$

for $d\geq k^{2}$ .

5 Conclusion
We showed upper and lower bounds for path distance width of complete k-ary trees for even numbers $k\geq 4$ . By

performing a similar calculation, it can be shown that for $k=2$ (i.e. complete binary trees) and $m\geq 3$

$2^{2^{n}} \leq pdw(T_{2,2^{n}+m})\leq\frac{17}{16}2^{2^{r}}$.
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APpendix A Relationship between $\mu(k,d)$ and $g(k,m)$

Lemma APpendk A.l. Let $d$ be an integer such that $g(k.m)\leq d<g(k,m+1)$. 7hen $\mu(k,d)=mfor$ any integer
$m\geq 0$.
Proof. As $g(k,m)$ is a monotonically increasing function, it is sufficient to show that $\mu(k.g(k.m))=m$ and
$\mu(k,g(k,m+1)-1)=m$ .
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First we show $\mu(k,g(k,m))=m$ . From Proposition Appendix A.3,

$\lfloor\log_{k}(f(k)g(k,m))\rfloor=[\log_{k}(k^{m}-1+f(k)(m+1))\rfloor=m$ .
Thus,

$\mu(k,g(k,m))=\lfloor\log_{k}(f(k)\omega k,m)-\lfloor\log_{k}Cf(k)g(k,m))\rfloor))\rfloor$

$=[\log_{k}(f(k)(g(k,m)-m))\rfloor.=\lfloor\log_{k}(k^{m}-1+f(k))\rfloor$

$=m$ . (. ProPosition APpendix $A.2$)

Next, we show $\mu(k,g(k.m+1)-1)=m$ . From Proposition APpendix A.4,

$\lfloor\log_{k}\sigma(k)(arrow g(k,m+1)-1))\rfloor=\lfloor 1og_{k}(k^{m+1}-1+f(k)(m+1))\rfloor=m+1$ .
So, we have

$\mu(k,g(k,m+1)-1)=\lfloor\log_{k}(f(k)g(k,m+1)-1-\lfloor\log_{k}(f(k)(g(k,m+1)-1))\rfloor))\rfloor$

$=\lfloor\log_{k}y(k)(g(k,m+1)-m-2))\rfloor=\lfloor\log_{k}(k^{n+1}-1)\rfloor$

$=m$.
口

Proposition $\backslash ppendix$ A.2. $1\leq f(k)<2$ .
Proposltlon Appendlx A.3. $\hslash^{m}\leq k^{n}-1+f(k)(m+1)<k^{m+1}$ .
Prvof. From Proposition $App\epsilon ndix$ A.2, $”‘-1+f(k)(m+1)\geq k^{m}+m\geq\mu$ . Assume for contradiction that
$k^{m+1}\leq k^{m}-1+f(k)(m+1)$ . It implies $(k-1)\mu<f(k)(m+1)$. Then we have the following contradiction.

(た- $1$ )$\mu<f(k)(m+1)=\frac{2(k-1)(m+1)}{k}$ ,

$k^{n+1}<2(m+1)$ ,
$m<\log_{k}(m+1)$ .

口

Proposition Appendix A.4. $k^{m+1}\leq k^{m+1}-1+f(k)(m+1)<k^{m+2}$ .
Proof. The proof is almost the same as the proofof Proposition Appendix A.3. $0$
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