0000000000
0 1599 0 2008 0 119-126 119

52 k 73K D path distance width {22\ T
(On the path distance width of the complete k-ary trees)

BRXZERFRTFHER =) fr (Kazuyuki Ukegawa), A —IE (Kazumasa Aoki),
/MR 38 (Kyohei Kozawa), X% BiX (Yota Otachi), Ll #— (Koichi Yamazaki)
Department of Computer Science, Gunma University

1 Introduction

Gwcn a connected graph G = (V,E) and a subset of vertices X C V, it is easy to construct the dccomposxtxon
= (Xi,...,4X;) such that X; is the set. of vertices of distance i ~ 1 from X; for each 1 < i < ¢, where ¢ is the

largest intcger satisfying X; # 0. We call X;’s by Jevels and denote the number of levels in D (i.e. #) by |D|. We call
the decomposition by the distance structure with initial set X, of G, and denote it by D(X;, G) or simply D(X1)
or more simply D if it is clear from the context. The width of D, denoted by pdwp(G), is defined as maxog<, LXil.
The path distance width of G, denoted by pdw(G), is defined as miny,cy pdwp, x)(G). 1t is known that even for
the trees T the optimization problem computing pdw(T") is NP-hard and does not admit a PTAS [8, 9]. It is not
known whether or not the problem is fixed parameter tractable, i.e., whether there exists an algorithm that solve
the decision problem, pdw(G) < k or not, with running time O(f(k)n°), where c is a constant and independent of
k, and £ is any function.

The problem computing path distance width is related to the problem computing bandwidth. 1t is easy to see that
for any graph G the bandwidth of G is at most 2pdw(G)—1. But the difference between them can be arbitrarily large
[9]. From the point of view of graph algorithm design the problem computing bandwidth is an attractive subject of
research because the problem is known to be a computationally hard problem: the problem is NP-complete even
for the trees, has no constant factor approximation, and fixed parameter intractable [7, 1]. It would be important to
understand better what makes problems hard. We suspect that the problem computing path distance width is also
a hard problem.

For complete k-ary trees, several graph parameters have been studied, such as bandwidth [6], annbandmdth [2],
edge-bandwidth [3], harmonious chromatic number [4], vertex boundary-width [5].

Smithline showed that the density lower bound determines the bandwidth of the complete k-ary trees [6]. Smith-
line showed that the density lower bound bw(G) 2 [%] determines the bandwidth of the complete k-ary trees
[6], where diam(G) is the diameter of a connected graph G. The density lower bound is based on the plgcon
hole principle. The path distance width also has a lower bound based on the pigeon hole principle, that is,
pdw(G) 2 [fnﬁ%ﬁ] We refer to the lower bound for pdw(G) also as density lower bound. It would also be
an interesting question whether the density lower bound determines the path distance width of the complete k-ary
trees or not. The problem has been left as an open problem [8].

In this paper we consider the path distance width of complete k-ary trees. We first show that path distance width
of complete k-ary trees does not coincide with the density lower bound, more precisely, we give a better lower
bound for complete k-ary trees. Then we show an upper bound of complete k-ary trees for which the ratio between
the upper bound and density lower bound is independent of the depth 4.

120

2 Notations

The depth of a (sub)tree is the number of edges in a‘longest path from the root to a leaf. Let T;» denote the
complete k-ary tree of depth d, T be a subtree of Ty 4, and D be a distance structure of Tya- T is called complete if
T is a complete k-ary tree and the leaves of T are also leaves in T; 4. A complete subtree T is called an unfolded
subtree in D if all leaves of T are in the same level £ of D for some 1 < £ < |Dj and the level of the root of T
is € — (the depth of T'). An unfolded subtree T in D is called maximal if there is no unfolded subtree in D that
properly contains 7. We denote the width of level € by D({) = |X;| and the level of a vertex v by levelp(v) = £ if
vEKX;.

A sibling of a vertex v € V' (Tyy) is a vertex that has the same parent as v. A sibling subtree T’ of a complete
subtree T of T4 is a complete subtree such that the root of T” is a sibling of the root of 7.

Let v be a vertex of T} 4. The height of v, denoted by height(v), is the distance from v to the nearest leaf. Note
that not the farthest leaf. For example the height of a leaf is zero and the height of the root of T} 4 is d.

For convenience we denote the following three functions:

o flk) =2(k-1)/k,
o u(k,d) = |log, (f(k)(d - |log(f(K)))]s
o g(k,m) = (" = 1)/ f(K) + m + 1.

3 Lower bound
In this section we give a lower bound for complete k-ary trees. It is easy to derive the followmg density lower

bound:
[V(Tr.a)|
diam(Txq) + 1

‘ kd+1 -1
pdw(Tq) 2 { = [(k— 1)(2d + 1)] '

In this paper, we show a better lower bound,

[V (Ti.0)| _ K -1
pAw(Teq) 2 [diam(Tig) + 1 = 2uk.d) | | (k- DRd+ 1 - 2u(k, d))]°

The following two lemmas are the main tools for deriving our lower bound.

Lemma 3.1. Let D = (Xy,...,X|p) be a distance structure of Ty 4 and X; be a level containing a leaf v of Ti 4.
Then there is a maximal unfolded subtree of depth at least [(£ — 3)/2] in D.

Proof. 1t is easy to see that there is a unique maximal unfolded subtree 7' (in D) containing v.- We show that T is a
desired maximal unfolded subtree. Suppose that T’ # T} 4 (Otherwise it is trivial). Because 7' is maximal, X; has
a vertex u in a sibling subtree of T. Let dr denote the depth of 7. The distance between v and u is at most 2dy + 2
and at least £ — 1, so the lemma holds. o

Lemma 3.2. Let D = (Xi,...,Xp) be a distance structure of Ty 4. If Xip| has an internal vertex u of Ty, then
ID|<d+ 1. ‘

Proof. Because u € X)p is an internal vertex, there are two vertex disjoint paths (except «) from u to X;. Since
_ two paths have the length at least |D| — 1, T4 has a path of length 2(}D] — 1). As T4 has diameter 2d, we have
that|D| <d+ 1. o

From the above lemmas, we can obtain the new lower bound for a d1stance structure that has a large enough
number of levels.

Corollary 3.3. Let D = (Xi,..., Xip;) be a distance structure of Ty4. If\D| = d + 2, then pdwp(T.q) 2 K0P-3/2,

Proof. From Lemma 3.2, X|p has no internal vertex. So, there is a maximal unfolded subtree T of depth at least
(D} — 3)/2] from Lemma 3.1. The lemma follows from the number of T"’s leaves. a

121

By combining Corollary 3.3 and the density lower bound formula, we have the following lower bound for a
complete k-ary tree T} 4, not for a distance structure D.

Corollary 3.4. padw(T;4) > min {’-l%‘li)l.‘ »minZy, max {k[A, [V(:“)]} })

We will state the above corollary in the closed form. From a basic calculation we have the following lemma.
Lemma 3.5. mmf;'}l, max {H 32, []V—(Tl"i)-l]} > [ﬂ%] .

For d > 1, we have the following lemma.

o 50 8]

Now, we are ready to state the lower bound in closed form.

Theorem 3.7. pdw(Ty.q) > (ﬂl%] .

Progf. From Corollary 3.4, Lemma 3.5, and 3.6. (u]

4 Upper bound

We have a naive upper bound pdw(T:4) < k9/2 (a half of the number of leaves). But this upper bound is

so far from our lower bound ~ k?/(2(d - log, d)). In fact, the ratio ?/'(551127 depends on the depth d. So it
would be nice to have an upper bound for which the ratio is independent of the depth d. In this section, for even
numbers k > 4, we will show a better upper bound which ensure that the ratio is independent of the depth d.
For ‘odd numbers £, a similar upper bound can be derived by performing a similar calculation as in the even case.
However, in the detailed calculation, the odd case is much more troublesome than the even case. The reason why
the even case can be handed easily is that g(k, m) takes a nonnegative integer for any nonnegative integer m if k
is an even natural number. So in what follows, we will consider a k-ary tree T} 4 for an even number k > 4. For
convenience let m be the number such that g(k, m) < d = g(k, m) + a < g(k,m + 1). Then u(k,d) = m from Lemma
Appendix A.1.

To show our upper bound, we give a transformation F from (k, d) to X* C V(T 4) such that

1. pdwpxy(Tka) is close to the lower bound for pdw(T%), and
2. pdwpx)(Th,q) can be estimated accurately.

We also show that the ratio Tﬁu‘xﬁ%—ﬁ? is at most k* + 1 (independent of the depth). Our F(k, d) consists
of vertices of height zero or one. This makes estimation of pdw pp(; 4 (T4.q) feasible. To describe F, we need a
concept of “release™: We first consider the set X° of all vertices of height zero and one both as an initial set; Then
we release (remove) vertices from X° step by step; Then finally we have the desired set X*. The procedure of
release i.e, F is described in Figure 2. We will call F by IMPROVEMENT,

Now we make a detail explanatlon of the transformatmn ImprOVEMENT. Let DP the distance structure D(X?) .It
is easy to see that

H+k-l, (£=1)
Do(6) = { k-, 2<¢<ad
0. (otherwise)

As explained before, to obtain the initial set X*, we release some vertices in X° step by step. Let X* ¢ X ¢ X0
be an initial set that appears in the process of the step by step releasing. A complete subtree T of T} 4 is unreleased
at Xif {v| v € V(T),height(v) = Oor 1} C X . Let 8 be a BFS ordering of V(T},) started from the root of T} 4.
For two unreleased complete subtrees T and T at X (not necessarily be of the same size), T} is to the left of T; if
min{B(v) | v € ¥(T1)} < min{B(v) | v € ¥(T3)}. An unreleased complete subtree T is the lefimost of depth j at X if

T is of depth j, T is unreleased at X, and there is no unreleased complete subtree T’ of depth j such that T is to
the left of T.

122

The transformation IMPROVEMENT uses a procedure release;(j). The procedure release;(f) removes some vertices
from X in the following way: (1) Let T; be the leftmost unreleased complete subtree of depth j, (2) select an
arbitrary vertex v € V(T;) with height(v) = i, (3) release vertices X N ¥(T) \ {v} from X. In our transformation
i € {0, }}. The results of transformations releasey(3) and release; (3) are depicted in Fig. 1.

Fig. 1 Examplés of the transformations (k = 4).

Now we are ready to state the whole transformation IMPROVEMENT. This transformation starts from the initial
structure D%, and output the resultant structure D* = D(X*). We apply the long sequence of the transformations
releasey and release; alternatively. See Fig. 2 for the complete definition of IMPROVEMENT.

Transformation IMPROVEMENT(K, d)
Build the initial structure D°;
Fix a BFS ordering 8 started from the root;
releaseq(d — u(k,d) + 1);
repeat k — 1 times

?lcasel(d u(k, d)); releaseo(d — u(k, d)); ‘

forj d—uk,d)—1to3k/2+a+1do
repeat (k — 1)k4-#*4~/-1 times
releasel(/), releaseo());
end
end
Output the resultant structure D*;

Fig.2 The transformation IMPROVEMENT.

We should show that IMPROVEMENT is applicable, that is, there exists an unreleased complete subtree of depth j

whenever release; (/) (i € {0, 1)) is called in ImPrROVEMENT. First we estimate the number of complete subtrees that
are used in IMFROVEMENT

Proposition 4.1. Let q"(j d) be the number of times release()) is called in IMP’ROVEMENT(k d), and J be the set
J13k/2+a+ 1< j<d- u(k,d)— 1). Then,

1, (i=o,j=d-p(k,d)+1)
. k=1, (i=0,1, j=d=-pu(kd).
a0 = (k- Dkd+kd-1-1 (1=0,1, jeJ)
0. (otherwise)

Lemma 4.2. There exists an unreleased complete subtree of depth j whenever release;() (x € {0, l}) is called in
IMPROVEMENT.

Proof. In this proof we denote a complete subtree of depth d — u(k,d) — 1 by unit. We count how many unit
IMPROVEMENT consumes. Note that T}, contains k*®@*! disjoint units and that for each iteration of for loop,
IMPROVEMENT consumes 2(k — 1)k4-#*4)-/-1 released complete subtrees of depth j. We will refer to the set of

123

released complete subtrees as block. From Proposition 4.1, the number of used cbmplete subtrees of depth j is,

1, (=d-pukd+1)

2(k-1), U = d - uk,d))

20k — D)kad-+kd-j-1 - 3k/2+a+ 1< j<sd-pukd)—-1)
0. (otherwise)

For the deepest complete subtree, k? units are used. For the complete subtrees of depth d — u(k, d), 2k(k - 1) ‘
units are used. For the complete subtrees of depth j (3k/2+a+ 1< j<sd-pu(kd)-1), 2(k 1) units are used
in each block. So the number of units that are used in IMPROVEMENT is: '

B4+2kk—1)+2(k-1)((d-ukd)-1)-(k/2+a+1)+1)
= k2 + 2k(k— 1) + 2(k — 1) (g(k, m) — m — 1 — 3k/2)

= - _p{E* =D m—1-
=k + 2k(k— 1) + 2(k 1)((20=T) +m+ 1) m—1 3k/2)
= ! = pptkdrl '
This number and the number of units contained in T} 4 are the same. o .

We consider the difference between D° and D*. Recall that vertices in an initial set are in level 1,not 0.
Proposition 4.3. For any vertex v ¢ X, levelpn(v) = height(v).
Proposition 4.4, For any vertex v, levely(v) < levelp-(v).
Lemma 4.5, Ifavertexv ¢ X° hqs a descendant u such that u € X* and height(u) = 1, then leveln(v) = levelp-(v).

Proof. From Proposition 4.3 and Proposition 4.4, height(v) < levelp-(v). It is easy to see that levelp-(v) <
dist(u, v) + 1 = height(v). Thus levelp.(v) = height(v) = levelpo(v). o

Corollary 4.6. For a vertex v, if levelpn(v) #.levelp.(V) then v is in a complete subtree that was released by the
algorithm IMPROVEMENT.

Proof. Let T, be a complete subtree with root v, and A1, be the set {# | u is descendant u of v, height(w) = 1}.
From Lemma 4.5, X* N A1, = 0. This means that for each € A1, there is a unique released complete subtree T'(w)
such that T(#) contains and T'(u) was released by IMproVEMENT. T'() = T(w) for any u, w € hl, implies that v is
in a complete subtree released by IMPROVEMENT.

Now we show that there is no other case. Suppose for contradiction that there are two complete subtrees
T(u), T(w) such that T'(x), T(w) are contained in T,. Note that T'(u), T'(w) € T,. Without loss of generality, we
can assume that 7'(w) and T'(«) were released consecutively. Then one of T'(#) and T'(w) was released by applying
release;. This contradicts X* N Al, = 0. O

From Corollary 4.6, we can estimate the width of levels in the resultant structure. Let C*(j, £) be the width of
level £ in unreleased complete subtree of depth j, i.c., the width of level £ in the distance structure D(4, Ty,),
where 4 is the vertices of height 1 or 2 in T} ;. And let S¥(j, £) be the width of level £ in complete subtree of depth
J released by release;, i.c., the width of level ¢ in the distance structure D({v}, Ty), where v is a vertex of height 1
in T; kj Then

d-p(k,d)+1
p@O=D"0+ Y, >, d0.d(st.o-C0.0).

i€{0,1) f=3k/2+a+1

124

For convenience we denote Pf (d, €) and C*(d, £) such that

d—p(kd)+1

Pdo= . qid) st.o,
J=3k/24a+1
d-p(kd)+1
c¢do=0"0-), D, 4G -CGH.

ie{0,1) jm=3k/2+a+1
Then we can restate the width of D*,
Proposition 4.7. D*(¢) = Pi(d,€) + Pi(d,{) + ctd,®).
We can easily verify that the following two lemmas hold (See also Fig. 1‘).

Lemma 4.8.
K@=/ (I1<é¢<j+1)
S§UL6) = kDA L jt-1-2 (j+2<E<2j+1)
: 0. (otherwise)
Lemma 4.9.
1, =1
k+1, (€=2)
Sk,) = { ke, (B3<ts))
K g7, (j+1<¢€<2))
0. (otherwise)
Now, we have the exact value of § f(/, ¢€). In what follows, more simpler upper bound is sufficient.
Corollary 4.10.
IR (1s€s2j+1)
ke ’
Sol.6) < {0, (otherwise)
k+1, (¢=1,2)
S1G, 0 s{R3, 3 <e<2))
0. (otherwise)
Lemma 4.11,
2hd-ukd (1 < ¢ < 2d - 2u(k,d) - 1)
ka-utkd) (€ = 2d - 2u(k, d))
Pk d, ’ ’
o0 <1 a-uarn, (2d - 2u(k,d) + 1 < € <2d - 2u(k,d) + 3)
0. (otherwise)
Lemma 4.12,
(2K ut D . pd-uk A1 (1 < £ < 2d - 2u(k,d) - 1)
Pi(d,) s {kA-utkatl _ jdukd (¢ = 2d - 2(k, d)
0. (otherwise)
Lemma 4.13.

fA-ulkdrl _ gd=ukd-l (1 < £ < 2d - 2u(k,d) - 1)
Pi(d, &) + Pi(d, £) < ka-ukal (2d _ 2k, d) < € < 2d~ 2u(k,d) + 3)
0. (otherwise)

125

Proposition 4.14,
K+, (¢=1)
CtG. & = {W-, @R<t<))
0. ° (otherwise)
Lemma 4.15.
ctdn < {k""‘(*“’)" , Gk/2+a+2<¢<d)
(otherwise)

Corollary 4.16. pdwp.(Tiq) < k##ED+H,
Theorem 4.17. pdw(Tiq) < k3-+#kd+

Theorem 4.18. The ratio between upper bound in Theorem 4.17 and lower bound in Theorem 3.7 is at most k* + 1
ford = k.

5 Conclusion

We showed upper and lower bounds for path distance width of complete k-ary trees for even numbers &k > 4. By
performing a similar calculation, it can be shown that for k = 2 (i.e. complete binary trees) and m > 3

2% < pdw(Tazmem) < 1722"

References

[1] H.L. Bodlaender, M.R. Fellows, and M.T. Hallett. Beyond NP-completeness for problems of bounded width:
Hardness for the # hierarchy (extended abstract). In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, pages 449—-458, 1994, _

{2] T. Calamoneri, A. Massini, L. Térdk, and I. Vrt'o. Antibandwidth of complete k-ary trees. Electronic Notes
in Discrete Mathematics, 24:259-266, 2006. -

[3] T. Calamoneri, A. Massini, and I. Vrt'o. New results on edge-bandwidth. Theoretical Computer Science,
307:503-513, 2003.

[4] K. Edwards. The harmonious chromatic number of complete r-ary trees. Discrete Mathematics, 203:83-99,
1999.

[5] Y. Otachi and K. Yamazaki. A lower bound for the vertex boundary-width of complete k-ary trees. Discrete
Mathematics, to appear.

[6] L. Smithline. Bandwidth of the complctc k-ary tree. Discrete Mathematics, 142; 203-212, 1995.

{71 W..Unger. The complexity of the approximation of the bandwidth problem (extended abstract). In Proceedings
of the 39th Annual Symposium on Foundations of Computer Science, pages 82-91, 1998.

[8] K. Yamazaki. On approximation intractability of the path-distance-width problem. Discrete Applied ‘Mathe-
matics, 110:317-325, 2001.

[9] K. Yamazaki, H.L. Bodlaender, B. De Fuiter, and D.M. Thilikos. Isomorphism for graphs of bounded dlstance
width. Algorithmica, 24(2) 105-127, 1999.

Appendix A Relationship between u(k, d) and g(k, m)

Lemma Appendix A.1. Let d be an integer such that g(k,m) < d < g(k,m + 1). Then u(k,d) = m for any integer
m20.

Proof. As g(k,m) is a monotonically increasing function, it is sufficient to show that u(k,g(k,m)) = m and
ulk,glk,m+1)—1)=m.

126

First we show u(k, g(k, m)) = m. From Proposition Appendix A.3,

Llog,(f(k)g(k, m))] = [log, (k" — 1 + f(k)(m + 1))] = m.
Thus,
w(k, gk, m)) = |log, (f(k)(g(k, m) — |log,(f(K)g(k. m)]))]

= |log, (f(k)(g(k, m) — m))| = |log, (k" ~ 1 + f(k))]
=m, (- Proposition Appendix A.2)

Next, we show 4i(k, g(k, m + 1) — 1) = m. From Proposition Appendix A.4,
[tog (f(R)(glk, m + 1) = 1))] = |logy(®™! ~ 1+ f(B)m + 1)) | = m + 1.

So, wc,havc

itk gk, m+ 1) = 1) = Llog, (FBE(km + 1) - 1 = log,f(Beth,m + 1) ~ D))
= Llog, (k) @@k, m + 1) ~m = 2))] = |logs &' - 1)

Proposition Appendix A.2. 1 < f(k) < 2.
Proposition Appendix A.3. k" < k™ - 1 + f(k)(m + 1) < k™,

Proof. From Proposition Appendix A.2, &" — 1 + f(k)(m + 1) 2 &™ + m = k™. Assume for contradiction that
™ < k™~ 1+ f(k)(m + 1). It implies (k — 1)k™ < f(k)(m + 1). Then we have the following contradiction.

20k - 1)(m+ 1)

(k= 1" < f()(m + 1) = :

< 2(m+ 1),
m < logg(m + 1).

Proposition Appendix A4, k™! < k™! — 1+ f(k)(m + 1) < k™2,
Proof. The proof is almost the same as the proof of Proposition Appendix A.3. : o

