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Abstract

We $propo6e$ a new online learning algorithm
that provably approximates maximum mar-
gin classifiers with$\cdot$ bias, where the margin
is defined in terms of p-norm distance. Al-
though learning of linear classifiers with bias
can be reduced to learning of those with-
out bias, the known reduction might lose the
margin and slow down the convergence of on-
line learning algorithms. Our algorithm, un-
like previous online learning algorithms, im-
plicitly uses a new reduction which praeerves
the margin and $avoid_{8}$ such possible deficien-
cies. Our preliminary experiments shows that
our algorithm runs much faster than previ-
ous algorithms especially when the underly-
ing linear classifier has large bias.

1 Introduction
Large margin classification methods are quite popular
among Machine Learning and related research areas.
Various generalization bounds (e.g., [27, 29, 7]) guaran-
tee that linear classifiers with large margin over training
data have small generalization error with high probabil-
ity. The Support Vector Machine (SVM) [3] is one of the
most powerful among such methods. The central idea of
SVM is to find the maximum 2-norm margin hyperplane
over linearly separable data. Further, by using kernels
and soft margin formulations, it can learn large mar-
gin hyperplane over linearly inseparable data as $weU$.
The problem of finding the maximum 2-norm margin
hyperplane over data is formulated as a quadratic pro-
gramming problem. So the task of SVM can be solved in
polynomial time by using standard optimization meth-
ods.

On the other hand, solving quadratic programming
problems is time-consuming, especially for huge data
which is now common in many applications, This moti-
vates many raeearches for making SVM more scalable.
One of major approaches is to decompose the original
quadratic programming problem into smaller problems
which are to solve [23, 24, 13, 6, 14]. Another popular
approach is to apply online learning algorithms. On-
line learning algorithms such as Perceptron [26, 22,

21] and its variants [1, 8, 31, 10] work in iterations,
where at each iteration, they process only one instance
and update their hypothem successively. Online learn-
ing algorithms use less memory, and are easy to imple
ment. Many online learnlng algorithms that find large
margin classifiers have been proposed, including Ker-
nel Adatron[9], Max Margin Perceptron [17] Voted Per-
ceptron [8], ROMMA [31], ALMA [10], NORMA [15],
MICRA [30], and Pegasos [28].

However, most of these otine learning algorithms
do not fully exploit the linear separability of data. More
precisely, they are designed to learn $homog\bm{m}\infty u\epsilon$ hy-
perplanes, i.e., hyperplanes that lie on the origin, and
they cannot learn linear clusifiers with bias directly.
So, in order to learn linear classifiers with bias, typi-
cal online learning algorithms map instances from the
original space $R^{n}$ to an augmented space $R^{n+1}$ with
an exSra dimension by using the mapping $\phi$ : $x\mapsto\rangle$

$\tilde{x}=(x, -R)$ , where $R$ is the maximum 2-norm of in-
stances [7]. Then, a hyperplane with bias $(w,b)$ in
the original space $corre8pond8$ to the hyperplane with-
out bias $\tilde{w}=(w, -b/R)$ in the augmentd space since
$w\cdot x+b=\tilde{w}\cdot\tilde{x}$ . So, by using this mapping, learning lin-
ear classifiers with bias can be rduced to learning thoee
without bias. But, this mapping weaJrens the guarantee
of margin. Suppose that for a sequence of labeled exam-
ples $(x_{1},y_{1}),$

$\ldots,$
$(x_{T},y_{T})(x_{t}\in \mathbb{R}^{n}$ and $y_{t}\in\{-1,+1\}$

for $t=1,$ $\ldots,T$), there is a hyperplane with bias $(u,b)$

that has margin $\gamma=m\dot{m}_{t-1,\ldots.T}lum_{2}^{b}$ , where in-
stances are normalized by R.

Then, the corresponding hyperplane $\tilde{u}=(u, -b/R)$

over the augmented space has margin

$\tilde{\gamma}=\frac{y(\tilde{u}\cdot\tilde{x})}{\Vert\overline{u}\Vert_{2}R}=\frac{y(u\cdot x+b)}{\Vert\tilde{u}\Vert_{2}R}>\frac{1}{2}\gamma$,

since $\Vert\tilde{u}||_{2}^{2}=\Vert u||^{2}+b^{2}/R^{2}\leq 2\Vert u\Vert^{2}$ , and $\Vert\tilde{x}||_{2}^{2}\leq 2R$.
Even though the loss of margin is at most by a constant
factor, it might cause signiflcant difference in prediction
performance over practical applications.

In this paper, we propose a new online learning al-
gorithm that approxinately maximizes the margin. Our
algorithm, PUMMA (P-nom Utilizing Maximum Mar-
gin Algorithm), is an extension of ROMMA [31] in two
$way_{8}$. First, PUMMA can optimize the bias directly by
using an implicit reduction from learning of linear clae-
siflers with bias to learning those without bias, instead
of using the mapping $\phi$ .

数理解析研究所講究録
第 1599巻 2008年 154-161 154



Second, PUMMA can provably approximate the max-
imum $\gamma norm$ margin classifier for $p\geq 2$ . Abene-
fit of maximiz.ing p.norm margin is that we can find
sparse linear $cla8Sifiers$ quickly. Technically speaking,
PUMMA is avariant of $p$norm algorithm $[12, 11]$ . It is
known that, if we aet $p=\infty$ or $p=O(\ln n)$ , the p.norm
algorithm $behave8$ like online multiplicative update al-
gorithms sui as Winnow [18], which can converge ex-
ponentially faster than Perceptron, when the underlying
linear classifier is sparse. For example, if the target con-
cept is a $k$-disjunction over $n$ boolean variables, Winnow
can find aconsistent hypothaeis in $O(k\log n)$ mistakes,
while Perceptron ne\’es $\Omega(kn)$ mistakes [16].

We show that PUMMA, given aparameter $\delta(0<$

$\delta\leq 1)$ and $p>1$ , finds alinear $cla8sifier$ which has
$\mathcal{F}$norm margin at least $(1-\delta)\gamma$ in $o(\Omega_{l_{\gamma}^{1R^{2}}}^{-}+)$ updatae,
when there exists ahyperplane with pnorm margin $\gamma$

that separates the given sequenoe of data. The worst-
ca\S e iteration bound of PUMMA i\S $\mathfrak{B}$ the same $a\epsilon$ those
of typicd Perceptron-like algorithms when $p=2$ and that
of ALMA [10] for $p>1$ , PUMMA is potentially futer
than thoee previous $algorithm8\infty peclaUy$ when the un-
derlying linear claaeifier has large bias. For linearly
$in\epsilon eparable$ data, PUMMA can use kernek and the 2-
norm eoft margin furmution for $p=2,$ as well $a\epsilon$ previ-
$ou\epsilon$ online learning algorithm\S .

There are several relat\’e $work_{8}$ . Kernel Adatron [9],
SMO algorithm [24], and ${\rm Max}$ Margin Perceptron [17]
can find $bia\epsilon$ directly, too. However, Kernel Adatron
and SMO are not suitable for the online setting since
they $n\infty d$ to store past examples to compute the bias.
Max Margin Perceptron finds the $8ame$ solution of our
algorithm when $p=2$ , but its upperbound of updatae
is $\log(R/\gamma)$ times worse than that of PUMMA. ROME
algorithm [19] is also similar to our proeent work. It is
an online learning algorithm that finds an accurate lin-
ear classifier quickly when the margin of the underlying
cla\S 8ifier is defln\’e as $\infty norm$ distance. On the other
hand, ROME $requir\infty$ prior knowledge of the margin
and bias.

In our preliminary experiments, PUMMA often out-
performs $previou8$ online algorithms over artificial and
real data by $ta$]$\dot{u}ng$ advantage of computing the bias
directly.

2 Preliminaries
2.1 Norm
For any vector $x\in R$“ and $p>0$ , p-norm $\Vert x||_{p}$ of $x$ is
$givena\S(\sum_{\max_{1}=}rn\approx|x_{j}.|^{p})^{1}pInparticu1ar,||x||x||_{\infty}\uparrow_{x_{1}|Itcanbeshownthat}|_{foranyfixed}^{|_{\infty}isgivenas}$

$x\in R^{n}$ , the p-norm $||x||_{p}$ is decreasing with respect to
$p$, i.e., $\Vert x\Vert_{t}\leq||x||_{p}$ for any $0<p\leq p’$ . Fbr $p>1$ ,
q-norm is dual to p-norm if $q=1-1/p$. For $p\geq 1$ and
$q_{8}uch$ that $1/p+1/q=1$ , it is known that

$\Vert x\Vert_{\infty}\leq||x\Vert_{p}\leq\Vert x||_{1}\leq n^{1/p}\Vert x\Vert_{\infty}$ .
2.2 Online learning
We consider the standard setting of online learning of
linear classifiers, in which learning proceeds in trials. At

each trial $t$ , the learner receives an instance $x_{t}\in R^{n}$ ,
and it predicts a label $\hat{y}_{t}\in\{-1, +1\}$ . Then the learner
receives the true label $y_{\ell}\in\{-1, +1\}$ and then it pos-
sibly updates its current hypothesis depending on the
receIved label. In this paper, we assume that labels are
determined by a linear cloesifier $f(x)=sign(w\cdot x+b)$

for some weight vector $w\in N^{\mathfrak{n}}$ and bias $b\in R$ , where
sign$(a)=+1$ if $a\geq 0$ , otherwise sign$(a)=-1$ . In
particular, if $y_{t}\neq y_{t}$ , we say that the learner makes a
mistake. A typical goal of online learning is to mini-
mize the number of mistakes as small as possible. Most
of known online algorithms are mistake-driven, that is,
they update their hypotheses when they make a mis-
take.

The p.norm distance between a hyperplane and a
point is computed as follows:

Lemma 1 (Mangasarian [20]) Let $V=\{v\in \mathbb{R}^{n}|w$ .
$v+b=0\}$ . Then, for any $x\in R^{n}$ ,

$v \in Vain||x-v||_{p}=\frac{|w\cdot x+b|}{||w\Vert_{q}}$ ,

where $q=1/(1rightarrow 1/p)$ .
Based on Lemma 1, the p-norm $(g\infty metric)ma\dot{\varphi}n$ of
a hyperplane $(w,b)$ over an example $(x,y)$ is deflned as
$\ovalbox{\tt\small REJECT}_{w_{q}^{X+b}}^{w}$ . For any sequence of examples $S=((x_{1},y_{1})$ ,
... , $(x_{T},y_{T}))(T\geq 1)$ , the $ma\dot{\varphi}n$ of a hyperplane $(w,b)$

over $S$ is defined as $\min_{t\approx 1,\ldots,T}w\ovalbox{\tt\small REJECT}_{*}^{X_{1}+b}$. The algo-
rithms we consider update their hypotheses if not only
they make a mistake, but also their hypotheses have
insufficient margin. In this paper, the learner’s goal is
to minimize the number of updates in order to obtain
a linear $c1_{\theta 88}ifier$ with approximately maximum p-norm
margin over the given sequence of examples.

2.3 Convex duality
We review the basic results on $\infty nvex$ analysis. Let
$F:R^{\mathfrak{n}}arrow R$ be a strictly $\infty nvex$ differentiable function.
The Legendre dual of $F$ , denoted as $F’$ , is deflned by

$F^{*}( \theta)=\sup_{nw\in}(\theta\cdot w-F(w))$ .
It can be verifled that $F^{*}$ is also strictly convex and
differentiable. Then the foUowing lemma holds:

Lemma 2 ([25, 5]) 1. $Fr=F$.
2. $F(w)+F^{*}(\theta)=\theta\cdot w$ if and only if $\theta=\nabla F(w)$ .
3. $\nabla F=(\nabla F)^{-1}$ .

In particular, we use $F(w)=\#||w||_{q}^{2}$ throughout
this paper. Let $f=\nabla F$ , that is,

$f(w)_{i}= \frac{sign(w_{\iota})|w_{1}|^{q-1}}{||w||_{q}^{q-2}}$

By Lemma 2 and some calculations, we obtain the foF
lowing property (which was originally proved by Gen-
tile [11]).
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Lemma 3 1. The inverse $f^{-}$ of $f$ is $g$iven as

$f^{-1}(w):= \frac{sign(w_{1})|w_{1}|^{p-1}}{||w||_{p}^{p-2}}$

where $1/p+1/q=1$ .
2. $\Vert f(w)\Vert_{p}=\Vert w\Vert_{q}$.
3. $w\cdot f(w)=\Vert f(w)\Vert_{p}^{2}=\Vert w||_{q}^{2}$ .

3 PUMMA
We cooider the learning of $m\alpha imum$ pnorm margin
$cla8sifiers$ in the online learning setting. By Lemma 1,
the problem of finding the maximum $p$norm margin
hyperplane over a $\epsilon equence$ of label\’e examples $S=$
$((x_{1},y_{1}),\ldots,(x_{m}, y_{T}))$ is formulated as follows:

$\min_{w\in R^{n},b\in B}\frac{1}{2}\Vert w||_{q}^{2}$ , (1)

subject to:
$y_{t}(w\cdot x_{t}^{po}+b)\geq 1(1\leq t\leq T)$ ,

where $q$ is such that $1/p+1/q=1$ . Since the prok
lem (1) is aconvex optimization problem with linear
$in\Re uality$ cootraints, it can be solved by $opt\dot{u}$nization
methods such as interior-point methods [4]. However,
in the $\infty ntext$ of online learning, it $i\epsilon tim\triangleright consuming$

to solve the problem (1) at each trial. Krther, it is
$nece\epsilon sary$ to store $aU$ the $pa\epsilon t$ given examplae.

For $p=2$ , Li and Long proposed an elegant solution
of the problem (1) in the online learning setting [31].
Their algorithm, ROMMA, is an online learning algo-
rithm which finds approximate 2-norm maximum mar-
gin hyperplanae without bias. At each trial $t$ , given an
instanoe $x_{t}$ , ROMMA pr\’eicts $\hat{y}_{t}=sign(w_{t}\cdot x_{t})$ such
that

$w_{t}= \arg\min_{w}\frac{1}{2}\Vert w\Vert_{2}^{2}$ , (2)

$8ubj\infty t$ to
$y_{t-1}w\cdot x_{t-1}\geq 1$ and $w\cdot w_{t-1}\geq\Vert w_{t-1}\Vert_{2}^{2}$ .

$isoelaxe\phi thatis,theconstraintoftheprob1emItcanbeshownthattheconstrain_{8}tsoftheprob1em\{2)2)$

$i\epsilon$ weaker than those of the problem (1) when $p=2$
and $b_{t}$ is fix\’e with $0$ . In fact, the second cootraint
in (2) corresponds to the hyperspace that contains the
polyhedron which reproeenting the $con8traintsy_{j}(w\cdot$

$x_{j})\geq 1(j=1, \ldots,t-2)$ .
Our algorithm PUMMA generalizae ROMMA in two

folds: (i) PUMMA can $\max imi_{\mathbb{Z}}e$ any pnorm margin
with $p>1$ . (ii) PUMMA can dlrectly learns non-
$h_{omogen\infty U8}hyperplan\infty$ . PUMMA takae $\delta(0\leq\delta<$

1) and $p(p>1)a8$ parameters. For initlalization, it
require\S initial weight vector $w_{0}=0\in \mathbb{R}^{n}$ and posi-
tive and negative $iotanc\infty x_{1}^{po*}$ and $x_{1}^{neg},$ $re8pectively$.
$The\epsilon e$ two examploe are easily obtain\’e by kaep $pr\triangleright$

dicting-l until the first positive example appears and
pr\’eicting +1 $untU$ the first negative example comae.
If either apositive or negative example cannot be ob-
tained, then the number of $update\epsilon$ is at most 1.

Figure 1: The description of PUMMA.

Then, given a sequence $S=((x_{1},y_{1}),$
$\ldots,$

$(x_{t-1}$ ,
$y_{t-1}))$ of examples and an instance $x_{t}$ , PUMMA pre-
dicts $\hat{y}_{t}=sign(w_{t}\cdot x_{t}+b_{t})$ , where $w_{\ell}$ and $b_{t}$ is given as
follows:

$w\in R^{n},b\epsilon n^{\frac{1}{2}}$ II $w\Vert_{q}^{2}$ ,$(w_{t}, b_{t})=\arg$ $\min$ (3)

subject to:
$w\cdot x_{t}^{po\iota}+b\geq 1,$ $w\cdot x_{t}^{n\epsilon g}+b\leq-1$

$w\cdot f(w_{t-1})\geq\Vert w_{t-1}\Vert_{q}^{2}$ ,

where $q=1/(1-1/p),$ $x_{t}^{po\iota}(x_{t}^{\mathfrak{n}\epsilon g})$ is the last positive
(negative) example which incur an update. If $y_{t}(w_{t}\cdot$

$x_{t}+b_{t})<1-\delta,$ $PUMMA_{p}(\delta)$ updates $(x_{t}P^{o_{1}}\dotplus,x_{t+1}^{n\epsilon g})$

$=(x_{t}, x_{t}^{n\epsilon g})$ , if $y_{t}=+1$ , and $(x_{t+1}^{po\iota},x_{t+1}^{neg})=(x_{l}^{p_{ol}},x_{t})$ ,
otherwise.

3.1 Solution of the optimiZation problem (3)
Now we show the solution of the optimization problem
(3). In this subsection, for simplicity, we denote $v=$
$w_{t-1},$ $\theta=f(w_{t-1}),$ $x^{po\iota}=x_{t}^{po\iota}$ and $x^{neg}=x_{t}^{n\epsilon g}$ . Let
$L$ be the Lagrangian, that is,

$L(w, \alpha,\beta)=\frac{1}{2}\Vert w||_{q}^{2}\cdot+\sum_{\ell\in\{po\iota,n\epsilon g\}}\alpha^{p}\{1-y^{\ell}(w\cdot x^{\ell})\}$

$+\beta(\Vert v\Vert_{q}^{2}-\theta\cdot w)$ ,
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where $y^{pos}=+1$ and $y^{neg}=-1$ . Then the partial
derivative of $L$ w.r.t. $w_{i}$ and $b$ is given respectively as

$\frac{\partial L}{\partial w_{1}}=f(w)_{i}-\sum_{\ell\in\{pos,n\epsilon g\}}\alpha^{p}x_{i}^{\ell}-\beta\theta_{i}$, and (4)

$\frac{\partial L}{\partial b}=\alpha^{po*}-\alpha^{n\epsilon g}$ . (5)

Since the solution $(w^{*}, b‘)$ must enforce the partial $deri\tau^{r}\$

tives (4) and (5) to be zero, the vector $w$ is specified
as

$w^{*}=f^{-1}(\alpha z+\beta:\theta)$ ,

where $\alpha=\alpha^{po\iota}=\alpha^{neg},$ $z=x^{poe}-x^{n\epsilon g}$ and

$f^{-1}( \theta)_{i}=\frac{8ign(\theta_{1})|\theta_{l}|^{p-1}}{||\theta\Vert_{p}^{p-2}}$ .

Further, by KKT conditions, the parameters $\alpha$ and $\beta$

satisfy that

$a(2-w\cdot z)=0$ , (6)
$2-w^{*}\cdot z\leq 0$, (7)
$\alpha\geq 0$ , (8)
$\beta(||v\Vert_{q}^{2}-w^{r}\cdot\theta)=0$ , (9)
$\Vert v||_{q}^{2}-w\cdot\theta\leq 0$ , (10)
and $\beta\geq 0$ . (11)

We show that $\alpha>0$ by contradiction. Assuming that
$\alpha=0$ , we have $w^{*}=f(\beta\theta)=\beta v$ . Then the conditions
(9), (10) and (11) implies $\beta=1$ and thus $w$ $=v$ .
However, the condition (7) cannot be satisfied for $w^{*}=$

$v$ , which is a contradiction.
Now we consider two cases. (i) Suppose that $\beta=0$ .

Then, the vector $w^{*}$ is given as
$w^{*}=\alpha f^{-1}(z)$ , (12)

where $\alpha=2/\Vert z||_{q}^{2}$ . $()$ Otherwise, l.e., if $\beta>0$ ,

$w^{*}=\alpha f^{-1}(\alpha z+\beta v)$ , (13)

where $\alpha$ and $\beta$ satisfies the following equations

$\{\begin{array}{l}f^{-1}(\alpha z+\beta\theta)\cdot z=2f^{-1}(\alpha z+\beta\theta)\cdot\theta=\Vert v\Vert_{q}^{2}\end{array}$ (14)

The solution of equations (14) can be obtained by using
Newton method. Let

$G( \alpha,\beta)=\frac{1}{2}\Vert\alpha z+\beta\theta’\Vert_{p}^{2}-2\alpha-\beta\Vert\theta’\Vert_{p}^{2}$.

Note that the partial derivatives of $G$ are

$\frac{\partial G}{\partial\alpha}=f^{-1}(\alpha z+\beta\theta’)\cdot z-2$

$\frac{\partial G}{\theta\beta}=f^{1}(\alpha z+\beta\theta’)\cdot\theta’-||\theta’||_{p}^{2}$ .

Since $G$ is convex, the equations (14) is satisfied if and
only if $G$ is minimized. So, given an initial assignment

Figure 2: Illustration of the implicit reduction which
preserves the margin.
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$(\alpha 0,h)$ , we can approximate $(\alpha,\beta)$ by repeating the
Newton update

$(_{\beta_{k+1}}^{\alpha_{k+1}})=(_{\beta_{k}}^{\alpha_{k}})-\nabla^{2}G(\alpha,\beta)^{-1}\nabla G(\alpha_{k},\beta_{k})$

for sufficiently many steps. In particular, for $p=2$, it
holds that $f(x)=f^{-1}=x$ . So, we have the foUowing
analytical solution for equations (14):

$\alpha=\frac{||v||^{2}(2-v\cdot z)}{\Vert v||^{2}||z\Vert^{2}-(v\cdot z)^{2}}$ and

$\beta=\frac{||v||^{2}||z||^{2}-2(v.\cdot z)}{||v||^{2}||z||^{2}-(vz)^{2}}$ . (15)

As asummary, in order to obtain the $8olutionw$ ,
we flrst assume the ca\S e (i) and $ch\propto k$ whether the con-
dition $w^{*}\cdot\theta>\Vert v\Vert_{q}^{2}$ holds or not. If it $do\infty$, the $\infty lution$

$solutionisisgivenas\{\begin{array}{l}12l5\end{array}\}$

for $p>1$ .
$\bm{t}$ either case (i) or (ii), the biu $b^{*}i\epsilon$ givm as

$b^{*}=- \frac{w^{*}\cdot x^{po}+w^{e}\cdot x^{n\epsilon g}}{2}$. (16)

3.2 Implicit reduction to learning $claS8iflers$
without bias

We show an interpretation of PUMMA from the view-
point of r\’euction. Let us fix $p=2$. Then, it is easily
verifl\’e that the update of PUMMA $i_{8}$ identical to that
of ROMMA for the iotance $z=(x_{t}^{p\circ*}-x_{t}^{n\epsilon g})/2wh\infty e$

label is positive. This $ob_{8}ervationlmpli\infty$ areduction
ffom learning linear $clas\epsilon ifiers$ with biae to learning of
those without biae. Let $\mathcal{X}=\mathcal{X}^{po\epsilon}\cup \mathcal{X}^{n\epsilon g}$ be a $sub\epsilon et$ of
$R^{n}$ , where $\mathcal{X}^{po}$ and $\mathcal{X}^{n\epsilon g}$ are positive and negdive set
of $instanc\infty$ and $\mathcal{X}^{p_{ol}}\cap \mathcal{X}^{n\epsilon g}=\emptyset$ . $A\epsilon\epsilon ume$ that there ex-
$i\epsilon ts(u, b)$ such that $u\cdot x^{po*}+b\geq 1$ for each $x^{p\sigma\iota}\in \mathcal{X}^{po\iota}$ ,
and $u\cdot x^{neg}+b\geq-1$ for each $x^{n\epsilon g}\in \mathcal{X}^{neg}$ . Then we
consider the set

$Z= \{\frac{x^{p\emptyset l}-x^{n\epsilon g}}{2}|x^{po\iota}\in \mathcal{X}^{po},$ $x^{n\epsilon g}\in x^{neg}\}$ .
That is, from aset of $p_{08}itive$ and negative instancae, we
define the set of positive $instanc\infty$ . Note that $Z\subset R^{\mathfrak{n}}$

and $u\cdot z\geq 1$ for each $z\in Z$ ( $S\infty$ Figure 2). Rrther,
if $x^{po\iota}$ and $x^{n\epsilon g}$ are positive and negative support $v\infty-$

tors of $(u, b)$ raepectively, then $z=(x^{po\iota}-x^{n\epsilon g})$ is a
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support vrtor of $u$ over $\mathcal{Z}$ . In addition, there is no pair
of $(\tilde{x}^{pos},\tilde{x}^{neg})$ of positive and negative non-support vec-
tors of $(u, b)$ such that $z=(\tilde{x}^{po\epsilon}-\tilde{x}^{n\epsilon g})/2$ . To $s\infty$ this,
assume otherwise. Then, $\tilde{x}^{poo}$ and $\tilde{x}^{neg}$ ) are written as
$\tilde{x}^{po*}=x^{po\epsilon}+\Delta$ and $\tilde{x}^{n\epsilon g}=x^{neg}+A$ for some $A>0$ .
Then, $u\cdot\tilde{x}^{po\epsilon}+b=1+u\cdot\Delta$ and $u\cdot\overline{x}^{neg}+b=-1+u\cdot\Delta$.
By definition, $u\cdot\Delta\neq 0$ , but then it follows that $(u,b)$
$misclas\epsilon ifi\infty$ either $\tilde{x}^{po\iota}$ or $\tilde{x}^{n\epsilon g}$ , which contradicts the
$a\epsilon sumption^{1}$ . Observe that this reduction doae not re-
duce the margin.

PUMMA can be view\’e as a $\iota_{Wrapper}$ algorithm of
ROMMA equipped with this reduction. Given positive
and negative instancae $x^{po\epsilon}$ and $x^{neg}$ , PUMMA con-
structs aPositive $in\epsilon tancez=.(x^{p\circ f}-x^{n\epsilon g})/2$ and train
ROMMA with $z$ for atrial. Then PUMMA rreivae a
weight vector $w$ and set bias $ba\epsilon b=-(w\cdot(x^{po\ell}-$

$x^{n\epsilon g}))/2$ . If PUMMA makae a $mi_{8}take$ (or $do\infty$ not
have enough margin) over anew $i\iota 1\S\tan oe,$ it $\cdot updat\infty z$

and train ROMMA again.
It $i\epsilon$ powible to llae any online learning algorithm

that finds maximum margin linear cl$u8ifier$ without bia\S
as $subroutin\infty$ if it $satisfi\infty$ the following requirement:
such aalgorithm $mu8t$ output aweight vector whoae
support vector is $z$ . However, moet of known online
algorithms maximizing the margin does not $satis\Phi$ this
requirement and ROMMA seems to be the only one sat-
isfying the requirement so far.

3.3 Convergence proof
We prove an upperbound of updates made by PUMMA.

Lemma 4 For $t\geq 1$ , it holds that
$w_{t}\cdot\theta_{t}^{\circ l}+b_{t}=1$ and $w_{\ell}\cdot x_{t}^{n\epsilon g}+b_{t}=-1$.

Lemma 5 Let $(u,b)\in R^{n}xR$ be a hyperplane such
that $y_{j}(u\cdot x_{j}+b)\geq 1$ for $j=1,$ $\ldots,t$ . Then, it holds
that $u\cdot\theta_{\ell}\geq\Vert w_{t}||_{q}^{2}$ and $\Vert u\Vert_{q}\geq\Vert w_{t}\Vert_{q}$ .
Proposition 1 Let $G(\theta)=\#\Vert\theta\Vert_{p}^{2}$ with $p\geq 2$ and let
$g=\nabla G$ . Then it holds for any $x$ and $a$ that

$G(\theta+a)\leq G(\theta)+g(\theta)\cdot a+(p-1)\Vert a\Vert_{p}^{2}$

Lemma 6 For each trial $t\geq 1$ in which an update is
incurred,

$\Vert w_{t+1}\Vert_{q}^{2}-Iw_{t}\Vert_{q}^{2}\geq\frac{\delta^{2}}{2(p-1)R^{2}’}$

where $R= \max_{j}=1,\ldots,t||x_{j}||_{p}$ .
Thoorem 2 Suppose that for a sequence $S=((x_{1},y_{1})$ ,
..., $(w_{T},y_{T}))$ , there exists a hyperplane $(u,b)\in \mathbb{R}^{n}xR$

such that $y_{t}(u\cdot x_{t}+b)\geq 1$ for $t=1,$ $\ldots,T$ and the hy-
perplane $(u,b)$ hos $\Psi$norm margin $\gamma$ over $S$. Further, let
$R= \max_{t-1,\ldots,T}||x_{t}||_{p}$ . $(i)$ Then the number of updates
made by $PUMMA_{p}(\delta)$ is at most

$O( \frac{(p-1)R^{2}\Vert u||_{q}^{2}}{\delta^{2}})$ .
$\overline{lNote}$that there might exist $\epsilon everal$ palrs of support vec-
tore corresponding to $z$ . Imagin$e$ that $u$ . A $=0$ to see
why.

(ii) $PUMMA_{p}(\delta)$ outputs a hypothesis with p-norm mar-
gin at least $(1-\delta)\gamma$ after at most the updates above.

Proof: W.l.$0.g.$ , we assume that PUMMA updates for
$t=1,$ $\ldots,$ $M(M\leq T)$ . By Lemma 5, we have $\Vert w_{t}||\leq$

$\Vert u\Vert_{q}$ for $t\geq 1$ . Further, by Lemma 6, it holds that after
$M$ updates

$\delta^{2}M$

$\Vert u\Vert_{q}^{2}\geq||w_{T}||_{q}^{2}\geq 2(p-1)R^{2}$ ,

which implios $M \leq\frac{2||u||_{q}^{l}R^{2}}{\delta^{z}}$ Further, after at most
$\frac{2||u||_{q}^{2}R^{2}}{\delta^{2}}$ updates, we have $y_{t}(w_{t}+b_{t})\geq 1-\delta$ for $t\geq T$ .
Then the achieved margin ls at least

$\frac{1-\delta}{||w\Vert_{q}}\geq\frac{1-\delta}{\Vert u\Vert_{q}}=(1-\delta)\gamma$ .
$\blacksquare$

Since $\Vert x\Vert_{q}\leq||x\Vert_{1}$ for $q\leq 1$ and $||x\Vert_{p}\leq n^{1/p}\Vert x||_{\infty}$ ,
we obtain the following $\infty roUary$.
Corollary 3 Assume that for a sequence $S=((x_{1},y_{1})$ ,
.. . , $(w_{T}, y_{T}))$ , there exists a hyperplane $(u,b)\in R^{n}xR$

such that $y_{t}(u\cdot x_{t}+b)\geq 1$ for $t=1,$ $\ldots,T$ and the
hyperplane $(u, b)$ has $\infty$-norm margin $\gamma$ over $S$ . Fur-
ther, let $R= \max_{t-1,\ldots,T}\Vert x_{t}||_{\infty}$. Then, by setting
$p=$ cln $n(c>0),$ $(i)$ the number of updates made
by $PUMMA_{p}(\delta)$ is at most

$O( \frac{R^{2}||u\Vert_{1}^{2}\log n}{\delta^{2}})$ .

(ii) $PUMMA_{p}(\delta)$ outputs a hypothesis with oo-norm
margin at least $\urcorner_{C}\tau_{a}\gamma 1-\delta$ after at most the updates above.

4 Experiments
4.1 Experiments over artiflcial datasets
We examine PUMMA, ALMA and ROMMA over artifi-
cial datasets generated by sparse linear classifiers. Each
artiflcial dataset consists of n-dimensional $\{-1, +1\}-$

valued vectors with $n=100$ . Each vector is labeled
with a r-of-k threshold function $f$ , which is represented
as $f(x)=sign(x_{1_{1}}+\cdots+x_{i_{\hslash}}+k-2r+1)$ for some
$i_{1},$ $\ldots,i_{k^{8}}.t$ . $1\leq i_{1}\leq i_{2}\leq\cdots\leq i_{k}<n$, and it outputs
+1 if at least $r$ of $k$ relevant features$\overline{h}avevalue+1$ , and
outputs-l, otherwise.

For $k=16$ and $r\in\{1,4,8\}$ (equivalently, the bias
$b\in\{15,9,1\}$ , respectively), we generate random 1000
examples labeled by the r-of-k threshold function, so
that positive and negative examples are equaly likely.
For ALMA and ROMMA, we add an extra dimension
with $value-R$ to each vector to learn linear classifiers
with bias, where $R= \max||x||_{p}$ . We set parameters so
that each algorithm is guaranteed to achieve at least 0.9
times the maximump-norm margin. That $i_{8}$ , we set $\alpha=$

0.1 (note the parameter $\alpha$ is defined differently in [10])
for ALMA and $\delta=0.1$ for ROMMA an PUMMA. We
examine $p\in$ { $2$ , 21n $n$}.

We train each algorithm until its hypothesis $\infty n-$

verges by running it in epochs, where, $\ln$ one epoch,
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$p=2$

$l$ ot updates

Figure 3: Number of updates and margin over artifltial
data set in the case $p=2$ (upper) and $p=2\ln(N)$
(lower). We set x-axes log scale since the numbers of
updates of ALMA are quite larger than PUMMA $s$ .
And we hide the result of the case $p=2$ and $b=9$ since
we make the figure easy to view. The parenthetical
digits denote the value of bias.

we make each algorithm go through the whole training
data once. At end of each epoch, for each algorithm,
we record number of updates, margin incurred during
the training and real computation time. Note that we
measure the margin of each hypothesis over the original
space. We execute these operations 10 times, changing
the randomly generated data, and we average the results
over 10 executions. The experiments are conducted on a
3.8 GHz Intel $X\infty n$ processor with 8 GB RAM running
Linux. We $U8e$ MATLAB for the experiments.

The results are praeented in Figure 3 and Figure 4.
We observe that PUMMA converges faster. Although
PUMMA uses Newton method in each update, its com-
putation time is quite shorter than that of ALMA. Note
that we omit the result of ALMA in the case $p=2$
since the result is worse than the others. For $p=2$ , we
don’t use Newton method in the execution of PUMMA
because we have the analytical solution of the optimal
value of $\alpha$ and $\beta$ by solving the optimization problem
directly.

$b|as$

$p2\ln(N)$

bla$

Figure 4; Comptation time over artifltial data $\infty t$ in the
case $p=2$ (upper) and $p=2\ln(n)$ (lower).

4.2 $Ex_{l}per$iments over real datasets
We compare PUMMA with other learning algorithms
over some real datasets. The algorithms we compare
$ua_{8edthef\circ 11owingdataeetso}reSVMl*ght[13],MICRA[301_{UCIMach\dot{\bm{o}}eLe\llcorner ning}^{andROMMA[31].We}\lrcorner 1$

Repository [2]. (i) The ionosphere dataset $\infty n8ilt\epsilon$ of
351 instances which have 34 continuous attributes. (ii)
The house-vote dataset consists of 435 instances which
have 16 discrete attributes $\{y,n, ?\}$ . We change these
attributes to $\{1, -1,0\}$ . (lii) The adult dataset consists
of 32561 instances which have 14 attributes. Among
the attributes, 6 of them are discrete and the others
are continuous. We change this 14 attributes to 123
binary attributes as Platt did in [24]. The name of
dataset ‘adult-mk’ in Table 1 denotes a subset of the
adult dataset which contains 1000 $xm$ instances. Note
that all the dataeets have binary class and we change
the range of labels with $\{1, -1\}$ .

To optimize the 2-norm soft margin for this linearly
inseparable dataset, as in [7], we use the following mod-
ified inner product

$IP(x:,x_{j})=x:\cdot x_{j}+\delta:,j\lambda$ ,
where $\delta_{j,j}$ is the Kronecker delta function which equals
to 1 if $i=j$ , and otherwise $0$ . We added a dimension
which denotes the bias as in section 1 when we run MI-
CRA and ROMMA which can’t deal with bias diraetly.

We set $c=\infty$ for SVMlight to $8top$ l-nom $\epsilon oR$

margin working, and we change the inner product so
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Table 1: Computation time (sec.) and obtained margin (denoted as $\gamma’$ ) on real datasets.

that it deal with 2-norm soft margin. We set $\delta=0.01$ for
PUMMA and ROMMA to achieve 99% of the maximum
margin. The parameters of MICRA are changed for
each dataset as in [30]. But, parameters might not be
completely the same as them because some datasets are
different from those they used. Finally we set 2-norm
soft margin parameter $\lambda=1$ for all algorithms.

We run $SVM^{l1ght}$ and each online learning algorithm
until it converges, and we measure the real computation
time and the obtained margin. The experiments on real
datasets are conducted on a 3.0 GHz Intel Xeon proces-
sor with 16 GB RAM running Linux. We implemented
each algorithm in C.

Table 1 shows the real $\infty mputation$ time. As can
be seen, PUMMA converges quite faster than ROMMA.
On the other hand, PUMMA converges slower than MI-
CRA. But the parameters of MICRA $mu\epsilon t$ be changed
for each dataset to get better result, and these param-
eters are sensitive and it is nontrivial to choose good
parameters. The results on all the real data set show
that $SVM^{\iota:ght}$ is the fastest, but MICRA is reported to
be faster than SVM over some datasets and with
tuned parameters [30]. We report that the $comput*$
tion time of PUMMA is comparable to $SVM^{l1ght}s$ if
$\delta=0.1$ . However, in $thi\epsilon$ cue, lower margins ar ob-
tained by PUMMA.

5 Conclusion and Nture work
In this paper, we propose PUMMA which obtains the
maximum p-norm margin classifier with bias approxi-
mately. PUMMA runs much faster than previous on-
line learning algorithms over both artificial and real
datasets.

One of our future work is to extend our algorithm
to handle l-norm soft margin which is commonly us\’e
in SVM. Further, we would like to apply PUMMA to
learning sparse $cla\epsilon\epsilon iflers$ in practical apUcations.
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