goooboooogn
0 15990 2008 O 154-161

154

Online Learning of Approximate Maximum p-Norm Margin Classifiers
with Bias

Kosuke Ishibashi, Kohei Hatano and Masayuki Takeda
Department of Informatics, Kyushu University
{k-ishi, hatano, takeda}@i.kyushu-u.ac.jp

Abstract

We propose a new online learning algorithm
that provably approximates maximum mar-
gin classifiers with' bias, where the margin
is defined in terms of p-norm distance. Al-
though learning of linear classifiers with bias
can be reduced to learning of those with-
out bias, the known reduction might lose the
margin and slow down the convergence of on-
line learning algorithms. Our algorithm, un-
like previous online learning algorithms, im-
plicitly uses a new reduction which preserves
the margin and avoids such possible deficien-
cies. Our preliminary experiments shows that
our algorithm runs much faster than previ-
ous algorithms especially when the underly-
ing linear classifier has large bias.

1 Introduction

Large margin classification methods are quite popular
among Machine Learning and related research areas.
Various generalization bounds (e.g., [27, 29, 7]) guaran-
tee that linear classifiers with large margin over training
data have small generalization error with high probabil-
ity. The Support Vector Machine (SVM) 3] is one of the
most powerful among such methods. The central idea of
SVM is to find the maximum 2-norm margin hyperplane
over linearly separable data. Further, by using kernels
and soft margin formulations, it can learn large mar-
gin hyperplane over linearly inseparable data as well.
The problem of finding the maximum 2-norm margin
hyperplane over data is formulated as a quadratic pro-
gramming problem. So the task of SVM can be solved in
polynomial time by using standard optimization meth-
ods. :
On the other hand, solving quadratic programming
problems is time-consuming, especially for huge data
which is now common in many applications. This moti-
vates many researches for making SVM more scalable.
One of major approaches is to decompose the original
quadratic programming problem into smaller problems
which are to solve [23, 24, 13, 6, 14]. Another popular
approach is to apply online learning slgorithms. On-
line learning algorithms such as Perceptron [26, 22,

21] and its variants [1, 8, 31, 10] work in iterations,
where at each iteration, they process only one instance
and update their hypotheses successively. Online learn-
ing algorithms use less memory, and are easy to imple-
ment. Many online learning algorithms that find large
margin classifiers have been proposed, including Ker-
nel Adatron[9], Max Margin Perceptron [17] Voted Per-
ceptron (8], ROMMA [31], ALMA {10], NORMA ([15],
MICRA [30], and Pegasos [28].

However, most of these online learning algorithms
do not fully exploit the linear separability of data. More
precisely, they are designed to learn homogeneous hy-
perplanes, i.e., hyperplanes that lie on the origin, and
they cannot learn linear classifiers with bias directly.
So, in order to learn linear classifiers with bias, typi-
cal online learning algorithms map instances from the
original space R™ to an augmented space R™*! with
an extra dimension by using the mapping ¢ : —
& = (@, —R), where R is the maximum 2-norm of in-
stances [7]. Then, a hyperplane with bias (w,b) in
the original space corresponds to the hyperplane with-
out bias @ = (w,—-b/R) in the augmented space since
w-x+b=w-& So, by using this mapping, learning lin-
ear classifiers with bias can be reduced to learning those
without bias. But, this mapping weakens the guarantee
of margin., Suppose that for a sequence of labeled exam-
ples (x1,¥1), ..., (®7,y7) (x¢ € R® and y; € {—1,+1}
for t =1,...,T), there is a hyperplane with bias (u,b)
that has margin v = ming.;,.. 1 ﬂ-“-':—""r;'f—bl, where in-
stances are normalized by R. ,

Then, the corresponding hyperplane & = (u, —b/R)
over the augmented space has margin
_W@-8) _ywaib) 1

&llaR lallaR 2"
since [|&[3 = [lu|® + b?/R? < 2||u|/?, and |2 < 2R.
Even though the loss of margin is at most by a constant
factor, it might cause significant difference in prediction
performance over practical applications.

In this paper, we propose a new online learning al-
gorithm that approximately maximizes the margin. Our
algorithm, PUMMA (P-norm Utilizing Maximum Mar-
gin Algorithm), is an extension of ROMMA (31} in two
ways. First, PUMMA can optimize the bias directly by
using an implicit reduction from learning of linear clas-
sifiers with bias to learning those without bias, instead
of using the mapping ¢.

N

Second, PUMMA can provably approximate the max-
imum p-norm margin classifier for p > 2. A bene-
fit of maximizing p-norm margin is that we can find
sparse linear classifiers quickly. Technically speaking,
PUMMA is a variant of p-norm algorithm [12, 11]. It is
known that, if we set p = 0o or p = O(Inn), the p-norm
algorithm behaves like online multiplicative update al-
gorithms such as Winnow [18], which can converge ex-
ponentially faster than Perceptron, when the underlying
linear classifier is sparse. For example, if the target con-
cept is a k-disjunction over n boolean variables, Winnow
can find a consistent hypothesis in O(k log n) mistakes,
while Perceptron needs Q(kn) mistakes [16].

We show that PUMMA, given a parameter § (0 <
0 <1) and p > 1, finds & linear classifier which has

p-norm margin at least (1 —)y in O(%R—z) updates,
when there exists a hyperplane with p-norm margin v
that separates the given sequence of data. The worst-
case iteration bound of PUMMA is as the same as those
of typical Perceptron-like algorithms when p=2 and that
of ALMA [10] for p > 1, PUMMA is potentially faster
than these previous algorithms especially when the un-
derlying linear classifier has large bias. For linearly
inseparable data, PUMMA can use kernels and the 2-
norm soft margin furmution for p = 2, as well as previ-
ous online learning algorithms.

There are several related works. Kernel Adatron [9),
SMO algorithm [24], and Max Margin Perceptron [17]
can find bias directly, too. However, Kernel Adatron
and SMO are not suitable for the online setting since
they need to store past examples to compute the bias.
Max Margin Perceptron finds the same solution of our
algorithm when p = 2, but its upperbound of updates
is log(R/~) times worse than that of PUMMA . ROME
algorithm [19] is also similar to our present work. It is
an online learning algorithm that finds an accurate lin-
ear classifier quickly when the margin of the underlying
classifier is defined as co-norm distance. On the other
hand, ROME requires prior knowledge of the margin
and bias.

In our preliminary experiments, PUMMA often out-
performs previous online algorithms over artificial and
real data by taking advantage of computing the bias
directly.

2 Preliminaries

2.1 Norm
For any vector € R" and p > 0, p-norm ||z||, of x is

given as (Y0, [z;|P)*. In particular, ||z||co is given as
Jle]|oo = max;)[xil. It can be shown that, for any fixed
« € R", the p-norm ||x||, is decreasing with respect to
p, ie, ||y < |lxflp for any 0 < p < p. Forp > 1,
g-norm is dual to p-norm ifg=1—1/p. For p > 1 and
g such that 1/p+ 1/q = 1, it is known that

Izlloo < lllp < llells < 1Y/P)|co.

2.2 Online learning

We consider the standard setting of online learning of
linear classifiers, in which learning proceeds in trials. At

155

each trial ¢, the learner receives an instance x; € R”",
and it predicts a label §; € {—1,+1}. Then the learner
receives the true label y, € {—1,+1} and then it pos-
sibly updates its current hypothesis depending on the
received label. In this paper, we assume that labels are
determined by a linear classifier f(x) = sign(w - © + b)
for some weight vector w € R™ and bias b € R, where
sign(a) = +1 if a > 0, otherwise sign(a) = —1. In
particular, if y; # §:, we say that the learner makes a
mastake. A typical goal of online learning is to mini-
mize the number of mistakes as small as possible. Most
of known online algorithms are mistake-driven, that is,
they update their hypotheses when they make a mis-
take.

The p-norm distance between a hyperplane and a-
point is computed as follows:

Lemma 1 (Mangasarian [20]) Let V = {ve R" |w-
v + b= 0}. Then, for any = € R",

where ¢ =1/(1 -1/p).

Based on Lemma 1, the p-norm (geometric) margin of
a hyperplane (w, b) over an example (¢, y) is defined as

w.d,z;"b . For any sequence of examples S = ({x1,¥1),
.-+, (®7,y7)) (T 2 1), the margin of a hyperplane (w, b)
over S is defined as ming.,. %ﬁﬂ. The algo-
rithms we consider update their hypotheses if not only
they make a mistake, but also their hypotheses have
insufficient margin. In this paper, the learner's goal is
to minimize the number of updates in order to obtain
a linear classifier with approximately maximum p-norm
margin over the given sequence of examples.

2.3 Convex duality

We review the basic results on convex analysis. Let
F :R™ — R be a strictly convex differentiable function.
The Legendre dual of F, denoted as F'*, is defined by

F*(0) = sup (0 -w - F(w)).
WeRn

It can be verified that F* is also strictly convex and
differentiable. Then the following lemma holds:

Lemma 2 ([25,5]) 1. F**=F.
2. F(w)+ F*(0) = 0 - w if and only if 6 = VF(w).
3. VF* = (VF)-1.

In particular, we use F(w) = }||w||? throughout
this paper. Let f = VF, that is,

sign(w;) w9
(), = SRt
llwlig
By Lemma 2 and some calculations, we obtain the fol-

lowing property (which was originally proved by Gen-
tile [11]).

Lemma 3 1. The inverse f~ of f is given as
_ sign(w;)|w;|P~?
l(w)i — g (c)l_;l ,
lwll?
where 1/p+1/¢g=1.
2. I (w)llp = llwlle.

3. w- f(w) = || f(w)|2 = |lw|i2.
3 PUMMA

‘We consider the learning of maximum p-norm margin
classifiers in the online learning setting. By Lemma 1,
the problem of finding the maximum p-norm margin
hyperplane over a sequence of labeled examples § =

({z1,¥1)s- - - (Tm, y7)) is formulated as follows:
weRn, beRZ” e) W
subject to :

v(w-2f +b) =21 (1<t<7T),

where ¢ is such that 1/p + 1/q = 1. Since the prob-
lem (1) is a convex optimization problem with linear
inequality constraints, it can be solved by optimization
methods such as interior-point methods [4]. However,
in the context of online learning, it is time-consuming
to solve the problem (1) at each trial. Further, it is
necessary to store all the past given examples.

For p = 2, Li and Long proposed an elegant solution
of the problem (1) in the online learning setting (31].
Their algorithm, ROMMA, is an online learning algo-
rithm which finds approximate 2-norm maximum mar-
gin hyperplanes without bias. At each trial ¢, given an
instance x;, ROMMA predicts §; = sign(w; - z;) such
that

1

w¢ =argnun EHWII%, 2)
subject to
Ye-1w - Te—y > 1 and w - we—y > || we—r||3.

It can be shown that the constraints of the problem (2)
is relazed, that is, the constraints of the problem (2)
is weaker than those of the problem (1) when p = 2
and b, is fixed with 0. In fact, the second constraint
in (2) corresponds to the hyperspace that contains the
polyhedron which representing the constraints y;(w -
z;)>1(G=1,...,t—2).

Our algorithm PUMMA generalizes ROMMA in two
folds: (i) PUMMA can maximize any p-norm margin
with p > 1. (ii) PUMMA can directly learns non-
homogeneous hyperplanes. PUMMA takes § (0 < 4 <
1) and p (p > 1) as parameters. For initialization, it
requires initial weight vector wo = 0 € R™ and posi-
tive and negative instances }°* and z7*?, respectively.
These two examples are easily obtained by keep pre-
dicting —1 until the first positive example appears and
predicting +1 until the first negative example comes.
If either a positive or negative example cannot be ob-
tained, then the number of updates is at most 1.

" |end.

156

PUMMA (4, p)
begin

1. (Initialization) Get examples (z§°*, +1)
and (x79,-1). Let wo = (0,...,0) €
R™.

2. Fort=1to T,
(a) Receive an instance x¢.
(b) Let

(we,br) = arg min__ 2w,

subject to :

(w-a* +0) 21

(w-zP9+b) < -1

w- fwey) > |lwey|f2.
(c) Predict §; = sign(w; - ¢ + be).

(d) Receive the label y;. If y:(w: - +
b:) <1 -4, update

’ e [} =+1
(@f1 we4d) = {E:;o wt)) ,g: = ..1;.
Otherwise, let

(“’t+1, “’?—ﬁ) = (xf** » T 7).

Figure 1: The description of PUMMA .

Then, given a sequence S = ((€1,¥1), .-, (Tt—1,
yt-1)) of examples and an instance ;, PUMMA pre-
dicts g = sign(w; - ¢; + b;); where w, and b; is given as
follows:

llwll @)

(we, be) = gwer%l‘ beR 2

subject to :

w-zf® +b>1, w-zf¥+b< -1

w- fwe-1) 2 H‘we-—lﬂg,
where ¢ = 1/(1 — 1/p), F°* (x}*?) is the last positive
(negative) example which incur an update. If yt(wt .
@ + b)) < 1 — 6, PUMMA,(S) updates (“—‘t+1:)
= (zt,z;teg), if Y = +1’ and (t+1?wt+1) = (wt imt)a
otherwise.
3.1 Solution of the optimization problem (3)

Now we show the solution of the optimization problem
(3). In this subsection, for simplicity, we denote v =
we—1, 8 = f(wi—1), P = xl° and "9 = 2. Let
L be the Lagrangian, that is,

Lw,af) =Flwli+ Y

Le{pos,neg}
+B(lvl; — 6 w),

ot {1~ y(w - =)}

where yP** = 41 and y"® = —1. Then the partial
derivative of L w.r.t. w; and b is given respectively as

oL :

-527‘ = f('(.U)g - Z ale - ﬂail and (4)
£€{pos,neg}

oL

S5 =07 - ™. (5)

Since the solution (w*, b*) must enforce the partial deriva-

tives (4) and (5) to be zero, the vector w* is specified
as

w* = _f"’(az + 5:9),
where a = aP?® = a™%9, z = gP°* — ™9 and
- ign(0;)|6;|P*
£7Y6): = —-——-,l-——mgn”(oh) "‘I .
P

Further, by KKT conditions, the parameters a and 8
satisfy that

o2 —w*-2) =0, (6)
2 —w*-2<0, (M
a >0, (8)
B(llvll3 - w* - 8) =0, 9)
vl —w*-6 <0, (10)

and 8 > 0. (11)

We show that a > 0 by contradiction. Assuming that
a = 0, we have w* = f(6) = Pv. Then the conditions
(9), (10) and (11) implies § =1 and thus w* = v.
However, the condition (7) cannot be satisfied for w* =
v, which is a contradiction.

Now we consider two cases. (i) Suppose that 8 = 0.
Then, the vector w* is given as

w* = af!(2), (12)

where a = 2/||z||2. (i) Otherwise, i.e., if 8 > 0,
w* = af (az + Bv), (13)

where o and J satisfies the following equations

{f'l(az +060)-z=2
£ ez +p6)- 0 = |jv]}
The solution of equations (14) can be obtained by using
Newton method. Let
1
G(a) = 3llaz + 86’5 — 2a — B||6'||3.

Note that the partial derivatives of G are

oG _ ., ,
%‘f (az+p50")-2 -2

(14)

o6

op

Since G is convex, the equations (14) is satisfied if and
only if G is minimized. So, given an initial assignment

=f'(az+p60") -0 —||0')2.

157

Figure 2: Illustration of the implicit reduction which -
preserves the margin.

G o B e . & -
o v Py o
¢ [b A&
* A AN . 4 LS ,\‘: y.
- ' Y
£y e & -
ol 74 &~ . A //
N x o
-~ blu\ 4 =
< & origie ~~ ~
&) a - /,
N -

(o0, Bp), We can approximate (a,3) by repeating the
Newton update

(ak“> = (3:) ~ V2G(a, B)"' VG (a, B)

Br+1

for sufficiently many steps. In particular, for p = 2, it
holds that f(x) = f~! = x. So, we have the following
analytical solution for equations (14):

oIz~ 2)
olP[=IP (-2
_ IolPlsl? ~2(w- %)
= ol =l = (-2 (5)

As a summary, in order to obtain the solution w*,
we first assume the case (i) and check whether the con-
dition w* -0 > ||v||2 holds or not. If it does, the solution
is given as (12). Otherwise, the case (ii) holds and the
solution is (15) for p = 2, or we apply Newton method
for p > 1.

In either case (i) or (ii), the bias b* is given as

* _ POS * nneg
oW T 42-w znes (16)
3.2 Implicit reduction to learning classifiers
without bias

We show an interpretation of PUMMA from the view-
point of reduction. Let us fix p = 2. Then, it is easily
verified that the update of PUMMA is identical to that
of ROMMA for the instance z = (x}°* —z}°?)/2 whose
label is positive. This observation implies a reduction
from learning linear classifiers with bias to learning of
those without bias. Let X = XP°® UX™? be a subset of
R™, where XP°® and AX™*9 are positive and negative set
of instances and XP?NX"¢9 = (). Assume that there ex-
ists (u, b) such that u-2P°*+b > 1 for each 27** € XP**,
and u - x™9 + b > —1 for each ™9 € A"%9. Then we
consider the set

aPo® — gpneg
Z= ___2___' P ¢ xpoa’ ned € xnes b

That is, from a set of positive and negative instances, we
define the set of positive instances. Note that Z C R®
and u - z > 1 for each z € Z (See Figure 2). Further,
if P°* and x™°9 are positive and negative support vec-
tors of (u,b) respectively, then z = (xP** — z"*9) is a

and

support vector of u over Z. In addition, there is no pair
of (£7°%, &™) of positive and negative non-support vec-
tors of (u, b) such that z = (&P°* —&™*9)/2. To see this,
assume otherwise. Then, P°° and £™°Y) are written as
BP°% = P + A and &™°Y = z™°9 + A for some A > 0.
Then, u-£7°°+b=1+4+u-A and u- "9 +b = —1+u-A.
By definition, u - A # 0, but then it follows that (u,b)
misclassifies either #P°® or &"°?, which contradicts the
assumption 1. Observe that this reduction does not re-
duce the margin.

PUMMA can be viewed as a “wrapper” algorithm of
ROMMA equipped with this reduction. Given positive
and negative instances £P°° and "9, PUMMA con-
structs a positive instance z = (2P°? —"%9)/2 and train
ROMMA with z for a trial. Then PUMMA receives a
weight vector w and set bias b as b = —(w - (xP°* —
xz™9))/2. If PUMMA makes a mistake (or does not
have enough margin) over a new instance, it updates z
and train ROMMA again.

It is possible to use any online learning algorithm
that finds maximum margin linear classifier without bias
as subroutines if it satisfies the following requirement:

such a algorithm must output a weight vector whose °

support vector is z. However, most of known online
algorithms maximizing the margin does not satisfy this
requirement and ROMMA seems to be the only one sat-
isfying the requirement so far.

3.3 Convergence proof
‘We prove an upperbound of updates made by PUMMA.

Lemma 4 For t > 1, it holds that
we TP’ + b =1 and wy-zp + b = -1

Lemma 5 Let (u,b) € R* x R be a hyperplane such
that y_j(u ~x;+b) >1forj=1,...,t. Then, it holds
that w - 6 > [|we(7 and |jullg > [[well,.

Proposition 1 Let G(6) = 3||6||2 with p > 2 and let
g = VG. Then it holds for any = and a that

G(0+a) < G(8) +9(6) a+(p-1)lall;

Lemma 6 For each trial £ > 1 in which an update is
incurred,
2 2 > 62
lwesaflg — llwellg = DR

where R = max;—1,...z [|®;]p.

Theorem 2 Suppose that for a sequence S = ((1,y1),
..., (wr,yr)), there exists a hyperplane (u,b) € R* xR
such that yy(u-a; +b) 2 1fort =1,...,7T and the hy-
perplane (u, b) has p-norm margin v over S. Further, let
R = maxi=i,... T [|2¢)|p. (i) Then the number of updates
made by PUMMA,(9) is at most "

— 1)R?ju)?
o((” r nuuq)_

!Note that there might exist several pairs of support vec-
tors corresponding to z. Imagine that u - A = 0 to see
why. ‘

158

(ii) PUMMA, () outputs a hypothesis with p-norm mar-
gin at least (1 — §)~y after at most the updates above.

Proof: W.lo.g., we assume that PUMMA updates for
t=1,...,M(M < T). By Lemma 5, we have |Jw]| <
||lu)lq for ¢ > 1. Further, by Lemma 6, it holds that after
M updates

M
2 > 2>
“u’"q = “wT“q = 2(p_ 1)R2)
3
which implies M < AulgR . Further, after at most

2 p2
2wl R updates, we have y(we+b:) > 1—6 fort > T
Then the achieved margin is at least

1-6 1-4§ ,
205129 (124
Tl = Ty =~ G~

Since [lzllg < |lz|)1 for ¢ < 1 and 2], < n1/?||z]lc0,
we obtain the following corollary.

Corollary 3 Assume that for a sequence S = ((x1,y1),
..., (wr,yr)), there exists a hyperplane (u,b) € R® xR
such that ye(v-x; +b) > 1for ¢t = 1,...,T and the
hyperplane (u,b) has co-norm margin v over S. Fur-
ther, let R = maXewi,...,T ||=Bg"°° Then, by setting
p = clnn (¢ > 0), (i) the number of updates made
by PUMMA,(6) is at most

R?||ulj?logn
o (——-—-6,1) .

(ii) PUMMA,(6) outputs & hypothesis with co-norm
margin at least %ﬁ-f-'y after at most the updates above.

4 Experiments

4.1 Experiments over artificial datasets

‘We examine PUMMA , ALMA and ROMMA over artifi-
cial datasets generated by sparse linear classifiers. Each
artificial dataset consists of n-dimensional {1, +1}-
valued vectors with n = 100. Each vector is labeled
with a r-of-k threshold function f, which is represented
as f(x) = sign(xy, +--- + x4, + k — 2r 4- 1) for some
i1,...,8x 8t 1 <14 <43 <--- < i < n, and it outputs
+1 if at least r of k relevant features have value +1, and
outputs —1, otherwise.

For k = 16 and r € {1,4, 8} (equivalently, the bias
b € {15,9,1}, respectively), we generate random 1000
examples labeled by the r-of-k threshold function, so
that positive and negative examples are equally likely.
For ALMA and ROMMA, we add an extra dimension
with value —R to each vector to learn linear classifiers
with bias, where R = max||z||,. We set parameters so
that each algorithm is guaranteed to achieve at least 0.9
times the maximum p-norm margin. That is, we set a =
0.1 (note the parameter « is defined differently in [10])
for ALMA and § = 0.1 for ROMMA an PUMMA . We
examine p € {2,21lnn}.

We train each algorithm until its hypothesis con-
verges by running it in epochs, where, in one epoch,

0.0225
0.02

=
2
E ALMA
——— PUMMA(15)
e = = = - PUMMA(1) I
.......... ROMMA(15)
..... = ALMA(1)
-0.02 ‘ .
o 0.5 1 15 2 25
of updates w0 !
=2In(N)
0.0461 “
I’_"
PUMMK”:
0 '
v
r
’r s
-0.05 —
f» — ALMA(15) 4
Py N = ALMA(9) 3
=== = ALMA(1) /
018 H . PUMMA(S) :
a8 H o -puMmA®) |
===~ PUMMA(1) /’
0.2 : :
7 []
" 10
of updates

Figure 3: Number of updates and margin over artifitial
data set in the case p = 2 (upper) and p = 2In(N)
(lower). We set x-axes log scale since the numbers of
updates of ALMA are quite larger than PUMMA ’s.
And we hide the result of the case p = 2 and b = 9 since
we make the figure easy to view. The parenthetical
digits denote the value of bias.

we make each algorithm go through the whole training
date once. At end of each epoch, for each algorithm,
we record number of updates, margin incurred during
the training and real computation time. Note that we
measure the margin of each hypothesis over the original
space. We execute these operations 10 times, changing
the randomly generated data, and we average the results
over 10 executions. The experiments are conducted on a
3.8 GHz Intel Xeon processor with 8 GB RAM running
Linux. We use MATLAB for the experiments.

The results are presented in Figure 3 and Figure 4.
We observe that PUMMA converges faster. Although
PUMMA uses Newton method in each update, its com-
putation time is quite shorter than that of ALMA. Note
that we omit the result of ALMA in the case p = 2
since the result is worse than the others. For p = 2, we
don’t use Newton method in the execution of PUMMA
because we have the analytical solution of the optimal
value of a and B by solving the optimization problem
directly.

159

p=2
ROMMA
10
UMMA
h -l
s
o
@ 5
0 | |
15 9 1
blas
p=2In(N)
300
PUMMA
200 , ALMA
h -]
=
[-3
s
“ 100
. [
15 9 1
bias

Figure 4: Comptation time over artifitial data set in the
case p = 2 (upper) and p = 2In(n) (lower).

4.2 Experiments over real datasets

We compare PUMMA with other learning algorithms
over some real datasets. The algorithms we compare
are SVMIight [13], MICRA (30}, and ROMMA [31]. We

‘used the following datasets of UCI Machine Learning

Repository [2]. (i) The ionosphere dataset consists of
351 instances which have 34 continuous attributes. (ii)
The house-vote dataset consists of 435 instances which
have 16 discrete attributes {y,n,?}. We change these
attributes to {1, —1,0}. (iii) The adult dataset consists
of 32561 instances which have 14 attributes. Among
the attributes, 6 of them are discrete and the others
are continuous. We change this 14 attributes to 123
binary attributes as Platt did in [24]. The name of
dataset ’adult-mk’ in Table 1 denotes a subset of the
adult dataset which contains 1000 x m instances. Note
that all the datasets have binary class and we change
the range of labels with {1, —1}.

To optimize the 2-norm soft margin for this linearly
inseparable dataset, as in |7}, we use the following mod-
ified inner product

IP(xi, x5) = @i - Tj + 0 5,
where 6; ; is the Kronecker delta function which equals
to 1 if i = j, and otherwise 0. We added a dimension
which denotes the bias as in section 1 when we run MI-
CRA and ROMMA which can’t deal with bias directly.

We set ¢ = oo for SVMHoht to stop 1-norm soft
margin working, and we change the inner product so

160

Table 1: Computation time (sec.) and obtained margin (denoted as 4') on real datasets.

SVMeht PUMMA ROMMA MICRA
dataset sec. 10%4/ sec. 10447 sec. 104’ sec. 10247
ionosphere 0.06 10.55 0.54 10.49 3.12 10.50 0.48 10.04
“house-votes 0.03 17.42 0.26 17.31 0.62 17.36 0.09 16.51
adult-1k 0.47 4.95 5.40 4.50 15.83 491 2.34 4.03
adult-2k 2.13 3.40 25.38 3.37 82.70 3.38 5.61 2.81
adult-4k 9.33 2.40 159.54 2.38 496.52 2.38 55.91 2.00
adult-8k || 232.42 1.69 807.46 ‘1.67 2167.40 1.67 189.13 1.46
adult-16k 1271.06 1.20 3365.47 1.18 | 12503.62 1.18 2050.84 1.13
adult-full 5803.20 0.83 | 44480.59 0.82 | 71296.34 0.82 | 12394.86 0.79

that it deal with 2-norm soft margin. We set § = 0.01 for
PUMMA and ROMMA to achieve 99% of the maximum
margin. The parameters of MICRA are changed for
each dataset as in [30]. But, parameters might not be
completely the same as them because some datasets are
different from those they used. Finally we set 2-norm
soft margin parameter A = 1 for all algorithms.

We run SVM¥9"* and each online learning algorithm
until it converges, and we measure the real computation
time and the obtained margin. The experiments on real
datasets are corducted on a 3.0 GHz Intel Xeon proces-
sor with 16 GB RAM running Linux. We implemented
each algorithm in C.

Table 1 shows the real computation time. As can
be seen, PUMMA converges quite faster than ROMMA.
On the other hand, PUMMA converges slower than MI-
CRA. But the parameters of MICRA must be changed
for each dataset to get better result, and these param-
eters are sensitive and it is nontrivial to choose good
parameters. The results on all the real data set show
that SVMUht ig the fastest, but MICRA is reported to
be faster than SVM!9ht over some datasets and with
tuned parameters [30]. We report that the computa-
tion time of PUMMA is comparable to SVM!9ht'g if
é = 0.1, However, in this case, lower margins ar ob-
tained by PUMMA.

5 Conclusion and Future work

In this paper, we propose PUMMA which obtains the
maximum p-norm margin classifier with bias approxi-
mately. PUMMA runs much faster than previous on-
line learning algorithms over both artificial and real
datasets.

One of our future work is to extend our algorithm
to handle 1-norm soft margin which is commonly used
in SVM. Further, we would like to apply PUMMA to
learning sparse classifiers in practical aplications.

References

(1] J. K. Anlauf and M. Biehl. The adatron; an adap-
tive perceptron algorithm. Furophysics Letters,
10:687-692, 1989.

[2] A. Asuncion and D. J. Newman. UCI ma-
chine learning repository. University of Cali-

fornia, Irvine, School of Information and Com-
puter Sciences, http://mlearn.ics.uci.edn/
MLRepository.html, 2007.

(3] B. E. Boser, I. Guyon, and V. Vapnik. A train-
ing algorithm for optimal margin classifiers. In
Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pages 144-152,
1992.

[4] S. Boyd and L. Vandenberghe. Convex Optimiza-
“tion. Cambridge University Press, 2004.

[5] N. Cesa-Bianchi and G. Lugosi. Prediction, Learn-
ing, and Games. Cambridge University Press, 2006.

[6] C. C. Chang and C. J. Lin. Libsvm: a li-
brary for support vector machines. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/
libsvm, 2001.

[7] N. Cristianini and J. Shawe-Taylor. An Introduc-
tion to Support Vector Machine. Cambridge Uni-
versity Press, 2000. ‘

(8] Y. Freund and R. E. Schapire. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277-299, 1999.

[9] T. Friess, N. Cristianini, and C. Campbell. The
kernel adatron algorithm: a fast and simple learn-
ing procedure for support vector machine. In Pro-
ceedings of the 15th International Conference on
Machine Learning, 1998.

[10] C. Gentile. A new approximate maximal margin
classification algorithm. Journal of Machine Learn-
ing Research, 2:213-242, 2001.

[11] C. Gentile. The robustness of the p-norm algo-
rithms. Machine Learning, 53(3):265-299, 2003.

[12] A. J. Grove, N. Littlestone, and D. Schuurmans.
General convergence results for linear discriminant
updates. In Proceedings of the tenth anual confer-
ence of Computational learning theory, pages 171—
183, 1997.

[13] T. Joachims. Making large-scale support vec-
tor machine learning practical. In A. Smola
B. Schélkopf, C. Burges, editor, Advances in kernel
methods - Support vector learning, pages 169-184.
MIT Press, 1999.

[14] T. Joachims. Training linear svms in linear time. In
Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), 2006.

[15] J. Kivinen, A. J. Smola, and R. C. Williamson.
Online learning with kernels. IEEE Transactions
on Signal Processing, 52(8):2165-2176, 2004.

(16} J. Kivinen, M. K. Warmuth, and P. Auer. The per-
ceptron algorithm versus winnow: linear versus log-
arithmic mistake bounds when few input variables
are relevant. Artificial Intelligence, 97(1-2):325—
343, 1997.

[17] A. Kowalczyk. Maximum margin perceptron. In
B. Scholkopf A. Smola, P. Bartlett and D. Schu-
urmans, editors, Advances in Large Margin Classi-
fiers, pages 75-114. MIT Press, 2000.

[18] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285-318, 1988.

[19] P. M. Long and X. Wu. Mistake bounds for maxi-
mum entropy discrimination. In Advances in Neu-
ral Information Processing Systems 17, pages 833
840, 2004.

[20] O. L. Mangasarian. Arbitrary-norm separating
plane. Operations Research Letters, 24:15-23, 1999.

[21] M. L. Minsky and S. A. Papert. Perceptrons. MIT
Press, 1969.

[22] A. B. Novikoff. On convergence proofs on percep-
trons. In Symposium on the Mathematical Theory
of Automata, volume 12, pages 615-622. Polytech-
nic Institute of Brooklyn, 1962.

[23] E. Osuna, R. Freund, and F. Girosi. Improved
training algorithm for support vector machines. In
Proceedings of IEEE NNSP’97, 1997.

[24] J. Platt. Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Scholképf, C. Burges, and A. Smola, editors, Ad-
vances in Kernel Methods - Support Vector Learn-
ing, pages 185-208. MIT Press, 1999.

[25] R. T. Rockafellar. Conver Analysis. Princeton Uni-
versity Press, 1970.

[26] Frank Rosenblatt. The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychological Review, 65:386—408, 1959.

[27] R. E. Schapire, Y. Freund, P. Bartlett, and W. S.
Lee. Boosting the margin: a new explanation for
the effectiveness of voting methods. The Annals of
Statistics, 26(5):1651-1686, 1998.

[28] S. Shalev-Shwartz, Y. Smger, and N. Srebro. Pega-
sos: Primal estimated sub-gradient solver for svm.
In Proceedings of the 24th International Conference
on Machine Learning, 2007.

[29] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson,
and M. Anthony. Structural risk minimization over
data-dependent hierarchies. IEEE Transactions on
Information Theory, 44(5):1926-1940, 1998.

[30] P. Tsampouka and J. Shawe-Taylor. Approximate
maximum margin algorithms with rules controlled
by the number of mistakes. In Proceedings of the
24th International Conference on Machine Learn-
ing, 2007.

[31] Y. Ll and P. M. Long. The relaxed online maximum
margin algorithm. Machine Learning, 46(1-3):361-
387, 2002.

161

