Nonstandard arguments and the stability of generic structures

筑波大学数理物質科学研究科 安保 勇希 (Yuki Anbo)
(Graduate school of Pure and Applied Sciences, University of Tsukuba)

Abstract

Generic 構造の研究に超準的手法を導入する。本稿では特に、Wagner
が行った generic 構造の安定性の強さについての研究 [4] に、弱冠の新
しい結果を付け足す。Wagner は saturated な generic 構造が安定にな
る為の十分条件 DS と ω-安定になる為の十分条件 DW を定義した。本
稿では DS を簡略化し、DS と DW の間の関係を調べる。

1 Preliminaries

Let L be a countable relational language. Let \mathbb{K} be a nonempty class of finite
L-structures closed under isomorphisms and substructures (we consider the
emptyset as an L-structure). Suppose $A \leq B$ is a reflexive and transitive
relation on elements $A \subseteq B$ of \mathbb{K}, which is invariant under isomorphisms.
If $A \leq B$ holds, we say that A is closed in B. We also assume that (\mathbb{K}, \leq)
satisfies the following properties:

1. $\emptyset \leq A$,
2. $A \subseteq B \subseteq C, A \leq C \Rightarrow A \leq B$,
3. $A \leq B \Rightarrow A \cap C \leq B \cap C$.

Let (\mathbb{K}, \leq) be as above. Let N be an L-structure whose any finite sub-
structure belongs to \mathbb{K}. Note that for any $A \subseteq N$, there is a unique smallest
closed superset of A in N. We call this set the closure of A.

Definition 1 Let $A \subseteq B$. We say that B is a minimal extension of A if
the following conditions are satisfied

- $A \not\leq B$
\begin{itemize}
\item $A \leq B'$ for any $A \subseteq B' \subset B$.
\end{itemize}

\textbf{Definition 2} Let \leq be a closed relation on \mathbb{K}. Then we say that (\mathbb{K}, \leq) satisfies finite closure axiom if there is no infinite chain $(A_i)_{i<\omega}$ of elements of \mathbb{K} such that A_{i+1} is a minimal extension of A_i for each $i < \omega$.

We assume that (\mathbb{K}, \leq) satisfies the finite closure axiom in this paper. We say that an L-structure N has finite closures if for any finite $A \subseteq N$, the closure of A is also finite. Put $\overline{\mathbb{K}} = \{ N : L$-structure $| A \in \mathbb{K}$ for any $A \subset_{\text{fin}} N \}$.

\textbf{Fact 3} [2] Let \leq be a closed relation on \mathbb{K}. Then the following are equivalent:

1. \mathbb{K} satisfies finite closure axiom.
2. Every member of $\overline{\mathbb{K}}$ has finite closures.
3. Every ω-saturated member of $\overline{\mathbb{K}}$ has finite closures.
4. Some ω-saturated member of $\overline{\mathbb{K}}$ has finite closures.

\textbf{Definition 4} Let M be an L-structure. We say that M is a \mathbb{K}-generic structure if the following conditions are satisfied:

1. M is countable.
2. $\forall A \subset_{\text{fin}} M, A \in \mathbb{K}$ (i.e. $M \in \overline{\mathbb{K}}$).
3. $A \leq M, A \leq B \in \mathbb{K} \Rightarrow \exists B' \leq M$ such that $B' \cong A B$.

\textbf{Fact 5} Suppose that (\mathbb{K}, \leq) satisfies the finite closure axiom. Then a \mathbb{K}-generic structure is unique.

\textbf{Definition 6} Let d be a function from $\{ A : A \leq_{\text{fin}} M \}$ to $\mathbb{R}_{\geq 0}$. We say d is a dimension function for M if for all $A, B \leq_{\text{fin}} M$,

1. $A \subset B \Rightarrow d(A) \leq d(B)$
2. (Monotonicity) $d(A \cup B) + d(A \cap B) \leq d(A) + d(B)$
3. $A \cong B \Rightarrow d(A) = d(B)$

For arbitrary $A \subset_{\text{fin}} M$, we put $d(A) = d(\overline{A})$. We define $d(A/B)$ the relative dimension of A over B. For finite A, B, $d(A/B) = d(AB) - d(B)$. For finite A, arbitrary B, $d(A/B) = \inf \{ d(A/B_0) : B_0 \subset_{\text{fin}} B \}$. It is easy to check that these two definitions has the same value in the case A and B are finite.
2 Nonstandard arguments

Let M be the \mathbb{K}-generic structure and d be a dimension function for M. We consider M to be a 3-sorted structure

$$(M \cup P \cup \mathbb{R}; F, \in, d \leq, \cdots)$$

where P, F, \in are as above, d is the dimension function of M, \leq is the closed relation on $P \times P$.

We define the nonstandard model M^* of M by a sufficiently saturated extension of this structure

$$(M \cup P \cup \mathbb{R}, F, \in, d \leq, \cdots) \prec (M^* \cup P^* \cup \mathbb{R}^*, F^*, \in^*, d^*, \leq^*, \cdots)$$

Definition 7 A set $A \in F^*$ is said to be a hyperfinite set. For $A \subseteq M$, $A^* \in F^*$ is said to be a hyperfinite extension of A if

- $M^* \models a \in^* A^*$ for each $a \in A$, and
- $M^* \models A^* \subseteq^* A$.

write $A \subset_{hf} A^*$, $A^* \supset_{hf} A$

By saturation, a hyperfinite extension of A always exists.

Lemma 8 For any subseteq A of M, there exists a hyperfinite extension of A.

Proof: It is enough to prove that the following set of formulas is satisfiable:

$$\Gamma(X) = \{a \in^* X|a \in A\} \cup \{X \subseteq^* A\} \cup \{X \in F\}.$$

But for any finite subseteq A_0 of A, A_0 realizes the following set of formulas:

$$\{a \in^* X|a \in A_0\} \cup \{X \subseteq^* A\} \cup \{X \in F\}.$$

So, by compactness, $\Gamma(X)$ is satisfiable.

Let x, y be two nonstandard (or standard) real numbers. We write $x \approx y$ if $|x - y| < 1/n$ for each $n \in \omega$.

Lemma 9 For $r \in \mathbb{R}$, $\bar{a} \in M$ and $A \subset M$, the following are equivalent.

1. $d(\bar{a}/A) = r;$
2. $d^*(\bar{a}/A^*) \approx r$ for any $A^* \supset hf A$

3. $d^*(\bar{a}/A^*) \approx r$, for some $A^* \supset hf A$.

Proof: $(1 \rightarrow 2)$: By monotonicity of d, there are $A_n \subset_{\text{fin}} A$ ($n = 1, 2, \ldots$) such that $\forall X \in F$

$$A_n \subset X \subset A \rightarrow r \leq d(\bar{a}/X) \leq r + 1/n.$$

These statements hold also in M^*. So if A^* is a hyperfinite extension of A, then we have

$$r \leq d^*(\bar{a}/A^*) \leq r + 1/n \ (n = 1, 2, \ldots)$$

So we have $d^*(\bar{a}/A^*) \approx r$.

$(2 \rightarrow 3)$: trivial.

$(3 \rightarrow 1)$: We assume 3 and choose a witness A^*. Then $(d^*(\bar{a}/A^*) \approx r)$.

Suppose 1 is not the case. Then there is $s \neq r$ such that $d(\bar{a}/A) = s$. By 1 \Rightarrow 2, we have $d^*(\bar{a}/A^*) \approx s$. A contradiction.

Note that $M \models \forall A \in P \exists! \overline{A} (A \subseteq \overline{A} \leq M \wedge \forall X A \subseteq X \leq M \rightarrow \overline{A} \subseteq X)$.

This formula holds also in M^*. For $X \in P^*$, we write \overline{X} as the "closure" of X in M^*. In this paper, $M \models X \in F^* \rightarrow \overline{X} \in F^*$ because \mathbb{K} satisfies the finite closure condition.

3 Main result

Definition 10 ([4])

1. Let $A, B \subset_{\text{fin}} M$ and $C \subset M$. Then we say A and B are d-independent over C and write $A \downarrow^d_C B$ if the following conditions are satisfied:

- $d(A/BC) = d(A/C)$, and
- $\overline{AC} \cap \overline{BC} = \overline{C}$.

2. For arbitrary $A, B, C \subset M$, we say A and B are d-independent over C if for each $A_0 \subset_{\text{fin}} A, B_0 \subset_{\text{fin}} B$, $A_0 \downarrow^d_C B_0$

Note that for closed sets A, B, A and B are d-independent over $A \cap B$ if and only if for each $A_0 \subset_{\text{fin}} A, B_0 \subset_{\text{fin}} B$, $d(A_0/B_0(A \cap B)) = d(A_0/A \cap B)$.
Definition 11 Let A and B be closed subsets of M. Then we say A and B are d^*-independent over $A \cap B$ if the following conditions are satisfied: there exist a hyperfinite extension A^* of A and a hyperfinite extension B^* of B such that

- A^* and B^* are both closed
- $d(A^*/B^*) = d(A^*/A^* \cap B^*)$

Wagner’s definition of DS (a sufficient condition for saturated M to be stable) is as follows:

For any closed A, B, if $\forall n \in \omega, \forall A_0 \subset \text{fin} \ A, \forall B_0 \subset \text{fin} \ B$, $A_0 \subset \exists A' \leq \text{fin}$ $A, B_0 \subset \exists B' \leq \text{fin} \ B$ such that

$$d(A') + d(B') \leq d(A'B') + d(A' \cap B') + 1/n,$$

then A and B are free over $A \cap B$ and AB is closed.

On the other hands, Wagner’s definition of DW (a sufficient condition for saturated M to be ω-stable) is as follows:

- for any closed A, B, if $A \downarrow_{A \cap B}^d B$, then A and B are free over $A \cap B$ and AB is closed and
- for any \bar{a} and X, there exists finite $X_0 \subseteq X$ such that $d(\bar{a}/X_0) = d(\bar{a}/X)$.

Theorem 12 For arbitrary closed A, B, the following are equivalent:

1. $\forall n \in \omega, \forall A_0 \subset \text{fin} \ A, \forall B_0 \subset \text{fin} \ B$, $A_0 \subset \exists A' \leq \text{fin} \ A, B_0 \subset \exists B' \leq \text{fin} \ B$ such that $d(A') + d(B') \leq d(A'B') + d(A' \cap B') + 1/n$

2. $A \downarrow_{A \cap B}^{d^*} B$

3. $A \downarrow_{A \cap B}^{d} B$

Proof: $(1 \rightarrow 2)$: Assume 1. Then by saturatedness, There exist a closed hyperfinite extension A^* of A and a closed hyperfinite extension B^* of B such that for all $n \in \omega$,

$$d^*(A^*) + d^*(B^*) \leq d^*(A^*B^*) + d^*(A^* \cap B^*) + 1/n.$$

The other direction

$$d^*(A^*) + d^*(B^*) \geq d^*(A^*B^*) + d^*(A^* \cap B^*)$$
is clear by monotonicity.

So we have

\[d^*(A^*) + d^*(B^*) \approx d^*(A^*B^*) + d^*(A^* \cap B^*), \]
equivalently,

\[d^*(A^*/B^*) \approx d^*(A^*/A^* \cap B^*). \]

(2 → 1): Fix any \(n \in \omega, A_0 \subset \text{fin} A, \) and \(B_0 \subset \text{fin} B. \) Let \(A^* \supset \text{hf} A \) and \(B^* \supset \text{hf} B \) be a witness of \(d^* \)-independent. By the finite closure condition, we can take \(A^* \) and \(B^* \) to be both closed. Then \(A^* \) and \(B^* \) satisfy the following formula:

- \(A_0 \subset \exists A^* \leq \text{fin} A, \) \(B_0 \subset \exists B^* \leq \text{fin} B, \) and
- \(d(A^*) + d(B^*) \leq d(A^*B^*) + d(A^* \cap B^*) + 1/n. \)

Because \(M \) is an elementary substructure of \(M^* \), we can take expected sets.

(2 → 3): Let \(A^* \) and \(B^* \) be witness of \(d^* \)-independence. Take any \(A' \subset \text{fin} A \) and any \(B' \subset \text{fin} B. \) Then \(d(A^*/B^*) \approx d(A^*/A^* \cap B^*). \) By transposition, \(d(B^*/A^*) \approx d(B^*/A^* \cap B^*). \) By monotonicity of \(d, \) \(d(B^*/A'A^* \cap B^*) \approx d(B^*/A^* \cap B^*). \) By transposition, \(d(A'/B^*) \approx d(A'/A^* \cap B^*). \) By Monotonicity, \(d(A'/B'A^* \cap B^*) \approx d(A'/A^* \cap B^*). \) By Lemma 9, \(d(A'/B'A \cap B) = d(A'/A \cap B). \)

(3 → 2): Take a closed hyperfinite extension \(A^* \) of \(A \) and a closed hyperfinite extension \(B^* \) of \(B. \) By compactness, it is enough to prove that for any \(A_0 \subset \text{fin} A, \) the following set of formulas are satisfiable:

1. \(X \in F \)
2. \(X \subseteq A \)
3. \(A_0 \subseteq X \)
4. \(X \) is closed
5. \(d(X/B^*) \approx d(X/X \cap B^*) \)

We show \(A_0 = A_0(A^* \cap B^*) \) is a realization of the above set of formulas. 1, 2, 3, and 4 are clear.

5. First,

\[
\begin{align*}
d(A_0^*/B^*) &= d(A_0^*B^*) - d(B^*) \\
&= d(A_0B^*) - d(B^*) \\
&= d(A_0/B^*) \\
&\approx d(A_0/B).
\end{align*}
\]
Second,
\[d(A_0^*/A_0^* \cap B^*) = d(A_0^*) - d(A_0^* \cap B^*) \]
\[= d(A_0(A^* \cap B^*)) - d(A_0^* \cap B^*) \]
\[\leq d(A_0(A^* \cap B^*)) - d(A^* \cap B^*) \]
\[= d(A_0/A^* \cap B^*) \]
\[\approx d(A_0/A \cap B) \]

Finally, by the \(d\)-independence of \(A\) and \(B\), \(d(A_0/B) = d(A_0/A \cap B)\).
Hence, \(d(A_0^*/A_0^* \cap B^*) \leq d(A_0^*/B^*)\). The other direction is clear.

Consequence
DS is equivalent to the first condition of DW. In particular, DW is a stronger condition than DS.

Fact 13 [3] Let \(T\) be stable. Then the following are equivalent:

1. \(T\) is superstable.
2. For any \(B \subset \mathcal{M}\) and \(p \in S(B)\), there is finite \(A \subset B\) such that \(p\) does not fork over \(A\).

So, we have the following corollary.

Corollary 14 Suppose DS and that for any closed set \(A, B\), \(A \Downarrow_{A \cap B}^d B\) if and only if \(A \Downarrow_{A \cap B} B\). Then \(T = \text{Th}(M)\) is \(\omega\)-stable or merely stable.

This corollary is a partial solution of Baldwin's problem[1].

References

