Independence in generic structures

Akito TSUBOI
Graduate School of Pure and Applied Sciences,
University of Tsukuba

Abstract

Wagner [W] proved that in generic structures forking independence and independence defined by dimension function are essentially the same. He proved the result under the assumption that the closure of a finite set is also finite. Verbovskiy and Yoneda [VY] provided some notions for studying generic structures without this finiteness condition and eliminated the finiteness assumption from the result. Here we give a very short proof of the result.

1 Introduction

Let $L = \{R_i : i \in \omega\}$ and for each $i \in \omega$ let $\alpha_i > 0$ be given. δ is the function assigning to each finite L-structure the value $|A| - \sum \alpha_i|R_i^A|$. Let K be the class of all finite L-structures A such that $\delta(A_0) \geq 0$ for every substructure A_0 of A. K_0 is a subclass of K and M is a stable structure all of whose finite substructures belong to K_0. \mathcal{M} is a big model of $T = Th(M)$. The following proposition is proved by Wagner [W] under the finite closure assumption. Later Verbovskiy and Yoneda [VY] eliminated the finiteness assumption from the result. Here we give a direct proof. We do not assume the finiteness condition.

Proposition 1 Let B, C be closed sets in \mathcal{M}. Suppose that $A = B \cap C$ is algebraically closed. Suppose also that B and C are independent over A. Then (1) B and C are free over A and (2) BC is closed.

In section 1, we recall some definitions and state basic lemmas on generic structures. In section 2, we prove the above proposition by a straightforward method. We assume that the reader has some knowledge of stability theory. In particular, the reader is supposed to know the notion Morley sequence.
2 Preliminaries

Definition 2 1. Let $A \subset B \in K$. We say that A is closed in B (in symbol $A \leq B$) if whenever $X \subset B - A$ then $\delta(X/A)(= \delta(XA) - \delta(A)) \geq 0$.

2. Let $A \subset N$, where $N \models T$.

(a) We say that A is closed in N if whenever B is a finite subset of N then $A \cap B \leq B$.

(b) The closure of A (in N) is the minimum closed set containing A. (The closure always exists.) The closure of A is written as $cl(A)$.

Lemma 3 For every A, $cl(A) \subset acl(A)$.

Proof. Let $N \prec \mathcal{M}$ be a small model with $N \supset A$ and choose the closure C of A in N. Then, by $N \prec \mathcal{M}$, C is the closure of A in \mathcal{M}. Suppose that there is $c \in C$ which is nonalgebraic over A. Then we can choose an element $d \in \mathcal{M} - N$ with $tp(c/A) = tp(d/A)$. Let σ be an A-automorphism sending c to d. Then we would have two different closures C and $\sigma(C)$. A contradiction.

Lemma 4 Let $A \subset B_0 \leq B_1$ and $A \subset C_0 \leq C_1$. Suppose that B_1 and C_1 are free over A. If B_1C_1 is closed then B_0C_0 is also closed.

Proof. We assume B_1C_1 is closed. Let $X \subset \mathcal{M} - B_0C_0$ be a finite set and put $X_B = X \cap B_1$, $X_C = X \cap C_1$ and $\hat{X} = X - B_1C_1$. Then we have the following inequalities:

$$\delta(X/B_0C_0) = \delta(\hat{X}/B_0C_0X_BX_C) + \delta(X_BX_C/B_0C_0) \geq \delta(\hat{X}/B_0C_1) + \delta(X_BX_C/B_0C_0) \geq \delta(X_BX_C/B_0C_0) = \delta(X_B/X_CB_0C_0) + \delta(X_B/B_0C_0).$$

By the freeness and $B_0 \leq B_1$, $\delta(X_B/X_CB_0C_0) = \delta(X_B/B_0) \geq 0$. Similarly, $\delta(X_B/B_0C_0) \geq 0$. So we have $\delta(X/B_0C_0) \geq 0$.

3 Proof of the Proposition

Let $B' = \text{acl}(B)$ and $C' = \text{acl}(C)$. If we prove $B'C' = B' \otimes_A C' \leq \mathcal{M}$, then $BC \subseteq B \otimes_A C \leq \mathcal{M}$ follows from lemma. So we can assume that B and C are algebraically closed. By $B \perp_A C$, we can choose sequences $\{B_i : i \in \omega\}$ and $\{C_i : i \in \omega\}$ satisfying the following conditions:

1. $\{B_i : i \in \omega\}$ is a Morley sequence of $\text{tp}(B/A)$;
2. $\{C_i : i \in \omega\}$ is a Morley sequence of $\text{tp}(C/A)$;
3. $\{B_i : i \in \omega\}$ and $\{C_i : i \in \omega\}$ are independent over A, so the set $\{B_i : i \in \omega\} \cup \{C_i : i \in \omega\}$ is an independent set over A.
4. $\text{tp}(B_i C_j/A) = \text{tp}(BC/A)$, for any $i, j \in \omega$.

Such sequences can be found by using an easy compactness argument.

(1) Freeness: By way of a contradiction, we assume there are tuples $\emptyset \neq \overline{b} \in B - A$, $\emptyset \neq \overline{c} \in C - A$ and $\overline{a} \in A$ with $R_i(\overline{b}, \overline{c}, \overline{a})$. By condition 4, we can find $\overline{b}_i \in B$ and $\overline{c}_i \in C_i$ such that for any $i, j \in \omega$, $\text{tp}(\overline{b}_i \overline{c}_j \overline{a}) = \text{tp}(\overline{b} \overline{c} \overline{a})$. So $R(\overline{b}_i, \overline{c}_j, \overline{a})$ holds for any $(i, j) \in \omega^2$. We fix $n \in \omega$. Then we have the following inequality:

$$\delta(\bigcup_{i<n} \overline{b}_i \overline{c}_i \overline{a}) \leq n|\overline{b} \overline{c} \overline{a}| - \alpha_i n^2 .$$

This right value is negative for a sufficiently large n. A contradiction.

(2) Suppose that BC is not closed and choose finite tuples $\overline{d} \in \text{acl}(BC) - BC$, $\overline{b} \in B$ and $\overline{c} \in C$ with $\varepsilon := \delta(\overline{d}/\overline{b} \overline{c}) < 0$.

By condition 4 above, for all $i, j \in \omega$, we can choose $\overline{b}_i \in B_i$, $\overline{c}_i \in C_i$ and \overline{d}_{ij} such that $\text{tp}(\overline{b} \overline{c} \overline{d} BC) = \text{tp}(\overline{b}_i \overline{c}_i \overline{d}_{ij} B_i C_j)$.

Claim A $(\bigcup_{(i,j) \in \omega^2} \overline{d}_{ij}) \cap (\bigcup_{i \in \omega} B_i C_i) = \emptyset$

Suppose otherwise and choose i, j, m and $e \in \overline{d}_{ij} \cap (B_mC_m)$. By symmetry, we may assume $e \in B_m$. So we have $e \in \text{acl}(B_mC_j) \cap B_m$. By choice of \overline{d} (and \overline{d}_{ij}), $m \neq i$. So, from $B_mC_j \perp_A B_m$, we have $e \notin \text{acl}(A) = A$. So we must have $\overline{d}_{ij} \cap A \neq \emptyset$, a contradiction.

Claim B \overline{d}_{ij}'s are disjoint.
By way of a contradiction, we assume \(e \in \overline{d}_{ij} \cap \overline{d}_{i'j'} \) for some pair \((i, j) \neq (i', j')\). First assume \(\{i, j\} \cap \{i', j'\} = \emptyset \). Then, by the independence of \(B_iC_j \) and \(B_{i'}C_{j'} \) over \(A \), we have \(e \in A \), so we have \(\overline{d}_{ij} \cap A \neq \emptyset \), a contradiction. Then, since other cases are similar, we can assume \(i = i' \) and \(j \neq j' \). In this case, we have \(e \in \text{acl} B_i = B_i \). Again, this is a contradiction.

So, as in (1), we have

\[
\delta(\bigcup_{(i,j) \in \mathcal{V}} \overline{d}_{(i,j)} \cup \bigcup_{i<n} \overline{b}_i \overline{c}_i) \
\leq \
\delta(\bigcup_{(i,j) \in \mathcal{V}} \overline{d}_{(i,j)} / \bigcup_{i<n} \overline{b}_i \overline{c}_i) + \delta(\bigcup_{i<n} \overline{b}_i \overline{c}_i) \
\leq \
n^2 \varepsilon + n \delta(\overline{b}_0 \overline{c}_0).
\]

For a sufficiently large \(n \), we get a contradiction.

Remark 5

1. In our proof of Proposition 1, we did not use the "genericity" of the structure \(M \). If we assume the "genericity", the converse of Proposition 1 is true by the following argument. Suppose that \(BC = B \otimes_A C \leq \mathcal{M} \). Let \(\{C_i : i < \alpha\} \) be a sufficiently long Morley sequence of \(\text{tp}(C/A) \). Then, by stability, there is \(i \) such that \(B \) and \(C_i \) are independent over \(A \). By proposition \(BC_i = B \otimes_A C_i \leq \mathcal{M} \). Then we have \(BC \equiv_A BC_i \) and that they are closed. So they have the same type over \(A \), hence \(BC = B \otimes_A C \leq \mathcal{M} \). (For details see [W] or [VY].)

2. The assumption that \(A \) is algebraically closed is necessary in general. But Ikeda [I] showed that the algebraicity assumption can be eliminated if \((L = \{R(*, *)\}) \) and \(K_0 \) is closed under subgraphs.

References.

