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1 Introduction

The concept of probabilistic conditional independence (PCI) is a key concept in many areas such
as the study of probabilistic theory of causation. Dawid (1979) is among the first to give axiomatic
treatments of PCI. See Dawid (1988) for further developments. Pearl and Paz (1987) proposed a
closely related axiomatic system termed the graphoid, which plays an important role in graphical
modeling of statistical causation. For instance the contraction property of the graphoid says that
$x\coprod y|z$ and $x\coprod z$ jointly imply $x\coprod(y\vee z)$ . We shall see later that these PCI relations are isomorphic
to the following so called cain polynomial equations, $f_{1}=xyz-xz-yz+z=0,$ $f_{2}=$

$xz-x-z=0$ and $g=xyz-yz-x=0$, respectively. Cain polynomials are defined in \S 2. Note
that $g=f_{1}+f_{2}$ , where addition is performed in a usual way. One property of the cain polynomials
states that $f_{1}=0,$ $f_{2}=0$ implies $f_{1}+f_{2}=0$ . Thus we have proved in an algebraic fashion’ that
$x\coprod y|z,$ $x\coprod z\Rightarrow x\coprod(y\vee z)$ . In Section 6 we shall see how to derive $x\coprod(y\vee z)\Rightarrow x\coprod(y\vee z)$ .

The purpose of the paper is to give a formal study on deriving PCI relations using the cain
polynomials. \S 2 defines the concept of cain polynomials. The cain algebra is introduced in \S 3.
PCI are studies in \S 4 based on the cain algebra. \S 5 connects the two algebraic systems, namely
the cain and the cain polynomials. \S 6 studies methods for deriving PCI relations based on the cain
polynomials.

2 Cain Polynomials

Let $x=\{x_{1}, . . , x_{p}\}$ . where $p\geq 1$ , and $L$ be the Boolean lattice of $x$ . Let

$\{0,1\}^{p}=\{(a_{1}, \ldots, a_{p});a_{1}, \ldots, a_{p}\in\{0,1\}\}$

The elements of $\{0,1\}^{p}$ are denoted by $\alpha,$
$\beta_{\dot{J}}\gamma$ , etc. Let $e_{i}(\alpha)$ denote the $i$ th component of $\alpha\in$

$\{0,1\}^{p}$ . Let $1=(1,$ . . , 1 $)$ and $0=(0, \ldots, 0)$ . There is a one-to-one correspondence between $L$

and $\{0.1\}^{p}$ : for any $A\in \mathbb{L}$, a subset of $x$ , there is a unique $\alpha(A)\in\{0,1\}^{p}$ so that $\alpha(A)$ has its $i$ th
element $e_{i}(\alpha(A))=1$ if and only if $x_{i}\in A$ . In particular, 1 corresponds to $x$ and $0$ to the empty
set $\emptyset$ .

DEFINITION 2.1 (cain polynomial). An expression,

$x^{\alpha}=x_{1}^{e_{1}(\alpha)}\ldots x_{p^{p}}^{e(\alpha)}$ ,

where $\alpha\in\{0,1\}^{p}$ , is called $a$ cain monomial. If $e_{i}(\alpha)=0$ , we omit $x_{i}^{ei(\alpha)}$ . As a convention, let

$x^{0}=0$ .
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$A$ cain polynomial,
$f= \sum_{a\in A}c_{\alpha}x^{\alpha}$

is afinite linear combination ofcain monomials $x^{\alpha}$ with integer coefficients $c_{\alpha}\in N$ The set ofall
cain polynomials, denoted by $\mathbb{N}[x_{1}, \ldots, x_{p}]$ , is catled the cain polynomial domain.

For instance, if $x=\{x_{1}y, z\}$ , then both $f=xy-x-y$ and $g=xyz-xz-yz+z$ are
cain polynomials in $\mathbb{N}[x,$ $y_{t}z|$ . A cain polynomial $f$ is special in that (i) the coefficients of $f$ are
integers; (ii) no ‘constant term appears in $f_{\backslash }$ and (iii) for each monoiqjal of $f$ , each variable $x_{i}$

appears at most once.
Now we discuss operations of cain polynomials. Scalar products by integers, and additions of

cain polynomials are done in a usual way. For example, adding $f_{1}=xyz-xz-yz+z$ and
$f_{2}=xz-x-z$ , we get $g=f_{1}+f_{2}=xyz-yz-x$ . Later we shall see that $f_{1},$ $f_{2}$ and $g$ are
isomorphic to the relations

$x\coprod y|z,$ $x\coprod z$

and $x\coprod(y\vee z)$ , respectively.

Now we define cain divisions. It will be convenient to introduce the operators, $- 2\vee$ and $\wedge$

in $\{0_{i}1\}^{p}$ ; for any $\alpha,$ $\beta\in\{0,\cdot 1\}^{p}$, let $\overline{\alpha}=1-\alpha,$ $e_{i}( \alpha\vee\beta)=\min\{1,\cdot e_{i}(\alpha)+e_{i}(\beta)\}$ and
$e_{i}(\alpha\wedge\beta)=e_{i}(\alpha)e_{i}(\beta)$ . So $x$

ct is the monomial constimting the remaining variables in $x^{\alpha}$ . $x^{\alpha\vee\beta}$

is the monomial by joining all variables in $x^{a}$ and $x^{\beta}$ , counting each common variable once, and
$x^{a\wedge\beta}$ is the monomial consisting of the common variables in both $x^{\alpha}$ and $x^{\beta}$ . For $f= \sum_{\alpha\in A}c_{\alpha}x^{a}$ ,
where $c_{\alpha}\neq 0$ , we call $\mathcal{I}(f)=_{a\in A}\alpha$ the context of $f$ . Context is sub-additive: $\mathcal{I}(f+g)\preceq$

$\mathcal{I}(f)\vee \mathcal{I}(g)$ .
DEFINITION 2.2 (cain division). The cain division is specified through three rules. (i) $x^{\alpha}\div x^{\beta}=$

$x^{\alpha\wedge\beta}$ for any $\alpha,$ $\beta\in\{0,1\}^{p};(ii)$ If $\gamma\wedge \mathcal{I}(f)\wedge \mathcal{I}(g)=0$, then division distributes:
$(f+g)\div x^{\prime\gamma}=f\div x^{\gamma}+g\div x^{\eta}$ ;

(iii) $If\beta\wedge \mathcal{I}(f)=0$, then $f\div x^{\beta}=f$ .
$x^{\alpha}\div x^{\beta}$ is obtained by doing a ‘usual’ division first, and then ignoring the denominator. For

example,
$xy\div xy=0,$ $xy\div x=y,$ $xy\div xz=y,$ $xy\div z=xy$ .

(ii) says that if common variables appearing in both $f$ and $g$ do not appear in the denominator $x^{\gamma}$ ,

then division distributes over sum. If neither of the rules $(i)-(iii)$ applies to $f\div x^{\alpha}$ , we say that
$f$ is not cain divisible by $x^{\alpha}$ . For instance, $f=xyz-xz-yz+z$ (a polynomial isomorphic to
$x\coprod y|z)$ is not cain divisible by $z$ . Here are some of the properties on cain division.
PROPOSITION 2. 1. For any $\alpha,$

$\beta,$ $\gamma\in\{0,1\}^{P}$ we $ha\nu e(i)x^{\alpha\vee\beta}\div x^{\beta}=x^{\alpha/\backslash \beta};(ii)$ If$\mathcal{I}(g)$ A $\alpha=0$,

$(f+g)\div x^{\alpha}=f\div x^{\alpha}+g$

; (iii)
$x^{\alpha\vee\beta}-x^{\beta}=x^{a\vee\gamma}-x^{\gamma}$

implies
$x^{\alpha\vee\beta}-x^{\beta}=x^{\alpha\vee(\beta\wedge\gamma)}-x^{\beta\wedge\gamma}$
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3 The Cain Algebra: the finitery case

3.1 The cainoid

Now we briefly review the theory of cain algebra(Wang, 2007). Although the cain algebra is
defined for a possibly infinite lattice, it suffices for the present purpose to consider the special
case of a Boolean lattice $L=2^{x}$ , where $x=\{x_{1}, \ldots , x_{p}\}$ . We shall use the notation $x^{a}$ , where
$\alpha\in\{0,1\}^{p}$ , to denote an element of $\mathbb{L}$ . The symbol $f_{\beta}$ is called an atom coin, with the following
conventions,

$T\lceil^{o}=1r_{0},$ $\Pi_{\beta}=ff_{\beta},$ $1T_{0}^{o}=1$ .
Tr’, $\Pi_{\beta}$ and lrq are called a raising coin, a lowering coin and a mixed coin, respectively. A coin is
a finite concatenation $\Pi=\rceil r_{\beta_{1}}^{1}\ldots\Pi_{\beta_{n}}^{\alpha_{n}}$ of $n$ atom coins, where $n$ is any positive integer. Let $C$ be
the set of all coins.

The atom coins $\Pi^{\alpha}$ . $\Pi_{a}$ and $\Pi_{\beta}^{a}$ are cain algebraic counterparts of the classical joint probability
density function $f(x^{\alpha})$ , the reciprocal $1/f(x^{a})$ , and the conditional density function $f(x^{\alpha}|x^{\beta})$ , re-
spectively. A coin $\Pi_{\beta_{1}}^{a1}\ldots\rceil r_{\beta_{\mathfrak{n}}}^{n}$ is a cain algebraic expression of the likelihood function, $f(x^{a1}|x^{\beta_{1}})\cross$

. . . $\cross f(x^{\alpha_{n}}|x^{\beta_{n}})$ .
DEFINITION 3.1 (Cainoid). Define the dotproduct of

$\Pi=\Pi_{\beta_{1}}^{\alpha 1}\ldots V_{\beta_{m}}^{\alpha_{m}}$

and
IT“ $=r_{\beta_{1}^{\prime\ldots T}}’1r_{\beta_{n}’}^{l}n$

$by$

$\Pi\cdot\Pi^{l}=\Pi_{\beta_{i}}^{\alpha_{1}}\ldots\Pi_{\beta_{m}\beta_{1}’}^{OmP’1}$ . . $f_{\beta_{n}^{l}}’n$

The algebraic structure $(\not\subset, \cdot)$ is called $a$ cainoid iffor any $\Pi,$ $\Pi^{t},$ $T\uparrow^{ll}\in C$ and $\alpha,$ $\beta\in\{0,1\}^{p}$, the
following hold; $Cl:\Pi\cdot W=\Pi’\cdot\Pi;C2;(\rceil\lceil\cdot\rceil r)\cdot 1T^{i/}=\Pi\cdot(\rceil\lceil’\cdot\rceil r^{l}),\cdot C3:1\cdot\Pi=\Pi;C4$:

$\Pi^{a}\cdot\Pi_{\alpha}=1;C5:W_{\beta}^{1}=\Pi^{\alpha V\beta}\cdot\Pi_{\beta}$ , where $\alpha\succ 0$ .

C5 is motivated by the definition of conditional density function, $f(x^{a}|x^{\beta})=f(X^{a}, X^{\beta})/f(x^{\beta})$ .
As immediate consequences of CI-C5 we have the raising-up law: If $\alpha\succ 0$ then

$\rceil r_{\gamma}^{v\beta}=1P_{\beta\vee\gamma}\Pi^{\beta}\Leftrightarrow\Pi^{\beta\vee\gamma}=\Pi^{\beta}1T^{\gamma}$ ;

and the lowering-down law: If $\alpha\succ 0$ then

$W_{\beta\vee\gamma}=\mathbb{P}_{\gamma}^{\vee\beta}\Pi_{\beta}\Leftrightarrow\Pi^{\beta\vee\gamma}=\Pi^{\beta}1T^{\gamma}$

The cain. Two raising coins $\Pi^{\alpha}$ and $\Pi^{\beta}(\alpha, \beta\succ 0)$ , are said mutually prime, if $\alpha\neq\beta$ . Let
$\Pi\neq 1$ . If $\Pi=$ lrq:. . . $\rceil r_{\beta_{f}}^{r}$ , where $r_{\beta_{j}}^{j}\neq 1$ , then we say that $\Pi$ has an expression with length $r$ .
There are infinitely many expressions which are equivalent to one another. It can shown that there
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exists nonzero integers $n_{i}$ and mutually prime coins $l\Gamma^{\alpha}:,$ $i=1\ldots.,$ $r$ , so that $\Pi$ can be expressed
as

$\Pi=(1\mathcal{P}^{1})^{n_{1}}\ldots(\Pi^{a_{r}})^{n_{r}}$

A raising coin $\Pi^{a}$ is called a prime coin if there does not exist an expression

$\Pi^{\alpha}=(T^{\alpha_{1}})^{n_{I}}\ldots(\Pi^{\alpha_{r}})^{n_{r}}$

so that each $a_{i}\prec\alpha$ for each $i=1,$ $\ldots,$
$r$ .

THEOREM 3.1 (Wang, 2007). For $e\nu ery$ coin $\Pi\in\not\subset$, there exist nonzero integers $n_{1},$ $\ldots.n_{r}$ so that
$\Pi$ has a unique expression

$\Pi=(1P^{1})^{n_{1}}\ldots(\Pi^{\alpha_{r}})^{n_{r}}$ (1)

where (i) $\Pi^{Q\underline{1}},$

$\ldots$ , $T^{\alpha_{r}}$ are prime; and (ii) $\Pi^{\alpha_{1}},$
$\ldots$ , $\Pi^{a_{r}}$ are mutually prime.

(1) is called the canonical expression of $\Pi,$ $r$ the order of $\Pi$, written $as|\Pi|=r$, and $\alpha=_{i=1}^{r}\alpha_{i}$

the context of $\Pi$, written as $2(\Pi)=\alpha$ .

Notations: Let $\Pi\{\alpha\}$ denote an arbitrary coin with context $2(\Pi\{\alpha\})=\alpha$ , and $\Pi[\alpha]$ denote an
arbitrary coin with 7 $(\Pi[\alpha])\preceq\alpha$ .

DEFINITION 3.2 (cain). The coin integration is an unary operation on $\Pi\in C$ satisfying $C6$:

$\int\Pi^{\alpha}d\beta=\Pi^{\alpha\wedge\overline{\beta}}$

holdsfor any $\alpha,$ $\beta\in\{0,1\}^{P};C7$:

$/( \Pi\{\alpha_{1}\}\rceil\lceil\{a_{2}\})d(\beta_{1}v\beta_{2})=\int\Pi\{\alpha_{1}\}d\beta_{1}$

$\int\uparrow r\{\alpha_{2}\}d\beta_{2}$ holds if $\beta_{1}\wedge\beta_{2}=0$ , and $\beta_{1}\wedge\alpha_{2}=\beta_{2}\wedge\alpha_{1}=0;C8$ :

$/\Pi d0=\Pi$

holdsfor any $\Pi\in C$

$A$ cain is a cainoid Cfurnished with C6-C8.

C6 is analogous to the definition of marginal probability density functions. C7 is an analogue
of a well-known property of the Riemann integral, namely,

$/f(x, z)g(y, z)dxdy=/f(x, z)dx/g(y, z)dy$ .

The following basic properties are special cases of the corresponding properties for a general cain
studied in Wang (2007).
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THEOREM 3.2. (i) $If\alpha\wedge\beta=0$ , then

$/\Pi[\beta]\Pi d\alpha=\Pi[\beta]/\Pi d\alpha$

(ii) For any $\alpha,$ $\beta,$ $\gamma\in\{0,1\}^{p}$ ,
$\rceil r_{\theta}^{\mathfrak{a}}=\mathbb{P}_{\gamma}\Rightarrow\Pi_{\beta}^{a}=\Pi_{\beta\wedge\gamma}^{\alpha}$

(iii) If $\beta\wedge\gamma=0$ then
$/\Pi_{\beta}^{\alpha}d\gamma=T_{\beta}^{a\wedge Y}$

$(i\nu)$ If $\alpha\succ 0$ then
$/\Uparrow_{\beta}^{\triangleleft}d(\alpha A \overline{\beta})=1$

holds for any $\beta$ .

(iv) is an analogy of the fact that the conditional probability density functions are normalized
functions.

4 Probabilistic Conditional Independence

DEFINITiON 4.1 (conditional independence). If $T_{\beta\vee\gamma}^{a}=\Pi_{\gamma}^{\alpha}$, then $a$ is said independent of $\beta$ con-
ditional on $\gamma$ , written $\alpha\coprod\beta|\gamma$ . When $\alpha\coprod\beta|0$ holds, we write $a\coprod\beta$ and say that $\alpha$ is independent
of $\beta$ .

If $a,$ $\beta,$ $\gamma\succ 0$ then $\rceil T_{\theta\vee\gamma}^{\triangleleft}=\Pi_{\gamma}^{\alpha}$ is equivalent to either

$T_{\gamma}^{a^{\backslash }J\beta}=\Pi_{\gamma}^{o}\rceil\ulcorner_{\gamma}^{\beta}$

or
$\rceil r^{v\beta\vee\gamma}=\Pi^{\beta\vee\gamma}\rceil r_{\gamma}$ .

Note that $a\coprod\beta|\gamma$ is symmetric for $\alpha$ and $\beta$ , i.e., $\alpha\coprod\beta|\gamma\Rightarrow\beta\coprod\alpha|\gamma$ in all cases except when
$\beta=0,$ $\alpha\succ 0$ and $\alpha\not\leq\gamma$ . If $\alpha.\beta_{\dot{\Gamma}}\gamma$ are nontrivial and mutually exclusive, then $\alpha\coprod\beta|\gamma$ holds if
and only if $1T^{\triangleleft\vee\beta\vee\gamma}=\Pi[\overline{a}|\Pi[\overline{\beta}]$ holds. This seemingly weaker condition is often convenient. It can
be further shown that the temary relation’ $\coprod\cdot|$ . on $\{0,1\}^{p}$ satisfies the axioms of a graphoid ofPearl
and Paz (1987). That is. for all nontrivial and mumally exclusive elements $\alpha,$

$\beta,$
$\gamma,$ $\xi\in\{0,1\}^{p}$ we

have
$G1$ : $\alpha\coprod\beta|\gamma\Rightarrow\beta\coprod\alpha|\gamma$ (symmetry)
$G2$ : $\alpha\coprod(\beta\vee\xi)|\gamma\Rightarrow$ $\alpha$ II $\beta|\gamma$ (decomposition)

G3 : $\alpha\coprod(\beta\vee\gamma)|\xi\Rightarrow\alpha\coprod\beta|(\gamma\vee\xi)$ (weak union)

G4 : $\alpha\coprod\beta|(\gamma\vee\xi),$ $\alpha\coprod\gamma|\xi\Rightarrow\alpha$ II $(\beta\vee\gamma)|\xi$ (contraction)

$G5$ : $\alpha\coprod\beta|(\gamma\vee\xi),$ $\alpha\coprod\gamma|(\beta\vee\xi)\Rightarrow\alpha\coprod(\beta\vee\gamma)|\xi$ (intersection)
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Properties GI-G5 were also discussed by Dawid (1979) and Spohn (1980). $\cdot\coprod$ . . is consistent
with a stronger system known as the separoid(Dawid, 2001), which includes several axiomatic
systems. such as the orthogonoid and the graphoid, relevant for formal reasoning using the concept
of irrelevance of information.

5 Isomorphism Between the Polynomial Domain and the Cain
Algebra

5.1 Cain polynomials of coins

In this section we make a connection between the two algebraic systems of the cain polynomial
domain $\mathbb{N}[x_{1}, . . , x_{p}]$ and the cain algebra $C$ . A map $\phi$ $:\not\subsetarrow N[x_{1}, \ldots, x_{p}]$ is called a cain
homomorphism. if for any $\alpha,$ $\beta\in\{0,1\}^{p},$ $\Pi$ , Tr‘ $\in C$ the following properties hold, (Hl): $\phi(1)=0$ ;
(H2): $\phi$ ( IT$\Pi’$ ) $=\phi$ ( lr) $+\phi(W)$ ; and (H3): $\phi(\int\Pi^{\infty}d\beta)=\phi(\Pi^{\alpha})\div x^{\beta}$ .

DEFINITION 5.1 (cain polynomial of a coin). Let Po : $Carrow \mathbb{N}[x_{1}\ldots. , x_{p}]$ be defined asfollows. If
$\Pi$ has an expression, $\rceil\lceil=(1P^{1})^{n1}$ . . $\iota(\Pi^{\alpha_{r}})^{n_{r}}$ , then let

$Po(\Pi)=n_{1}x^{\alpha_{1}}+\cdots+n_{r}x^{\alpha_{r}}$ (2)

and Po (1) $=0$ ifand only if $1\Gamma=1$ . Po $(\Pi)$ is called $a$ cain polynomial of $\Pi$.

Since a given coin can have infinitely many expressions, the corresponding cain polynomials
(2) vary accordingly. The following theorem says that these polynomials are equal to one another.

THEOREM 5.1. Equivalent coins induce the same cain polynomial, namely,

$\Pi\simeq\Pi^{l}\Rightarrow$ Po$(\Pi)=$ Po $(\Pi’)$ (3)

where Po $(\Pi)$ and Po $(\Pi’)$ are any cain polynomials of $\Pi$ and $T’$ , respectively.

It foliows then Po $(\cdot)$ satisfies $(H1)-(H3)$ and is a cain homomorphism. Let

$ker(\phi)=\{(\Pi_{t}\rceil T^{\sqrt{}})\in\text{¢^{}2}:\phi(\Pi)=\phi(W^{\backslash })\}$

be the kemel of a homomorphism $\phi$ , then $ker(\phi)$ is a congruence on $C$ . That is, $ker(\phi)$ is an
equivalence relation on $C$, and. in addition, is compatible with the coin product. If $\phi$ is a cain
homomorphism, then $\phi(\Pi^{-1})=-\phi(\Pi)$ . Hence, $(\Pi, \Pi’)\in ker(\phi)$ if and only if $\phi(\Pi(\Pi’)^{-1})=0$ .
Thus, (lr, $\Pi^{l}$ ) $\in$ ker(Po) if and only if $T\lceil\simeq\Pi^{!}$ . These results lead to the following important
Theorem.

THEOREM 5.2 (Isomorphism). Po $(\cdot)$ is an isomorphism$from\not\subset/\simeq$, the quotient of the cain $C$ with
respect $to\simeq$ , to the cain polynomial domain $\mathbb{N}[x_{1}, \ldots, x_{p}]$ .
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5.2 Polynomial representation of conditional independence

We have seen that a cain $C$ is equal to the polynomial domain $\mathbb{N}[x_{1}, \ldots, x_{p}]$ up to an isomorphism.
Addition of two cain polynomials corresponds to the coin product, while cain division corresponds
to the coin integration.

Now we tum to consider the conditional independence relations. We have seen that $\alpha\coprod\beta|\gamma$

holds if and only if $\Pi_{\beta\vee\gamma}^{a}=\rceil r_{\gamma}^{o}$ , or $1P_{\gamma}^{\vee\beta}=$ lrq $\Pi_{\gamma}^{\beta}$ , or $\rceil\rho^{v\beta\vee\gamma}=\Pi^{\beta\vee\gamma}W_{\gamma}$ holds. In fact there are
infinitely many such equivalent forms obtained by multiplying an arbitrary coin to both sides of
such an identity. All these identities however may be rewritten in the form $\Pi=1$ . If Tr $=1$ is
an equivalent identity to $\Pi=1$ , then $V^{i}\simeq 1\Gamma$ necessarily. Recall that the canonical expression of
equivalent coins is unique. For example, the unique canonical expression of all equivalent coin
identities for the relation $\alpha\coprod\beta|\gamma$ is given by

$\pi^{a\vee\beta\vee\gamma}(\pi^{\alpha\vee\gamma})^{-1}(\Pi^{\beta\vee\gamma})^{-\iota_{\rceil 1^{\neg}}}=1$ .

DEFINITION 5.2 (Cl polynomial). For any $\alpha,$
$\beta,$ $\gamma\in\{0,1\}^{p}$ , we call

$f(\alpha, \beta|\gamma)=x^{\alpha\vee\beta\vee\gamma}-x^{a\vee\gamma}-x^{\beta\vee\gamma}+x^{\gamma}$ (4)

$a$ conditional independence (CI) polynomial of $(\alpha, \beta;\gamma)$ ; and

$f(\alpha, \beta|\gamma)=0$

$a$ CI equation of $(\alpha, \beta;\gamma)$ .

THEOREM 5.3. For any $\alpha.\beta,$ $\gamma\in\{0,1\}^{p},$ $\alpha\coprod\beta|\gamma\Leftrightarrow f(\alpha, \beta|\gamma)=0$ .

Theorem 5.3 allows us to deduce conditional independence relations by deriving Cl equations
in the cain polynomial domain. The tools for deriving CI equations are supplied by the Theorem
5.2.

6 The Basic Problem and a Partial Solution

The basic pvoblem: Given a set of cain equations $f_{1}=\cdots=f_{r}=0$ . is it true that $g=0$? Here
$g,$ $f_{1},$

$\ldots,$
$f_{r}$ are cain polynomials given a priori. The concept of marginals of a cain polynomial

will play an essential role for solving the basic problem. To motivate the definition of the marginals.
suppose that $x\coprod(y, z)$ holds. Then we obtain the CI equation $f=xyz-x-yz=0$, or $xyz=$
$yz-f_{1}$ , with $f_{1}=-x$ . Although, $f=0$ is equivalent to $xyz=yz-f_{1}$ . there is an important
difference between the two forms. While the elements $x,$ $y,$ $z$ each appears twice in $f$ , each of these
elements appers exactly once in both sides of $xyz=yz-f_{1}$ . Dividing both sides of $xyz=yz-f_{1}$

by $y$ gives the equation $xyz\div y=(x+yz)\div y\Leftrightarrow xz-x-z=0$, the CI equation of $x\coprod z$ . Note
that this equation is not obtainable by directly dividing $f$ .
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DEFINITION 6.1 (marginal cain polynomial). Suppose that cain polynomial $f$ can be decomposed
as $f=c_{\alpha}x^{a}+c_{\beta}x^{\beta}+fi$ , with properties (i) $c_{\alpha}c_{\beta}=-1,$ $|c_{\alpha}|=|c_{\beta}|=1$ , and (ii) $\alpha\wedge\beta\succ 0$ , and
(iii) there exists $0\prec\gamma\preceq\alpha\wedge\beta$ so that $\gamma\wedge J(f_{1})=0$ . Then we call

$M(f\}x^{\gamma})=c_{\alpha}x^{\alpha\wedge\overline{\gamma}}+c_{\beta}x^{\beta\wedge\overline{\gamma}}+fi$ (5)

$a$ marginal (cain polynomial) of $f$ with respect to $x^{\gamma}$ .

Since $\gamma\wedge 7(f_{1})=0$ , we have $f_{1}\div x^{\gamma}=f_{1}$ . (5) can then be altematively written as
$M(f;x^{\gamma})=c_{\alpha}x^{\alpha}\div x^{\gamma}+c_{\theta}x^{\beta}\div x^{\gamma}+f_{i}$

The next theorem says that a ‘rich’ CI polynomial always has many marginals.

THEOREM 6.1. Suppose that $\alpha,$
$\beta,$

$\gamma$ are murually $exclusi\nu e$, and $\alpha\succ 0$ . Then
$f(\alpha\wedge\overline{\delta}, \beta|\gamma)=x^{(a\wedge\delta)\vee\beta\vee\gamma}-x^{(a\wedge i)\vee\gamma}-x^{\beta\vee\gamma}+x^{\gamma}$ (6)

is a marginal of the CIpolynomial
$f(\alpha, \beta|\gamma)=x^{\alpha\vee\beta\vee\gamma}-x^{\alpha v\gamma}-x^{\beta\vee\gamma}+x^{\gamma}$

for any $\delta\preceq\alpha$. We call $f(\alpha A \overline{\delta}, \beta|\gamma)=M(f(\alpha_{1}\beta|\gamma);x^{\delta})$ $a$ marginal CI polynomial of $f(\alpha.\beta|\gamma)$ .
THEOREM 6.2. If $q$ is a marginal of $f$, then $f=0$ implies $q=0$.

Theorem 6.2 gives a partial answer to the basic problem: given $f=0$, one can show $g=0$
by showing that $g$ is a marginal of $f$ . The condition of being a marginal is however much stronger
than necessary as illustrated in the following example.

EXAMPLE 6.1. Let $f=xyz-x-yz$ be the CIpolynomial $ofx\coprod(y, z)$ again. Let $g=xyz-yz-$
$xz+z$ be the CI polynomial of $x\coprod y|z$ . Note that $M(f;y)=xz-x-z$ and $g=f-M(f;y)$ .
If $f=0$ then $M(f;y)=0$ by Theorem 6.2. The equations $f=0$ and $M(f;y)=0$ in turnjointly
imply $g=f-M(f;y)=0,$ $pro\nu ing$ that $x\coprod(y, z)\Rightarrow x\coprod y|z$ .

Generalizing Example 6.1 we have

THEOREM 6.3. Let $f$ be a cain polynomial and $q_{1},$ . . $,$
$q_{\theta}$ be marginals of $f$ . If $g=c_{0}f+$

$\sum_{j=1}^{\theta}c_{J}q_{j}$ , where $c_{0},$ $c_{1}\gamma$ . . , $c_{s}\in N$, then $f=0$ implies $g=0$.

The conditions in Theorem 6.3 to ensure $g=0$ are again only sufficient.

EXAMPLE 6.2. Let $f=xyzw-yzw-x$ be the CIpolynomial of $x\coprod(y, z, w)$ . Let $g=xzw-$
$zw-xw+w$ be the CIpolynomial of $xAz|w$ . It can be $\nu erified$ that $g=M(f-M(f;yz);y)$ .
That is, $g$ is a marginal of the difference between $f$ and a marginal of $f$ . Thus, $f=0\Rightarrow g=0$, or
$x\coprod(y, z, w)\Rightarrow x\coprod z|w$.

$Altemati\nu ely$, we write $g$ as

$g=M(f;y)-M(M(f;y);z)$ ,

the difference between a marginal of$f$ and a marginal $ofa$ marginal of $f$ . If$f=0$, then $M(f;y)=$
$0$, which in $tum$ implies that $M(M(f;y);z)=0,$ $pro\nu ingg=0$ .
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DEFINITION 6.2 (higher-order marginals). A marginal $M(f;x^{\alpha})$ of $f$ is called afirst-ordermarginal
of $f$ , a marginal $M(M(f;x^{\alpha});x^{\beta})$ of $M(f;x^{\alpha})$ is called a second-order marginal of $f$ ; and so
$on$ .

Now we generalize the ideas expressed in Example 6.2, If $F$ is a finite set of cain polynomials,
and $g$ is a $\mathbb{N}$-linear combination of polynomials in $F$ , then we say that $g$ is linearly expressible by
$F$, and write $g=\overline{F}$ .
THEOREM 6.4. Let $f$ be a nonzero cain polynomial. Let $F_{1}$ be a finite set containing $f$ and some
higher-order marginals of $f$ . Let $F_{2}$ contain $F_{1}$ and some higher-ordermarginals ofsome N-linear
combinations ofpolynomials in $F_{1}$ . Let $F_{3}$ contain $F_{2}$ and some higher-order marginals of some
$\mathbb{N}$-linear combinations ofpolynomials in $F_{2}$ , and so on to obtain $F_{s}$ for some $s\geq 1$ .

If $g=\overline{F}_{s}$ then $f=0\Rightarrow g=0$.

7 Discussions

The methods discussed in Section 6 only give sufficient conditions for the basic problem when
$r=1$ . Both sufficient and necessary conditions for general $r$ need further smdy.
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