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ABSTRACT. The only known examples until now of noncompact ho-
mogeneous Einsteii manifolds are standard solvmanifolds: solvable Lie
groups endowed with a left invariant metric such that if $\epsilon$ is the Lie
algebra, $\mathfrak{n}:=[\epsilon,$ $\epsilon|$ and $s=a\oplus n$ is the orthogonal decomposition then
$[a,$ $a|=0$ . This is a very natural algebraic condition which has played an
miportant role in many aspects of homogeneous Riemannian geometry.
The aim of this note is to give an idea of the proof, and mainly of the
tools used $\dot{u}1$ it, of the fact that any Einstein solvmanifold must be stan-
dard. The proof of the theorem involves a somewhat extensive study
of the natural GL$n(\mathbb{R})$-action on the vector space $V=\Lambda^{2}(\mathbb{R}^{n})^{*}\otimes \mathbb{R}^{n}$ ,
from a geometric invariant theory poiit of view. We had to adapt a
stratification for reductive groups actions on projective algebraic vari-
eties introduced by F. Kirwan, to get a GL $n(\mathbb{R})$-invariant stratification
of $V$ satisfying many nice properties which are relevant to our problem.

1. INTRODUCTION

The construction of Einstein metrics on manifolds is a classical problem
in differential geometry and general relativity. A Riemannian manifold is
called Einstein if its Ricci tensor is a scalar multiple of the metric. We refer
to [Besse 87] for a detailed exposition on Einstein manifolds (see also the
surveys in [Lebrun-Wang 99] $)$ . In the homogeneous case, the following main
general question is still open, in both compact and noncompact cases:

Problem 1. Which homogeneous spaces $G/K$ admit a G-
invariant Einstein Riemannian metric?

We refer to [B\"ohm-Wang-Ziller 04] and the references therein for an up-
date in the compact case. In the noncompact cas$e$ , the only known examples
until now are all of a very particular kind; namely, simply connected solvable
Lie groups endowed with a left invariant metric (so called solvmanifolds).
According to the following long standing conjecture, these might exhaust all
the possibilities for noncompact homogeneous Einstein manifolds.

Alekseevskii’s conjecture [Besse 87, 7.57]. If $G/K$ is a
homogeneous Einstein manifold of negative scalar curvature
then $K$ is a maximal compact subgroup of $G$ (or equivalently,
$G/K$ is a solvmanifold).
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The conjecture is wide open, and it is known to be true only for $\dim\leq 5$ ,
a result which follows from the complete classification in these dimensions
given in [Nikonorov 05]. One of the most intriguing questions related to this
conjecture is the following:

Problem 2. Are there Einstein left invariant metrics on
$SL_{n}(\mathbb{R}),$ $n\geq 3$?

Indeed, a reason to consider Alekseevskii $7s$ conjecture as too optimistic is
the fact proved in [Dotti-Leite 82] that the above Lie groups do admit left
invariant metrics of negative Ricci curvature (and also does any complex
simple Lie group, see [Dotti-Leite-Miatello 84] $)$ . However, an inspection of
the eigenvalues of the Ricci tensors in [Dotti-Leite 82] shows that they are
far from being close to each other, giving back some hope.

Anyway, even if one is very optimistic and believe that the conjecture is
true, a classification of Einstein metrics in the noncompact homogeneous
case would still be just a dream, as the following problem is also open:

Problem 3. Which solvable Lie groups admit an Einstein
left invariant metric?

Examples are irreducible symmetric spaces of noncompact type and some
deformations, Damek-Ricci spaces, the radical of any parabolic subgroup of
a semisimple Lie group (see [Tamaru 07]), and several more, including con-
tinuous families depending on various parameters (see [L. 04], [L.-Wi1106]
and [Nikolayevsky 08] for further information). Every known example of an
Einstein solvmanifold $S$ satisfies the following additional condition: if $\mathfrak{s}$ is
the Lie algebra of $S,$ $\mathfrak{n}$ $:=[s, s]$ and $s=a\oplus n$ is the orthogonal decomposition
relative to the inner product $\langle\cdot,$ $\cdot\rangle$ on $\epsilon$ which determines the metric, then

$[a, a]=0$ .
A solvmanifold with such a property is called standard. This is a very simple
algebrai$c$ condition which has nevertheless played an important role in many
aspects of homogeneous Riemannian geometry:

$\bullet$ [Azencott-Wilson 76] Any homogeneous manifold of nonpositive sec-
tional curvature is a standard solvmanifold.

$\bullet$ [Heber 06] All harmonic noncompact homogeneous manifold are stan-
dard solvmanifolds $($with $\dim a=1)$ .

$\bullet$ [Gindikin-Piatetskii Shapiro-Vinberg 67] K\"ahler-Einstein noncompact
homogeneous manifolds are all standard solvmanifolds.

$\bullet$ [Alekseevskii 75, Cort\’es 96] Every quaternionic K\"ahler solvmanifold
(completely real) is standard.

Standard Einstein solvmanifolds were extensively investigated in [Heber 98],
where many remarkable structural and uniqueness results are derived, by as-
suming only the standard condition. A natural question arises:

Problem 4. Is every Einstein solvmanifold standard?
Partial results on this question were obtained in [Heber 98] and [Schueth 04],

who gave several sufficient conditions. The answer was known to be yes
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in dimension $\leq 6$ and follows from a complete classification obtained in
[Nikitenko-Nikonorov 06]. On the other hand, it is proved in [Nikolayevsky $06b$]
that many classes of nilpotent Lie algebras can not be the nilradical of a
non-standard Einstein solvmanifold.

The aim of this note is to give an idea of the proof, and mainly of the
tools used in it, of the following result.

Theorem. [L. 07] Any Einstein solvmanifold is standard,

The proof of the theorem involves a somewhat extensive study of the
natural $GL_{n}(\mathbb{R})$ -action on the vector space $V=\Lambda^{2}(\mathbb{R}^{n})^{*}\otimes \mathbb{R}^{n}$ , from a geo-
metric invariant theory point of view. We recall that $V$ can be viewed as
a vector space containing the space of all n-dimensional Lie algebras as
an algebraic subset. We had to adapt a stratification for reductive groups
actions on projective algebraic varieties given in [Kirwan 84, Section 12]
(algebraically closed case), to get a $GL_{n}(\mathbb{R})$ -invariant stratification of $V$ sat-
isfying many nice properties which are relevant to our problem (see Theorem
2.2). Kirwan’s construction, in turn, is based on instability results proved
in [Kempf 78] and [Hesselink 78]. We note that any $\mu\in V$ is unstable (i.e.
$0\in\overline{GL_{n}(\mathbb{R}).\mu})$ . The strata are parameterized by a finite set $\mathcal{B}$ of diagonal
$n\cross n$ matrices, and each $\beta\in \mathcal{B}$ is (up to conjugation) the $\langle$ most responsible’
direction for the instability of each $\mu$ in the stratum $S_{\beta}$ , in the sense that
$e^{-t\beta}.\muarrow 0$ , as $tarrow\infty$ faster that any other one-parameter subgroup having
a tangent vector of the same norm. Su$ch$ a stratification is intimately related
to the moment map $m:Varrow \mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ for the action above, specially to the
functional square norm of $m$ and its critical points.

We finally mention that the geometric invariant theory point of view con-
sidered in this paper has also proved to be very useful in the study standard
Einstein solvmanifolds (see for instance [Heber 98], [Payne 05], [L.-Wi1106],
[Nikolayevsky 07], [Wi1108] and [Nikolayevsky 08] $)$ . The algebraic subset

$\mathcal{N}\subset V$ of all nilpotent Lie algebras parameterizes a set of $(n+1)$-dimensional
rank-one $(i.e. \dim a=1)$ solvmanifolds $\{S_{\mu} : \mu\in \mathcal{N}\}$ , containing the set of
all those which are Einstein in that dimension. The stratum of $\mu$ determines
the eigenvalue type of a potential Einstein solvmanifold $S_{g.\mu},$ $g\in GL_{n}(\mathbb{R})$

(if any), and so the stratification provides a convenient tool to produce ex-
istence results as well as obstructions for nilpotent Lie algebras to be the
nilradical of an Einstein solvmanifold. Furthermore, $S_{\mu}$ is Einstein if and
only if $\mu$ is a critical point of the square norm of the moment map.
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Ohnita for supporting my participation in the RIMS International Confer-
ence on “ Geometry related to Integrable Systems”, Kyoto, September 2007,
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October 2007. I am also very grateful to Hiroshi Tamaru and both Scien-
tific Committees for the invitation to these very nice conferences and for a
constant great hospitality.
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2. THE VARIETY OF NILPOTENT LIE ALGEBRAS

Let us consider the vector space
$V=\Lambda^{2}(\mathbb{R}^{n})^{*}\otimes \mathbb{R}^{n}=$ { $\mu$ : $\mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}^{n}$ : $\mu$ bilinear and skew-symmetric},
on which there is a natural linear action of $GL_{n}(\mathbb{R})$ on the left given by

(1) $g.\mu(X, Y)=g\mu(g^{-1}X,g^{-1}Y)$ , $X,$ $Y\in \mathbb{R}^{n}$ , $g\in GL_{n}(\mathbb{R})$ , $\mu\in V$.

The space of all n-dimensional nilpotent Lie algebras can be parameter-
ized by the set

$\mathcal{N}=$ {$\mu\in V:\mu$ satisfies the Jacobi identity and is nilpotent},
and it is an algebraic subset of $V$ as the Jacobi identity and the nilpotency
condition can both be expressed as zeroes of polynomial functions. Note that

$\mathcal{N}$ is $GL_{n}(\mathbb{R})$ -invariant and Lie algebra isomorphism classes are precisely
$GL_{n}(\mathbb{R})$-orbits.

The canonical inner product $\langle\cdot,$ $\cdot\rangle$ on $\mathbb{R}^{n}$ defines an $O(n)$-invariant inner
product on $V$ by

(2) $\langle\mu,$

$\lambda\rangle=\sum_{ij}\langle\mu(e_{i}, e_{j}),$ $\lambda(e_{i}, e_{j})\rangle=\sum_{ijk}\langle\mu(e_{i}, e_{j}),$
$ek\rangle\langle\lambda(e_{i}, e_{j}),$ $ek\rangle$ ,

where $\{e1,$
$\ldots,$

$e_{n}\}$ is the canonical basis of $\mathbb{R}^{n}$ . A Cartan decomposition for
the Lie algebra of $GL_{n}(\mathbb{R})$ is given by $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})=$ so $(n)\oplus$ sym$(n)$ , that is,
in skew-symmetric and symmetric matrices respectively. We consider the
following Ad$(O(n))$-invariant inner product on $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ ,
(3)

$\langle\alpha,$

$\beta\rangle=tr\alpha\beta^{t}=\sum_{i}\langle\alpha e_{i},$ $\beta e_{i}\rangle=\sum_{ij}\langle\alpha e_{i_{l}}e_{j})\langle\beta e_{i},$

$e_{j}\rangle$ , $\alpha,$ $\beta\in \mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ .

Remark 2.1. There have been several abuses of notation concerning inner
products. Recall that $\langle\cdot,$ $\cdot\rangle$ has been used to denote an inner product on $\mathbb{R}^{n}$ ,
$V$ and $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ .

The action of $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ on $V$ obtained by differentiation of (1) is given by
$\langle$ 4) $\pi(\alpha)\mu=\alpha\mu(\cdot,$ $\cdot)-\mu(a\cdot, \cdot)-\mu(\cdot, \alpha\cdot)$ , $\alpha\in gl_{n}(\mathbb{R})$ , $\mu\in V$.

We note that $\pi(\alpha)\mu=0$ if and only if $a\in$ Der $(\mu)$ , the Lie algebra of
derivations of the algebra $\mu$ , and also that $\pi(\alpha)^{t}=\pi(\alpha^{t})$ for any $\alpha\in \mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ ,
due to the choice of canonical inner products everywhere. Let $t$ denote the
set of all diagonal $nxn$ matrices. If $\{e_{1}’, \ldots, e_{n}’\}$ is the basis of $(\mathbb{R}^{n})^{*}$ dual to
the canonical basis then

$\{v_{ijk}=(e_{i}’\wedge e_{j}’)\otimes ek : 1\leq i<j\leq n, 1\leq k\leq n\}$

is a basis of weight vectors of $V$ for the action (1), where $v_{ijk}$ is actually
the bilinear form on $\mathbb{R}^{n}$ defined by $v_{ijk}(e_{i}, ej)=-v_{ijk}(e_{j}, e_{i})=e_{k}$ and zero

93



EINSTEIN MANIFOLDS AND INVARIANT THEORY

otherwise. The corresponding weights $\alpha_{ij}^{k}\in t,$ $i<j$ ) are given by

$\pi(\alpha)v_{ijk}=(ak-a_{i}-a_{j})v_{ijk}=\langle\alpha,$ $\alpha_{ij}^{k}\rangle v_{ijk}$ , $\forall\alpha=\{\begin{array}{lll}a1 \ddots a_{n}\end{array}\}\in t$,

where $\alpha_{ij}^{k}=E_{kk}-E_{ii}-E_{jj}$ and $(\cdot,$ $\cdot\rangle$ is the inner product defined in (3). As
usual, $E_{rs}$ denotes the matrix whose only nonzero coefficient is 1 in the entry
$rs$ . From now on, we will always denote by $\mu_{ij}^{k}$ the structure coefficients of
a vector $\mu\in V$ with respect to this basis:

$\mu=\sum\mu_{ij}^{k}v_{ijk}$ , $\mu_{ij}^{k}\in \mathbb{R}$ , i.e. $\mu(e_{i}, e_{j})=\sum\mu_{ij}^{k}e_{k}$ .

Let $t^{+}$ denote the Weyl chamber of $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{R})$ given by

$\mathfrak{t}^{+}=\{\{\begin{array}{lll}a1 \ddots a_{n}\end{array}\}\in t:a_{1}\leq\ldots\leq a_{n}\}$ .

We summarize in the following theorem some properties of the $GL_{n}(\mathbb{R})-$

invariant stratification of the vector space $V$ defined in [L. 07]. Such a
stratification is an adaptation of the one given by F. Kirwan in [Kirwan 84,
Section 12] for complex reductive Lie group representations.

Theorem 2.2. [L. 07] There exists a finite subset $\mathcal{B}\subset t^{+}$ , and for each
$\beta\in \mathcal{B}$ a $GL_{n}$ -invariant subset $S_{\beta}\subset V$ (a stratum) such that

$V \backslash \{0\}=\bigcup_{\beta\in \mathcal{B}}S_{\beta}$

If $\mu\in S_{\beta}$ then

(disjoint union).

(5) $\langle[\beta,$ $D|,$ $D\rangle\geq 0$ $\forall D\in$ Der$(\mu)$ $($ equality $holds\Leftrightarrow[\beta,$ $D]=0)$

and

(6) $\beta+||\beta||^{2}I$ is positive definite $\forall\beta\in \mathcal{B}$ .

If in addition

(7) $\min\{\langle\beta,$ $\alpha_{ij}^{k}\rangle:\mu_{ij}^{k}\neq 0\}=||\beta||^{2}$,

then

(8) tr $\beta D=0$ $\forall D\in$ Der $(\mu)$ ,

and
(9) $\langle\pi(\beta+||\beta||^{2}I)\mu,\mu\rangle\geq 0$ (equality $holds\Leftrightarrow\beta+||\beta||^{2}I\in$ Der$(\mu)$ ).

Moreover, condition (7) is always satisfied by some $g.\mu$ with $g\in O(n)$ .
Given a finite subset $X$ of $t$, denote by CH(X) the convex hull of $X$ and by

mcc(X) the minimal convex combination of $X$ , that is, the (unique) vector
of minimal norm in CH(X). Each nonzero $\mu\in V$ uniquely determines an
element $\beta_{\mu}\in t$ given by

$\beta_{\mu}=mcc\{\alpha_{ij}^{k}:\mu_{ij}^{k}\neq 0\}$ , $\mu=\sum\mu_{ij}^{k}v_{ijk}$ .
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We note that $\beta_{\mu}$ is always nonzero since tr $\alpha_{ij}^{k}=-1$ for all $i<j$ and
consequently tr $\beta_{\mu}=-1$ . If $\mu\in S_{\beta}$ satisfies condition (7) then $\beta=\beta$ (see
[L. 07, Theorem 2.10, (iv)] $)$ , and hence for an $arbitrai\cdot y\mu$ we still $have\mu$ that
$\beta=\beta_{g.\mu}$ for some $g\in O(n)$ . This implies that tr $\beta=-1$ for any $\beta\in \mathcal{B}$ .

3. PROOF OF THE THEOREM

We now apply the results described in Section 2 to prove that Einstein
solvmanifolds are all standard.

Let $S$ be a solvmanifold, that is, a simply connected solvable Lie group
endowed with a left invariant Riemannian metric. Let $\mathfrak{S}$ be the Lie algebra
of $S$ and let $\langle\cdot,$ $\cdot\rangle$ denote the inner product on $\mathfrak{s}$ determined by the metric.
We consider the orthogonal decomposition $s=a\oplus n$ , where $n=[s, s]$ . A
solvmanifold $S$ is called standard if $[a, a]=0$ . The mean curvature vector of
$S$ is the only element $H\in a$ which satisfies $\langle H,$ $A\rangle=$ tr ad $A$ for any $A\in a$.
If $B$ denotes the symmetric map defined by the Killing form of $\epsilon$ relative to

$\langle\cdot,$ $\cdot\rangle$ then $B(a)\subset a$ and $B|_{n}=0$ as $\mathfrak{n}$ is contained in the nilradical of $\mathfrak{s}$ . The
Ricci operator $Ric$ of $S$ is given by (see for instance [Besse 87, 7.38]):
(10) $Ric=R-\frac{1}{2}B-S(adH)$ ,

where $S$ (ad $H$) $= \frac{1}{2}$ (ad $H+$ ad $H^{t}$ ) is the symmetric part of ad $H$ and $R$ is
the symmetric operator defined by

(11) $\langle Rx,$

$y \rangle=-\frac{1}{2}\sum_{ij}\langle[x, x_{i}],$
$x_{j}\rangle\langle[y, x_{i}],$

$x_{j} \rangle+\frac{1}{4}\sum_{ij}\langle[x_{i}, x_{j}]_{i}x\rangle\langle[x_{i}, x_{j}],$
$y)$ ,

for all $x,$ $y\in s$ , where $\{x_{i}\}$ is any orthonormal basis of $(\epsilon, \langle\cdot, \cdot\rangle)$ .
It is proved in [L. 06, Propositions 3.5, 4.2] that $R$ is the only symmetric

operator on $\mathfrak{s}$ such that
(12) tr $RE= \frac{1}{4}\langle\pi(E)[\cdot,$ $\cdot],$ $[\cdot,$ $\cdot]\rangle$ , $\forall E\in$ End$(\mathfrak{s})$ ,
where we are considering $[\cdot,$ $\cdot]$ as a vector in $\Lambda^{2}\mathfrak{s}^{*}\otimes\epsilon,$

$\langle\cdot,$ $\cdot\rangle$ is the inner product
defined in (2) and $\pi$ is the representation given in (4) (see the notation in
Section 2 and replace $\mathbb{R}^{n}$ with s). This is equivalent to say that

$m([\cdot,$ $\cdot])=\frac{4}{||[\cdot,\cdot]||^{2}}R$ ,

where $m$ : $\Lambda^{2}s^{*}\otimes\epsilonarrow$ sym $(\mathfrak{s})$ is the moment map for the action of GL $(\mathfrak{s})$ on
$A^{2}s^{*}\otimes s$ (see [Kirwan 84], [Ness 84], [Mumford-Fogarty-Kirwan 94], [L.-Wi1106]).
Thus the anonymous tensor $R$ in formula (10) for the Ricci operator is pre-
cisely the value of the moment map at the Lie bracket $[\cdot,$ $\cdot]$ of $\mathfrak{s}$ (up to
scaling).

Remark 3.1. Recall that actually each point of the variety of Lie algebras
$\mathcal{L}=$ { $[\cdot,$ $\cdot]’\in\Lambda^{2}\mathfrak{s}^{*}\otimes \mathfrak{s}$ : $[\cdot,$ $\cdot]’$ satisfies Jacobi}

can be identified with a Riemannian manifold; namely, the simply connected
Lie group with Lie algebra $(\mathfrak{s}, [\cdot, \cdot]’)$ endowed with the left invariant metric
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determined by a fixed inner product $\langle\cdot,$ $\cdot\rangle$ in $\mathfrak{s}$ . Moreover, any left invari-
ant metric in that dimension is isometric to a point in $\mathcal{L}$ . The fact that
$m([\cdot,$ $\cdot]’)=R$ up to scaling has been used in [L. 06] and [L.-Wi1106] to get
geometric results on left invariant metrics from the well known nice convex-
ity properties of the functional square norm of $m$ .

We therefore obtain from (10) and (12) that $S$ is an Einstein solvmanifold
with $Ric=cI$ , if and only if, for any $E\in$ End$(s)$ ,
(13) tr $(cI+ \frac{1}{2}B+S(adH))E=\frac{1}{4}\langle\pi(E)[\cdot,$ $\cdot],$ $[\cdot,$ $\cdot]\rangle$ .

Let $S$ be an Einstein solvmanifold with $Ric=cI$ . We can assume that $S$

is not unimodular by using [Dotti 82], thus $H\neq 0$ and tr ad $H=||H||^{2}>0$ .
By letting $E=$ ad $H$ in (13) we get

(14) $c=- \frac{trS(adH)^{2}}{trS(adH)}<0$ .
In order to apply the results in Section 2, we identify $n$ with $\mathbb{R}^{n}$ via an

orthonormal basis $\{e_{1}, \ldots, e_{n}\}$ of $\mathfrak{n}$ and we set $\mu$ $:=[\cdot,$ $\cdot]|_{\mathfrak{n}xn}$. In this way, $\mu$

can be viewed as an element of $\mathcal{N}\subset V$ . If $\mu\neq 0$ then $\mu$ lies in a unique
stratum $S_{\beta},$ $\beta\in \mathcal{B}$ , by Theorem 2.2, and it is easy to see that we can
assume (up to isometry) that $\mu$ satisfies (7), so that one can use all the
additional properties stated in the theorem. In particular, the following
crucial technical result follows. Consider $E_{\beta}\in$ End $(\mathfrak{s})$ defined by

$E_{\beta}=[_{0\beta+||\beta||^{2}I}^{00}]$ ,

that is, $E|_{a}=0$ and $E|_{\mathfrak{n}}=\beta+||\beta||^{2}I$ .

Lemma 3.2. If $\mu\in S_{\beta}$ satisfies (7) then $\langle\pi(E_{\beta})[\cdot,$ $\cdot],$ $[\cdot,$ $\cdot]\rangle\geq 0$ .
We then apply (13) to $E_{\beta}\in$ End $(\mathfrak{s})$ and obtain from Lemma 3.2 and (14)

that
(15) $- \frac{trS(adH)^{2}}{trS(adH)}$ tr $E_{\beta}+$ tr $S$ (ad $H$ ) $E_{\beta}\geq 0$ .

By using that tr $\beta=-1$ we get
tr $E_{\beta}^{2}$ $=$ tr $(\beta^{2}+||\beta||^{4}I+2||\beta||^{2}\beta)=||\beta||^{2}(1+n||\beta||^{2}-2)$

(16)
$=$ $||\beta||^{2}(-1+n||\beta||^{2})=||\beta||^{2}$ tr $E_{\beta}$ .

On the other hand, we have that
(17) tr $S(adH)E_{\beta}=$ tr ad $H|_{n}(\beta+||\beta||^{2})=||\beta||^{2}$ tr $S(adH)$

by (8). We now use (15), (16) and (17) and obtain
tr $S(adH)^{2}$ tr $E_{\beta}^{2}\leq(trS(adH)E_{\beta})^{2}$ ,

a ‘backwards’ Cauchy-Schwartz inequality. This turns all inequalities which
appeared in the proof of Lemma 3.2 into equalities, in particular:

$\frac{1}{4}\sum_{rs}\langle(\beta+||\beta||^{2}I)[A_{r}, A_{s}],$
$[A_{r}, A_{s}]\rangle=0$ ,
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where $\{A_{i}\}$ is an orthonormal basis of $a$ . We therefore get that $a$ is abelian
since $\beta+||\beta||^{2}I$ is positive definite by (6), concluding the proof of the the-
orem.
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