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1 Introduction
Among the surfaces of constant mean curvature $H\neq 0$ , CMC-surfaces for short, only
a few subclasses have been classified. The first ones have been the surfaces of rotation
among the CMC-surfaces, the Delaunay surfaces. They were found almost 200 years ago
[3], and are still of interest, since every embedded CMC-end is $asymptotica\mathbb{I}y$ a Delaunay
surface [15].

More generally, CMC-immersions of round cylinders into $\mathbb{R}^{3}$ are f田 rly $weI$ understood.
The class of CMC-tori has been investigated extensively using different mathematical
techniques. While perhaps not explicitly classifiable, the class of CMC-tori is clearly so
far the best investigated one among all CMC-immersions.
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All the surface classes mentioned so far have an abelian fundamental group. The
simplest non-abelian groups are perhaps those which are free and have only two generators.
Thus it seems to be particularly important to understand the CMC-immersions of the
trinoid $\mathcal{T}_{3}=S^{2}\backslash \{0,1, \infty\}$ .

Among the CMC-immersions from $\mathcal{T}_{3}$ to $\mathbb{R}^{3}$ clearly the embeddings are of particular
interest. It seems to be diffcult to classify this class of CMC-imnersions. However, in
a beautiful piece of work, GroBe-Brauckmann, Kusner and Sullivan have classified the
Alexandrov embedded CMC-surfaces from $\mathcal{T}_{3}$ to $\mathbb{R}^{3}[12]$ .

In [16] it was shown, however, that there are CMC-immersions from $\mathcal{T}_{3}$ to $\mathbb{R}^{3}$ which
have embedded ends, but are not Alexandrov embedded. Related to this is the question
whether one can add $($ bubbles’ to all trinoids and where on the surface such bubbles
can be addded, if at all. It is therefore of great importance to the understanding of all
CMC-immersions to understand in detail CMC-trinoids with embedded ends.

Examples of such surfaces have been given in [11] using the generalized Weierstrai3
representation [10]. In [4] it is shown that $aU$ CMC-immersions ffom $\mathcal{T}_{3}$ to $\mathbb{R}^{3}$ with
embedded ends can be obtained this way. However, an answer to the questions raised
above requires a much more detailed study of the monodromy matrices associated with
the ends than given in [4] or [16].

In this note we announce recent work characterizing the monodromy matrices of CMC-
trinoids with embedded ends. In particular, we investigate the monodromy matrices of
such CMC-surfaces which are invariant under the rotation by 12$0^{}$ about some axis.

Our approach uses the loop group method [10] and more specificaUy the potentials
presented in [11]. It is well known that in this setting everything can be expressed in
terms of hypergeometric functions. In particular, under certain normalizations, an explicit
expression can be found for the monodromy matrices (section 3). Finally, in the last
section we investigate trinoids which are invariant under a 12$0^{}$ rotation about some axis.
In [9] we prove that after some $\lambda$-dependent rotation we can assume that all surfaces of
the associated family have the same axis of rotation. Moreover, $aU$ possible monodromy
matrices can be determmined explicitly.

2 Outline of the loop group method
We begin by giving a brief review of the “loop group method” for the construction of
constant mean curvature surfaces from holomorphic potentials as presented in [10]. (This
method is often also referred to as the “DPW-method”.) This review $wiU$ involve intro-
ducing the basic concepts (loop groups, Iwasawa decomposition, holomorphic potentials)
as well as giving an outline of the loop group method itself, illustrated by the simple
example of the so called “Delaunay surfaces”.

2.1 Loop Groups
Let $SL(2, \mathbb{C})$ denote the special linear group of complex 2 $x2$ matrices and $\sigma$ : $SL(2, \mathbb{C})arrow$

$SL(2, \mathbb{C})$ denote the conjugation by the Pauli matrix $\sigma_{3}=(\begin{array}{l}100-1\end{array})$ . For each $r\in(0,1]$ ,

we define by
$\Lambda_{r}SL(2, \mathbb{C})_{\sigma}=\{g:C^{(r)}arrow SL(2,$ $\mathbb{C})$ smooth; $g(-\lambda)=\sigma(g(\lambda))\}$ (2.1.1)

2

100



the (twisted) loop group of smooth maps from the r-cirle $C^{(r)}=\{\lambda\in \mathbb{C};|\lambda|=r\}$ into
$SL(2, \mathbb{C})$ . The condition $g(-\lambda)=\sigma(g(\lambda))$ will be referred to as the “twisting condition”
for $g$ . The Lie algebra $\Lambda_{r}sl(2, \mathbb{C})_{\sigma}$ of $\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ is given by

$\Lambda_{r}sl(2, \mathbb{C})_{\sigma}=\{x:C^{r}arrow sl(2,$ $\mathbb{C})$ smooth; $x(-\lambda)=\sigma_{3}x(\lambda)\sigma_{3}\}$ , (2.1.2)

where $sl(2, \mathbb{C})$ denotes the Lie algebra of $SL(2, \mathbb{C})$ .
Furthermore, we denote by $\Lambda_{r}^{+}SL(2, \mathbb{C})_{\sigma}$ the subgroup of maps $g\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ that

extend holomorphically to the open disc $I^{(r)}=\{\lambda\in \mathbb{C};|\lambda|<r\}$ , and-by abuse of notation
-by $\Lambda_{r}SU(2)_{\sigma}$ the subgroup of maps $g\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ that extend holomorphically to the
open amulus $A^{(r)}= \{\lambda\in \mathbb{C};r<|\lambda|<\frac{1}{r}\}$ and take values in the special unitary group
$SU(2)$ on the unit circle $S^{1}=C^{(1)}$ .

In the case $r=1,\cdot$ we will omit any subscripts $r$”, simply denoting the groups
$\Lambda_{1}SL(2, \mathbb{C})_{\sigma},$ $\Lambda_{1}^{+}SL(2, \mathbb{C})_{\sigma},$ $\Lambda_{1}SU(2)_{\sigma}$ by $\Lambda SL(2, \mathbb{C})_{\sigma},$ $\Lambda^{+}SL(2, \mathbb{C})_{\sigma},$ $\Lambda SU(2)_{\sigma}$ , respec-
tively. We deal analogously with the corresponding Lie algebras.

The topology introduced above for the loop groups and Lie algebras is a $\mathbb{R}echet$

topology. Sometimes it is preferable to work with Banach structures instead of with
Frechet structures. In this case one could require, e.g., that all matrix coefficients are
contained in the Wiener algebra on the unit circle. For the purposes of this article the
topology of the groups will play a minor role.

2.2 Iwasawa decomposition
It is known from [17] that the multiplication map $\Lambda_{r}SU(2)_{\sigma}x\Lambda_{r}^{+}SL(2, \mathbb{C})_{\sigma}arrow\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$

is surjective, that is, any $g\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ may be written as

$g=g_{u}g+$ , (2.2.1)

where $g$. $\in\Lambda_{r}SU(2)_{\sigma}$ and $g+\in\Lambda_{r}^{+}SL(2, \mathbb{C})_{\sigma}$ . The splitting (2.2.1) is called an r-Iwasawa
decomposition of $g\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ , or, if $r=1$ , just Iwasawa decomposition of $g$ . By
additionally requiring that $g+(0)$ is diagonal with positive real entries, the factors of the
splitting (2.2.1) are uniquely determined. In this case the multiplication map is a real-
analytic diffeomorphism, therefore we will speak of the unique r-Iwasawa decomposition
(resp. unique Iwasawa decomposition) of $g$ .

2.3 Holomorphic potentials
Next we will outline how one obtains $hom$ an immersion $\psi$ : $\tilde{M}arrow \mathbb{R}^{3}$ of constant mean
curvature $H\neq 0$ on a $sim_{\sim}ply$ connected domain $\tilde{M}\subseteq \mathbb{C}$ an $sl(2, \mathbb{C})$-valued holomorphic
differential one-form on $M$ involving a loop parameter $\lambda\in \mathbb{C}^{*}=\mathbb{C}\backslash \{0\}$ , the so called
“holomorphic potential” $\eta$ . As we are interested in constructing CMC-immersions $\phi$ :

$Marrow \mathbb{R}^{3}$ on a not necessarily simply connected Riemann surface $M$ , we think of $\tilde{M}$ as
of the universal cover of $M$ , that is $M=\tilde{M}/\Gamma$ , where $\Gamma$ denotes the fundamental group
of $M$ (acting $freely\sim$ and discontinously on $\tilde{M}$). While the loop group method will allow
to recover $\psi$ : $Marrow \mathbb{R}^{3}hom$ the holomorphic potential $\eta$ (see section 2.4), we will need
to tum to the question under which circumstances $\psi$ descends to an CMC-immersion
$\phi$ : $Marrow \mathbb{R}^{3}$ , at least for a special choice of the loop parameter $\lambda$ (see section 2.5).
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An immersion $\psi$ : $\tilde{M}arrow \mathbb{R}^{3}$ of constant mean curvature $H\neq 0$ may be interpreted as
a member of an “associated family” $\psi_{\lambda}$ : $\tilde{M}arrow \mathbb{R}^{3},$ $\lambda\in S^{1}$ , of immersions of the same
constant mean curvature $H$ . Say, $\psi=\psi_{\lambda=1}$ . We may obtain the associated family $\psi_{\lambda}$

$hom\psi$ in the following way: First, consider the “extended frame” $F:\tilde{M}arrow\Lambda SU(2)_{\sigma}$

corresponding to $\psi$ as defined in [10]. Note that, by construction, $F$ involves the loop
parameter $\lambda=e^{i\theta}\in S^{1}$ . Then compute $\psi_{\lambda}$ from $F$ by evaluating the Sym-Bobenko
formula

$\psi_{\lambda}=-\frac{1}{2H}(\frac{\partial}{\partial\theta}F\cdot F^{-1}+\frac{i}{2}F\sigma_{3}F^{-1})$ (2.3.1)

Remark 2.1. The extended hame $F$ associated with $\psi$ is not determined uniquely, but
only up to the choice of some initial value $F(z_{*}, \lambda)\in\Lambda SU(2)_{\sigma}$ for some $z_{*}\in\tilde{M}$ . It is
in particular always possible to achieve $F(z_{*}, \lambda)=I$ for a chosen base point $z_{*}\in\tilde{M}$ ,
meaning that the surface is moved by a rigid motion into the “right position”.

Remark 2.2. Note that $\psi_{\lambda}$ generated by the Sym-Bobenko formula (2.3.1) actually takes

values in $su_{2}= \{\frac{-i}{2}(\begin{array}{llll} z x +iyx -iy -z\end{array}) ; x, y, z \in \mathbb{R}^{3}\}$ . We interpret $\psi_{\lambda},$ $\lambda\in S^{1}$ , as a $fan\dot{u}ly$

of CMC-immersions $\tilde{M}arrow \mathbb{R}^{3}$ by identifying $su_{2}$ with $\mathbb{R}^{3}$ via the isomorphism

$J$ : $\mathbb{R}^{3}arrow su_{2}$ , $(\begin{array}{l}xyz\end{array})\mapsto\frac{-i}{2}(_{x-iy}zx+iy-z$ (2.3.2)

According to [10], there exists $B_{+}\in\Lambda^{+}SL(2, \mathbb{C})_{\sigma}$ such that

$H=FB_{+}$ is holomorphic in both $z\in\tilde{M}$ and $\lambda\in \mathbb{C}^{*}$ (2.3.3)

$H$ is called an holomorphic frame associated with $\psi$ . The corresponding Maurer-Cartan
form $\eta=H^{-1}dH$ is holomorphic in both $z\in\tilde{M}$ and $\lambda\in \mathbb{C}^{*}$ as well and is called the
holomorphic potential associated with the immersion $\psi$ .

2.4 The loop group method

As indicated above, we can construct immersions of constant mean curvature $H\neq 0$

defined on the universal cover $\tilde{M}$ of a Riemam surface $M=\tilde{M}/\Gamma hom$ holomorphic
potentials introduced in section 2.3 by applying the “loop group method” presented in
[10]. Carrying out this procedure involves the following three steps:

1. Given a holomorphic potential $\eta$ , solve the differential equation

$dH=H\eta$ . (2.4.1)

2. Perform (for each $z\in\tilde{M}$) an r-Iwasawa decomposition

$H=FB+\cdot$ (2.4.2)

3. Interpreting $F$ as the extended hame of a CMC-immersion $\psi$ , compute the asso-
ciated family of $\psi$ by (2.3.1) to obtain for every $\lambda_{0}\in S^{1}$ a CMC-immersion $\psi_{\lambda=\lambda_{0}}$

defined on $\tilde{M}$ .
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Remark 2.3. For our purposes, that is for the construction of CMC-trinoids from holo-
morphic potentials (cf. section 3), we can think of the starting potential $\eta$ on $\tilde{M}$ as the
pullback of some potential defined on $M=\tilde{M}/\Gamma[5]$ . Thus we ensure that $\eta$ is invariant
under the fundamental group $\Gamma$ (viewed as a subgroup of the automorphism group of $\tilde{M}$).
We will retum to this in section 2.5.

By the theory of ordinary differential equations the solution to (2.4.1) is uniquely
determined, once we prescribe an “initial value condition”

$H(z_{*})=H_{0}$ (2.4.3)

for an arbitrary base point $z_{*}\in\tilde{M}$ and some $H_{0}\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ for some $r\in(0,1]$ .
Given a solution $H$ to (2.4.1) with some initial value $H(z_{*})$ , it is easy to verify that
$H(z)=H_{0}H(z_{*})^{-1}H(z)$ will also satisfy (2.4.1) and, moreover, will meet the initial value
condition (2.4.3).

In general, we will refer to the action of replacing $H$ by

$\hat{H}=TH$, (2.4.4)

where $T$ denotes some z-independent loop in $\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ , as r-dressing or simply dress-
ing $H$ by $T$. By dressing a solution $H$ of (2.4.1), we will obtain a new solution $\hat{H}$ of
(2.4.1), ftonly” changing the initial condition. Such a change, however, will have profound
consequences in step two of the loop group method, as there is no trivial relation between
the hames $F$ and $\hat{F}$ involved in the Iwasawa decompositions of $H$ and $\hat{H}$ , respectively.
This means, that dressing a solution $H$ of (2.4.1) will (in general) give rise to significant
changes in the CMC-immersion $\psi=\psi_{\lambda=1}$ generated by step three of the loop group
method. In fact, the manipulation of the initial value $H_{0}$ given by (2.4.4) tums out to be
crucial for our purposes, as it plays the decisive role when it comes to deciding whether
$\psi$ will descend to a CMC-immersion $\phi$ on $M$ or not. This issue will be discussed further
in the following section.

2.5 Monodromy
Next we investigate under which circumstances a given immersion $\psi$ on the universal
cover $\tilde{M}$ of a Riemann surface $M$ will descend to an immersion $\phi$ defined on $M=\tilde{M}/\Gamma$ .
The answer to this question is closely linked to the behaviour of the holomorphic frame $H$

associated with $\psi$ (cf. section 2.3) under the deck transformations $\gamma$ corresponding to the
elements of the fundamental group $\Gamma$ . This transformation behaviour of $H$ is expressed
by a z-independent matrix, the “monodromy matrix” $M=M(\gamma, \lambda)$ . We will briefly state
the results pertinent to this article, for more details see section 2.4 of [11].

Lemma 2.4. Given a holomorphic potential $\eta$ on $\tilde{M}$ which is invariant under $\Gamma$ in the
sense of remark 2.3, any solution $H$ of (2.4.1) will transform under $\gamma\in\Gamma$ according to

$H(\gamma(z), \lambda)=M(\gamma, \lambda)H(z, \lambda)$ , (2.5.1)

where $M(\gamma, \lambda)$ denotes some $\Lambda SL(2, \mathbb{C})_{\sigma}mat\dot{m}$ depending on $\gamma$ , but independent of $z$ .
For each $\gamma\in\Gamma_{\dot{J}}M(\gamma, \lambda)$ is called the monodromy matrix of $H$ with respect to $\gamma$ .
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The basic theorem for all considerations in this note is obtained from theorem 2.7 of
[7]:

Theorem 2.5. Let $\eta_{f}\Gamma$ and $H$ be as in the above lemma. Then, $\psi$ descends to a CMC-
immersion $\phi$ on $M=\tilde{M}/\Gamma$ if and only if

1. $M(\gamma, \lambda)$ is unitary for all $\gamma\in\Gamma_{f}\lambda\in S^{1}$ and

2. $M(\gamma, \lambda=1)=\pm 1$ for all $\gamma\in\Gamma$ and

3. $\partial_{\lambda}M(\gamma, \lambda)|_{\lambda=1}=0$ for all $\gamma\in\Gamma$ .

Theorem 2.5 provides the key for “tuning” the loop group method such that it will
generate a CMC-immersion $\psi$ on $\tilde{M}$ that descends to an immersion $\phi$ on $M$ for, say, $\lambda=1$ :
Assuming the requirements of theorem 2.5 are met, it is easy to verify that dressing a
solution $H$ of (2.4.1) by $T=T(\lambda)\in\Lambda_{r}SL(2, \mathbb{C})_{\sigma}$ , as defined in section 2.4, will produce
a solution $\hat{H}=TH$ with monodromy matrices $\hat{M}(\gamma, \lambda)=T(\lambda)M(\gamma, \lambda)(T(\lambda))^{-1}$ for each
$\gamma\in\Gamma_{\rangle}$ where $M(\gamma, \lambda),$ $\gamma\in\Gamma$ , denote the corresponding monodromy matrices of $H$ .
Thus, to obtain a CMC-immersion $\phi$ : $Marrow \mathbb{R}^{3}$ from a given potential $\eta$ , the strategy
will be to find an appropriate dressing matrix $T$ that will modify a given solution $H$

with monodromy matrices $M(\gamma, \lambda),\gamma\in\Gamma$ , such that the monodromy matrices $\hat{M}(\gamma, \lambda)$ of
$\hat{H}=TH$ will meet the conditions given in theorem 2.5.

2.6 Delaunay surfaces
As pointed out in the introduction, for the study of CMC-immersions with embedded ends

$($ Delaunay surfaces” are of particular importance. These are CMC-surfaces of revolution
around an axis $x_{1}$ in $\mathbb{R}^{3}$ . For a detailed discussion of Delaunay surfaces, we refer to $[$8 $]$ .
Here, we will only summarize some basic results, which we $wiU$ use in this article.

By section 3.2.1 of [8] all Delaunay surfaces (up to rigid motions) can be constructed
from holomorphic potentials of the form

$\eta=\frac{1}{z}Adz=\frac{1}{z}(\frac{0}{X}X0)dz$ , (2.6.1)

where $X(\lambda)=s\lambda^{-1}+t\lambda,$ $\overline{X}(\lambda)=s\lambda+t\lambda^{-}$’ and $s,$ $t\in \mathbb{R}$ with $(s+t)^{2}= \frac{1}{4}$ . The matrix
$A$ is called a Delaunay matrix.

The choice of $s$ and $t$ will determine the special shape of the produced Delaunay surface
(see [8] for details). We will be especially interested in embedded Delaunay surfaces, which
are also referred to as unduloids. These correspond to $s$ and $t$ such that $st>0$ , w.l.o.g.
$s>0$ and $t>0$ .

Given a potential $\eta$ of the form (2.6.1), it is easy to verify that

$H=\exp(\ln(z)A)$ (2.6.2)

solves the differential equation (2.4.1). Around the singularity at $z=0$ of $\eta,$ $H$ picks up
the Delaunay monodromy matrix $M(\lambda)$ :

$H(\gamma(z), \lambda)=M(\gamma, \lambda)H(z, \lambda)$ , (2.6.3)

6
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where $\gamma$ denotes the deck transformation on $\tilde{M}$ corresponding to the simply closed curve
in $\mathbb{C}$ , which encloses the singularity $z=0$ , w.l.o.g. defined by $(-\pi_{7}\pi)arrow \mathbb{C}_{7}t\mapsto e^{it}$ . Note
that $\gamma$ already generates the fundamental group $\Gamma$ of $M=\mathbb{C}\backslash \{0\}$ . A simple computation
yields

$M(\gamma, \lambda)=exp(2\pi iA)$ , (2.6.4)

where $\mu=\sqrt{X\overline{X}}$. By use oflemma 2.5, we conclude that $H$ gives rise to a CMC-immersion
$\psi=\psi_{\lambda=1}$ which under our conditions descends to $M$ , thus defining a CMC-surface $\phi$ on
$M$ .

3 Trinoids
In this note we are concerned with constant mean curvature surfaces parameterized by the
extended complex plane $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ with three points removed, which are singularities
of the parameterizing immersion $\phi$ and thus induce three “ends” of the surface. By
applying an appropriate coordinate transformation on $\hat{\mathbb{C}}$ we may assume w.l. $0.g$. that
the singularities are located at $z_{0}=0,$ $z_{1}=1$ and $z_{\infty}=\infty$ . While we $aUow$ arbitrary
self-intersections of the surface away from its singularities, we require the ends to be
“embedded”. That is, we require that for sufficiently small pointed discs $D_{\epsilon}^{*}(z_{j})=\{z\in$

$\hat{\mathbb{C}}\backslash \{0,1, \infty\};|z-z_{j}|<\epsilon\}$ the imnersion $\phi$ is a CMC-embedding. Therefore, according to
[15], the ends asymptotically show the behaviour of (unduloidal) Delaunay surfaces (cf.
section 2.6). Constant mean curvature surfaces with three asymptotic Delaunay ends will
be called “CMC-trinoids with embedded ends” or “trinoids” for short.

It is well known that the universal cover of $M=\hat{\mathbb{C}}\backslash \{0,1, \infty\}$ is given by the upper
half plane $\tilde{M}=\mathbb{H}=\{z\in \mathbb{C};1mz>0\}$ . The fundamental group $\Gamma=\pi_{1}(M)$ is generated
by three simply closed curves $\gamma_{j}$ in $M$ , which start at a base point $z_{*}\in M$ and surround
only one $z_{j}$ . The corresponding monodromy matrices associated with a solution $H$ of
$dH=H\eta$ , where $\eta$ is a potential defined on $\tilde{M}$ , will be denoted by $M_{j}(\lambda)=M(\gamma_{j}, \lambda)$ .
We note (see section 2.5 of [11]) that

$M_{0}M_{1}M_{\infty}=\pm I$ .

3.1 The trinoid potential

For the constmction of trinoids via the loop group method we start with a potential $\eta$

with three singularities at $z_{0}=0,$ $z_{1}=1$ and $z_{\infty}=\infty$ . These singularities will carry over
to the solution of the differential equation $dH=H\eta$ as well as to the induced immersion
$\phi$ parameterizing the surface and thus will generate the three trinoid ends. As explicated
in section 3.1 of [11], we may restrict without loss of much generality to the case where $\eta$

is off-diagonal, that is of the form

$\eta=(_{\tau(z,\lambda)}0$ $\nu(z_{0}, \lambda)$ $dz$ , (3.1.1)

where, for now, $\nu$ and $\tau$ denote some holomorphic functions in $z\in\hat{\mathbb{C}}\backslash \{z_{0}, z_{1}, z_{\infty}\}$ which
also depend on $\lambda\in \mathbb{C}^{*}$ .
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Since we would like to construct CMC-trinoids with embedded (and thus, as pointed
out above, asymptoticaUy Delaunay) ends, we further assume that the potential $\eta$ near
each end $z_{j}$ adopts some of the properties of the corresponding (unduloidal) Delaunay
potential $\frac{1}{z-z_{J}}D_{j}dzinvol\iota^{r}ing$ the off-diagonal Delaunay matrix

$D_{j}=( \frac{0}{X_{j}}X_{j)}0$
’ (3.1.2)

where

$X_{j}=s_{j}\lambda^{-1}+t_{j}\lambda,$ $\overline{X_{j}}=s_{j}\lambda+t_{j}\lambda^{-1}$ , (3.1.3)

$s_{j},$
$t_{j} \in(0, \frac{1}{2}),$ $s_{j}+t_{j}= \frac{1}{2}$ . (3.1.4)

First of all, as the singularities of Delaunay potentials are regular, we require $aU$

singularities $z_{j}$ of $\eta$ to be regular singularities. More precisely, they will be regular singular
points of a second order scalar ODE corresponding to the differential equation

$dH=H\eta$ (3.1.5)

in the sense of the following straightforward lemma.

Lemma 3.1. Every solution $H$ of the differential equation (3.1.5) can be written in the
form

$H=$ $(\underline{y}_{\acute{1}}^{\nu}y’\lrcorner\nu$ $y_{2}y_{1})$ , (3.1.6)

where $y1,$ $y2$ is a fundamental system of the differential equation

$y”- \frac{\nu’}{\nu}y’-\nu\tau y=0$ . (3.1.7)

We require that $z_{0},$ $z_{1},$ $z_{\infty}$ are regular singular points of (3.1.7), i.e. we require that
equation (3.1.7) is of “Fuchsian type” (cf., e.g., chapter 7 of [1]) with three singular points.
In general, a Fuchsian equation can have a singularity which, however, does not show up
in the solutions. Such a singularity is called $($ apparent singularity”. In our case we do not
want any apparent singularities, since otherwise we would have fewer than three embedded
ends. $\mathbb{R}om[1]$ and sections 3.3 and 3.5 of [11] we obtain that the three ends at $0,1$ and
$\infty$ are non-apparent regular singular points if and only if:

$\nu(z, \lambda)=\lambda^{-1}z^{-a0}(z-1)^{-a}1$ , (3.1.8)

$\tau(z, \lambda)=-\lambda z^{a_{0}}(z-1)^{a}1[\frac{b_{0}(\lambda)}{z^{2}}+\frac{b_{1}(\lambda)}{(z-1)^{2}}+\frac{c_{0}(\lambda)}{z}+\frac{c_{1}(\lambda)}{z-1}]$ , (3.1.9)

for some integers $a_{0},$ $a_{1},$ $a_{\infty}$ and some even functions $b_{0},$ $b_{1},$ $b_{\infty},$
$c_{0},$ $c_{1}$ in $\lambda\in \mathbb{C}^{*}$ satisfying

$a0+a_{1}+a_{\infty}=2$ , (3.1,10)
$b_{0}(\lambda)+b_{1}(\lambda)+0\cdot c_{0}(\lambda)+1\cdot c_{1}(\lambda)=b_{\infty}(\lambda)$ , (3.1.11)

$c_{0}(\lambda)+c_{1}(\lambda)=0$ . (3.1.12)
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The potential above is defined on $M$ . Therefore, its pullback to the universal cover
$\tilde{M}$ is invariant under the deck transformations which correspond to surrounding an end.
Thus, given a solution $H$ of (3.1.5), after surrounding an end we obtain a monodromy
matrix (cf. section 2.5). One should expect that the monodromy matrix $M_{j}$ corresponding
to the end at $z_{j}$ is somehow related to the monodromy matrix of the Delaunay surface
which is the asymptotic shape of the end at $z_{j}$ . It is therefore natural to assume that $M_{j}$

is conjugate to the monodromy matrix of the corresponding Delaunay surface. Actually,
one can prove that this is necessarily the case [4]. Referring to section 3.6 of [11], this is
equivalent to requiring for each $j\in\{0,1, \infty\}$

$b_{j}( \lambda)=\frac{1}{4}(1-a_{j})^{2}-\mu_{j}^{2}$, (3.1.13)

where
$\mu_{j}=\sqrt{X_{j}\overline{X_{j}}}$ (3.1.14)

and $\pm\mu_{j}$ are the eigenvalues of $D_{j}$ .
By the choice of $D_{0},$ $D_{1},$ $D_{\infty}$ and some integers $a_{0},$ $a_{1},$ $a_{\infty}$ satisfying (3.1.10) the

functions $b_{j}$ and $c_{j}$ are given by equations (3.1.13), (3.1.11) and (3.1.12) explicitly, whereby
$\eta$ is determined completely. While the choice of the $a_{J}$ seems to be arbitrary (in fact, it
is unknown, if there is any geometric meaning in the choice of the $a_{j}$ at all), the choice of
the $D_{j}$ will determine whether the associated potential $\eta$ will give rise to a “descending”
CMC-immersion $\psi$ in the sense of theorem 2.5. In order to ensure this, we further need
to require for $\lambda\in S^{1}$

$0 \leq\frac{cos(\pi(\mu_{0}-\mu_{l}-\mu_{\infty}))cos(\pi(\mu_{0}-\mu_{1}+\mu_{\infty}))}{\sin(2\pi\mu_{0})\sin(2\pi\mu_{1})}\leq 1$ . (3.1.15)

Equation (3.1.15) will be referred to as the “unitarizability condition”, as it is equivalent
with the existence of a solution $H$ of (3.1.5), $\eta$ corresponding to $D_{0},$ $D_{1},$ $D_{\infty}$ which has
unitary monodromy matrices at the singularities at $z_{0},$ $z_{1},$ $z_{\infty}$ . In other words, (3.1.15)
holds if and only if any solution of (3.1.5) can be “dressed” (cf. section 2.4) into a new
solution with unitary monodromy matrices.

Altogether, by [11], theorem 5.4.1 and corollary 5.4.2, we have in fact

Theorem 3.2. Let $D_{0},$ $D_{1},$ $D_{\infty}$ be Delaunay matri ces satisfying (3.1.15) for all $\lambda\in S^{1}$ .
Let $\eta$ be of the form (3.1.1) associated with the given Delaunay matrices. $\mathcal{A}ssume$ that $\eta$

satisfies equations (3.1.8) to (3.1.13), Then, $\eta$ yields a CMC-trinoid with embedded ends
after some $appropr\dot{v}ate$ r-dressing.

Any potential $\eta$ meeting the requirements of the theorem above will be called a “trinoid
potential”. Note that such potentials are holomorphic in $z\in\hat{\mathbb{C}}\backslash \{0,1, \infty\}$ and in $\lambda\in \mathbb{C}^{*}$ ,
as well as meromorphic in $z\in\hat{\mathbb{C}}$ with singularities at $z_{0}=0,$ $z_{1}=1$ and $z_{\infty}=\infty$ .
Remark 3.3. It is claimed in [4] that all CMC-trinoids with embedded ends can be
constructed via the loop group method $hom$ potentials of the form above.

Starting with a trinoid potential $\eta$ , any solution $H$ of (3.1.5), by theorem 3.2, can
be dressed by some appropriately chosen matrix $T=T(\lambda)$ into a solution $\hat{H}=TH,$

which in tum will produce a CMC-trinoid with embedded ends, defined on $M$. If $H$
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picks up the monodromy matrix $M_{j}(\lambda)$ around the end $z_{j},\hat{H}$ has the monodromy matrix
$\hat{M}_{j}(\lambda)=T(\lambda)M_{j}(\lambda)(T(\lambda))^{-1}$ at $z_{j}$ (cf. section 2.5). These monodromy matrices are, by
theorem 2.5, unitary on $S^{1}$ . Thus, in order to find a solution $\hat{H}$ yielding a CMC-trinoid
on $M$ in the sense of theorem 2.5, we will perform the following two steps:

1. We compute a solution $H$ of (3.1.5) with monodromy matrix $M_{j}$ at $z_{j}$ (see sections
3.2 and 3.3).

2. We determine the dressing matrix $T$ explicitly such that the “dressed monodromy
matrices” $\hat{M}_{j}$ are unitary on $S^{1}$ (see section 3.4).

The “right” solution $\hat{H}$ is then given by $\hat{H}=TH$ .

Remark 3.4. Note that, in fact, we need to make sure that the dressed monodromy
matrices $\hat{M}_{j}$ meet all three conditions of theorem 2.5. It turns out, however, that finding
a $T$ which simultaneously unitarizes all the monodromy matrices $M_{j}$ poses the main
difficulty. Furthermore keep in mind that verifying the three conditions of theorem 2.5 for
the three monodromy matrices $\hat{M}_{j}$ at the ends $z_{j}$ will imply that these conditions hold for
any other monodromy matrix $\hat{M}(\gamma, \lambda),$ $\gamma\in\Gamma$ , as well (since the curves $\gamma_{j}$ corresponding
to $\hat{M}_{J},$ $j=0,1,$ $\infty$ , generate the fundamental group $\Gamma$). In view of $M_{0}M_{1}M_{\infty}=\pm I$ , it
will even suffice to check the conditions for two of the three monodromy matrices, w.l. $0.g$ .
for $\hat{M}_{0}$ and $\hat{\Lambda}l_{1}$ .

3.2 The lUchsian ODE
In order to solve (3.1.5) we take a closer look at the Fuchsian differential equation (3.1.7),
which reads more explicitly as

$y”+( \frac{a_{0}}{z}+\frac{a_{1}}{z-1})y’+(\frac{b_{0}}{z^{2}}+\frac{b_{1}}{(z-1)^{2}}+\frac{c_{0}}{z}+\frac{c_{1}}{z-1})y=0$ . (3.2.1)

The corresponding indicial equations around the singularities $z_{0}=0,$ $z_{1}=1$ and $z_{\infty}=\infty$

are given by $w(w-1)+a_{j}w+b_{j}$ for $j=0,1,$ $\infty$ , respectively (cf. section 7.2 of [1]), and
possess the roots

$r_{j,\pm}= \frac{1}{2}(1-a_{j}\pm\sqrt{(1-a_{j})^{2}-4b_{j}})$ . (3.2.2)

Defining $r_{j}$ $:=r_{j,+}$ and substituting

$y=z^{r_{0}}(z-1)^{r_{1}}w$ , (3.2.3)

equation (3.2.1) translates into the hypergeometric differential equation

$w”+ \frac{-\gamma+(1+\alpha+\beta)z}{z(z-1)}w’+\frac{\alpha\beta}{z(z-1)}w=0$ , (3.2.4)

where

$\alpha=r_{0,+}+r_{1,+}+r_{\infty,+}$ , (3.2.5)
$\beta=r_{0,+}+r_{1,+}+r_{\infty,-}$ , (3.2.6)
$\gamma=1+r_{0,+}-r_{0,-}$ . (3.2.7)
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Assuming $\gamma\not\in \mathbb{Z}$ and $\alpha+\beta-\gamma\not\in \mathbb{Z}_{7}$ which is the case for all $\lambda\in \mathbb{C}^{*}\backslash S_{7}$ where $S$ is
a discrete subset of $\mathbb{C}^{*}$ , there are natural fundamental systems $w_{j1},$ $w_{j2}$ of (3.2.4) at $z_{j}$ ,
$j=0,1$ (cf. chapter 8 of [1]):

$w_{01}=F(\alpha, \beta, \gamma;z)$ , (3.2.8)
$w_{02}=z^{1\neg}F(\alpha-\gamma+1, \beta-\gamma+1,2-\gamma;z)$ , (3.2.9)

$w_{11}=F(\alpha, \beta, \alpha+\beta-\gamma+1;1-z)$ , (3.2.10)
$w_{12}=(1-z)^{\gamma-\alpha-\beta}F(\gamma-\beta, \gamma-\alpha, \gamma-\alpha-\beta+1;1-z)$ . (3.2.11)

where $F$ denotes the hypergeometric series

$F( \alpha, \beta, \gamma;z)=\sum_{n=0}^{\infty}\frac{\alpha(\alpha+1)\cdots(\alpha+n-.1)\beta(\beta+1)\cdots(\beta+n-1)}{\gamma(\gamma+1)\cdot\cdot(\gamma+n-1)}\frac{z^{n}}{n!}$ . (3.2.12)

Remark 3.5. In view of remark 3.4 it suffices to unitarize the monodromy matrices of two
of the three ends, since they generate the monodromy group. Therefore, our discussion
of a solution $H$ to the equation (3.1.5) can be restricted to the analysis of its behaviour
“near” the two singularities at $z_{0}=0$ and $z_{1}=1$ . More precisely, as a typical set of
definition we will consider an open set, containing $0$ and 1, from which we cut out $aU$

points contained in the half-lines extending on the real axis $hom0$ to $-$ oo and $hom1$
to $\infty$ . It therefore suffices to consider in this article only fundamental systems to the
equation (3.2.4) defined near $z_{0}$ and $z_{1}$ .

According to [1], p. 235, on the simply connected set $\mathcal{D}=\mathbb{C}\backslash \{x\in \mathbb{R};x<0 or x>1\}$ ,
where all $w_{jk}$ are defined, the following relations hold:

$w_{01}=\kappa_{11}^{01}w_{11}+\kappa_{12}^{01}w_{12}$ , (3.2.13)
$w_{02}=\kappa_{11}^{02}w_{11}+\kappa_{12}^{02}w_{12}$ , (3.2.14)

where

$\kappa_{11}^{01}=\frac{\Gamma(\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha)\Gamma(\gamma-\beta)}$, (3.2.15)

$\kappa_{12}^{01}=\frac{\Gamma(\gamma)\Gamma(\alpha+\beta-\gamma)}{\Gamma(\alpha)\Gamma(\beta)}$ , (3.2.16)

$\kappa_{11}^{02}=\frac{\Gamma(\gamma-\alpha-\beta)\Gamma(2-\gamma)}{\Gamma(1-\alpha)\Gamma(1-\beta)}$ , (3.2.17)

$\kappa_{12}^{02}=\frac{\Gamma(\alpha+\beta-\gamma)\Gamma(2-\gamma)}{\Gamma(\alpha-\gamma+1)\Gamma(\beta-\gamma+1)}$ , (3.2.18)

and $\Gamma$ denotes the Gamma function $\Gamma(z)=\int_{0}^{\infty}e^{-t}t^{z-1}dt$ .
$\mathbb{R}om(3.2.8)$ to (3.2.11) together with (3.2.3) we obtain fundamental systems $yj1,$ $yj2$

around $z_{j}$ solving the Fuchsian equation (3.2.1):

$y01=z^{r_{0}}(1-z)^{r_{1}}F(\alpha, \beta, \gamma;z)$ , (3.2.19)
$y02=z^{ro+1-\gamma}(1-z)^{r_{1}}F(\alpha-\gamma+1, \beta-\gamma+1,2-\gamma;z)$ , (3.2.20)
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$y11=z^{r_{0}}(1-z)^{r_{1}}F(\alpha, \beta.\alpha+\beta-\gamma+1;1-z)$ ,
$y12=z^{r_{0}}(1-z)^{r_{1}\mapsto-\alpha-\beta}F(\gamma-\beta, \gamma-\alpha, \gamma-\alpha-\beta+1;1-z)$ .

(3.2.21)

(3.2.22)

Note that relations (3.2.13) and (3.2.14) relating the fundamental system $w_{01},$ $w_{02}$ to
$w_{11},$ $w_{12}$ are equivalent to the relations

$y01=\kappa_{11}^{01}y11+\kappa_{12}^{01}y12$ , (3.2.23)
$y_{02}=\kappa_{11}^{02}y11+\kappa_{12}^{02}y_{12}$ , (3.2.24)

for the fundamental systems $y_{01},$ $y_{02}$ and $y11,$ $y12$ .
Applying lemma 3.1 we infer that any solution to (3.1.5) can be expressed locally near

$z_{j},$ $j=0,1$ in terms of the fundamental system $yj1,$ $yj2$ . More precisely, this is possible on
a cut disc around $z_{j}$ . We will keep this in mind for later use in the next section.

3.3 Solving $dH=H\eta$

We want to understand the solutions to the differential equation (3.1.5) near the ends. For
this it $wiU$ tum out to be helpful to use special forms of the potential and the solutions.
Let’s consider, for $j=0,1$ , the “gauged” potential

$\tilde{\eta}_{j}=V_{+,j}^{-1}\eta V_{+)}.’+V_{+)j}^{-1}dV_{+,j}$ , (3.3.1)

where

$V_{+,j}=(_{\frac{\lambda}{2}(a_{j}-1)\sqrt{\lambda(z-z_{j})\nu}^{-1}\cdot\sqrt{\lambda X_{j}}^{-1}}\sqrt{\lambda(z-z_{j})\nu}\cdot\sqrt{\lambda X_{j}}^{-1}$

$\sqrt{\lambda(z-z_{j})\nu}^{-1}$ .$\sqrt{\lambda X_{j}}0$ (3.3.2)

Remark 3.6. We note that $V_{+,j}$ takes values in $\Lambda_{r}^{+}SL(2, \mathbb{C})_{\sigma}$ for some $r\in(O, 1]$ (see sec-
tion 5.2 of [11] for details). The transformation of $\eta$ by $V_{+)j}\in\Lambda_{r}^{+}SL(2, \mathbb{C})_{\sigma}$ , as described
in (3.3.1), will be referred to as gauging $\eta$ by $V_{+\theta}$ .

By section 4.2 of [11] there exists an EDP-representationl $\tilde{H}_{j}$ , defined around $z_{j}$ , of
$d\tilde{H}_{j}=\tilde{H}_{j}\tilde{\eta}_{j}$ . We will call $\tilde{H}_{j}$ an EDP-solution for short.

$\tilde{H}_{j}=e^{\ln(z-z_{j})D_{j}}\cdot P_{j}$ , (3.3.3)

where $P_{j}=I+(z-\tilde{z}j)P_{j.1}+(z-z_{j})^{2}P_{j,2}+\ldots$ is holomorphic at $z=z_{j},$ $P(z=z_{j})=I$
and $P_{j}$ is uniquely determined by these properties [2].

Thus, for $j=0,1$ , we obtain a local solution $H_{j}$ of the original differential equation
(3.1.5) around $z_{j}$ of the form

$H_{j}=\tilde{H}_{j}V_{+i}^{-1}=e^{\ln(z-z_{j})D_{j}}P_{j}V_{+)}^{-.1}$. (3.3.4)

By lemma 3.1, $H_{j}$ may be described in terms of an appropriate fundamental system
solving (3.1.7) around $z_{j}$ , which itself may be expressed in terms of the fundamental
system $y_{j1},$ $y_{j2}$ given in equations (3.2.19) to (3.2.22). That is, we may write for $j=0,1$

$H_{j}=$ $( \frac{}{\frac{\alpha y_{j1}’+\beta_{j}y_{;2}’\delta_{j}^{j}y_{1}^{\nu}+\epsilon_{j}y_{2}}{\nu}}$ $\alpha_{jyj1}\delta_{j}+\beta_{j}y_{j2})$ , (3.3.5)

lThe expression EDP-representation is an abbreviation for exponential-Delaunay-powerseries-
representation.
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where $\alpha_{j},$ $\beta_{j},$ $\delta_{j},$
$\epsilon_{j}$ denote z-independent functions in $\lambda$ . Since $y01,$ $y02,$ $y11,$ $y12$ may be

extended holomorphically to the complex plane excluding two “cuts” $hom0$ to-oo and
from 1 to $\infty$ , this also holds for $H_{0}$ and $H_{1}$ . Denoting the extensions again by $H_{0}$ and
$H_{1}$ , respectively, we obtain two solutions of (2.4.1)-now defined globally for $z$ from the
simply connected, “double-cut” complex plane-which will only differ by a z-independent
matrix $A=A(\lambda)$ . That is, we have

$H_{0}=A(\lambda)H_{1}$ . (3.3.6)

It turns out that, by evaluating in (3.3.4) the properties of both $P_{j}$ and the fundamental
system $yj1,$ $yj2$ at $z_{j}$ , especially the holomorphy on a cut disc around $z_{j}$ , the connection
coefficients $\alpha_{j},$

$\beta_{j},$ $\delta_{j},$
$\epsilon_{j}$ can be computed explicitly:

$\alpha_{j}=-\beta_{j}=\frac{1}{2}\frac{\sqrt{(-1)^{j-a_{1}}}X_{j}}{\sqrt{\lambda X_{j}}\mu_{j}}$ , (3.3.7)

$\delta_{j}=\epsilon_{j}=\frac{1}{2}\frac{\sqrt{(-1)^{j-a_{1}}}}{\sqrt{\lambda X_{j}}}$ . (3.3.8)

Thus, by (3.3.5) together with (3.3.7) and (3.3.8), we have explicitly determined two
solutions $H_{0},$ $H_{1}$ of the differential equation (3.1.5). Furthermore, these solutions are
linked by (3.3.6), and with regard to (3.2.23) and (3.2.24) we obtain

$A=i\sqrt{\frac{\mu_{1}}{\mu_{0}}}R_{0}S(\begin{array}{ll}\kappa_{11}^{01} \kappa_{12}^{01}\kappa_{11}^{02} \kappa_{12}^{02}\end{array})S^{-1}R_{1}^{-1}$ , (3.3.9)

where $R_{j}=(^{\sqrt{X_{\lrcorner}\overline{\mu}_{j}}}0\sqrt{\overline{\frac{X}{\mu}1j}}0)$ and $S= \frac{1}{\sqrt{2}}(\begin{array}{l}1-111\end{array})$ .

Moreover, using equation (3.3.4), it is not difficult to compute the monodromy matrix
of $H_{j}$ around the end $z_{j}$ : Choosing the curves $\gamma_{0},$ $\gamma_{1}\in\Gamma$ for $z$ close enough to $z_{j}$ , such
that $\gamma_{j}$ only encloses the singularity $z_{j}$ , w.l.o.g. by

$\gamma_{j}(t)=z_{j}+\epsilon e^{it}$ , $-\pi<t<\pi$ , (3.3.10)

for a small enough $\epsilon>0$ , we obtain by (3.3.4)

$H_{j}(\gamma_{j}(z), \lambda)=\pm e^{2\pi iD_{j}}H_{j}(z, \lambda)$ , (3.3.11)

where $\gamma_{J}$ now denotes the deck transformation on $\tilde{M}$ corresponding to the curve $\gamma_{j}$ defined
in (3.3.10).

Remark 3.7. Note that, by construction, $P_{j}$ is holomorphic around $z_{j}$ and therefore
doesn’t possess any monodromy around $z_{j}$ . Moreover, it is easy to verify, that $V_{+j}^{-1}$ picks
up the factor $\sqrt{e^{\pi i(1-a_{j})}}$ , hence at most a sign, under $\gamma_{j}$ . Therefore the monodromy matrix
of $H_{j}$ around $z_{j}$ is up to a sign given by the Delaunay monodromy matrix $e^{2\pi iD_{j}}$ .

Taking into account (3.3.6), we are now able to explicitly compute the monodromy
matrices of $H_{0}$ at $z_{0}$ and $z_{1}$ , as well as the monodromy matrices of $H_{1}$ at $z_{0}$ and $z_{1}$ . It
suffices to consider the solution

$H=H_{0}$ , (3.3.12)
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which by (3.3.11) and (3.3.6) satisfies

$H(\gamma_{j}(z), \lambda)=M_{j}(\lambda)H(z, \lambda)$ , (3.3.13)

where

$M_{0}( \lambda)=e^{2\pi\tau D_{0}}=\cos(2\pi\mu_{0})(\begin{array}{ll}1 00 1\end{array})+i \sin(2\pi\mu_{0})(\frac{0}{\frac{X}{\mu}1,0}$ $x_{0}\tilde{\mu 0})$ , (3.3.14)

$M_{1}( \lambda)=Ae^{2\pi iD_{1}}A^{-1}=\cos(2\pi\mu_{1})(\begin{array}{ll}1 00 1\end{array})+i \sin(2\pi\mu_{1})A(\frac{\frac{0}{X_{1}\mu 1}}{}$
$\frac{X}{\mu o^{1}}$ $A^{-1}$ . (3.3.15)

3.4 Simultaneous unitarization of the monodromy matrices
In the previous section, we have determined a solution $H$ of (3.1.5), given explicitly by

$H=H_{0}=e^{\ln(z)D_{0}}P_{0}V_{+,0}^{-1}=(\nu\ovalbox{\tt\small REJECT}^{\alpha 0y’+\beta_{0}y’}\ovalbox{\tt\small REJECT} 0\nu’$ $\alpha_{0y_{01}+\beta_{0}y02}\delta_{0y01}+\epsilon 0y02$ , (3.4.1)

where the fundamental system $y_{01},$ $y02$ is given by (3.2.19) and (3.2.20) and the connection
coefficients $\alpha_{0},$

$\beta_{0},$ $\delta_{0},$
$\epsilon_{0}$ are defined in (3.3.7) and (3.3.8). We also know the monodromy

matrices $M_{0}(\lambda)$ and $M_{1}(\lambda)$ of $H$ around $z_{0}$ and $z_{1}$ , respectively, by (3.3.14) and (3.3.15).
By an easy calculation, we observe that, while $M_{0}$ is unitary for $\lambda$ on $S^{1}$ , this is not the
case for $M_{1}$ . Thus, retuming to theorems 2.5 and 3.2, we still need to modify $H$ by “an
appropriate dressing (matrix)” $T$ so that altogether the dressed solution $\hat{H}=TH$ yields a
CMC-trinoid with embedded ends. Our next goal will be to compute explicitly a dressing
matrix $T=T(\lambda)$ such that $\hat{H}$ has unitary monodromy matrices $\hat{M}_{j}=TM_{j}T^{-1}$ for all
ends $z_{j},$ $j=0,1,$ $\infty$ , and for all $\lambda\in S^{1}$ . By remark 3.4, it will suffice to require unitarity
(on $S^{1}$ ) for $\hat{M}_{0}$ and $\hat{M}_{1}$ . That is, we would like to have

$\hat{M}_{0}=TM_{0}T^{-1}$

$\hat{M}_{1}=TM_{1}T^{-1}$
unitary on $S^{1}$ . (3.4.2)

In view of (3.3.14) and (3.3.15) we observe that any conjugate of $( \frac{0}{\overline\mu_{j}X_{\lrcorner}}$
$X_{\lrcorner}\overline{\mu}_{j}0)$ will be

of the form $(\begin{array}{ll}p_{j} r_{j}q_{j} -p_{j}\end{array})$ for some functions $p_{j}(\lambda),$ $q_{j}(\lambda),$ $r_{j}(\lambda)$ . Hence the monodromy

matrices $\hat{M}_{j}$ are of the general form

$\hat{M}_{j}=TM_{j}T^{-1}=\cos(2\pi\mu_{j})(\begin{array}{ll}1 00 1\end{array})+i\sin(2\pi\mu_{j})(_{q_{j}}^{p_{j}}$
$-p_{j}r_{j}$ , (3.4.3)

where $p_{j}^{2}+\%^{r_{j}}=1$ , since $\det M_{j}=1$ and conjugating a matrix does not affect its
$\det$erminant.

In order to express (3.4.2) in a different way, we note that a matrix $U$ is in $SU(2)$ iff
$U$ is of the form $U=(_{-\overline{v}}u \frac{v}{u})$ . Applying this to (3.4.3), we see that $\hat{M}_{j}$ is unitary on
$S^{1}$ iff it is of the form

$\hat{M}_{j}=\cos(2\pi\mu_{j})(\begin{array}{ll}1 00 1\end{array})+i\sin(2\pi\mu_{j})(_{\mathfrak{g}}^{p_{j}}.$ $-\overline{p_{j}q_{j}}$ (3.4.4)
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with
$p_{j}=\overline{p_{j}}$ and $p_{j}^{2}+q,\overline{q_{j}}=1$ , (3.4.5)

where

$(\begin{array}{ll}p_{0} \overline{q_{0}}q_{0} -p_{0}\end{array})=T$ $( \frac{0}{\frac x_{0}\Delta,\mu}$ $\frac{X}{\mu,0}\alpha 0)T^{-1}$ , (3.4.6)

$(\begin{array}{ll}p_{1} \overline{q_{1}}q_{1} -p_{1}\end{array})=TA$ $( \frac{0}{\frac x_{1},\mu}$ $\frac{X}{\mu_{1},0})A^{-1}T^{-1}$ . (3.4.7)

Remark 3.8. We can assume that $q_{0},$ $q_{1}\neq 0$ : If, by accident, some $T$ should give $q_{j}=0$

for some $j$ , it is easy to show that we can modify $T$ by multiplying from the left by a
constant unitary matrix $U$ , such that $\hat{T}=UT$ will yield $q_{0},$ $q_{1}\neq 0$ , while unitarity on $S^{1}$

will be maintained. That is, if simultaneously unitarizing $M_{0},$ $M_{1}$ is possible at all, it is
also possible in a way such that $q0,$ $q_{1}\neq 0$ .

Equations (3.4.4) to (3.4.7) give necessary and sufficient conditions for $T$ to unitarize
both $M_{0}$ and $M_{1}$ . More precisely, $TwiU$ render $M_{0}$ and $M_{1}$ unitary iff there exist functions
$p_{0},$ $q_{0},p_{1},$ $q_{1}$ depending on $\lambda$ such that equations (3.4.5) to (3.4.7) hold. In this case the
unitarized monodromy matrices $\hat{M}_{j}$ are given by (3.4.4).

Based upon this, one can proof the following theorem:

Theorem 3.9. Let $M_{0}(\lambda),$ $M_{1}(\lambda)$ be given by (3.3.14), (3.3.15), respectively. Then we
obtain a matrix function $T=T(\lambda)$ simultaneously unitarizing $M_{0}(\lambda)$ and $M_{1}(\lambda)$ by the
following steps;

1. Solve
$p_{0}p_{1}+ \frac{q_{0}\overline{q_{1}}+\overline{q_{0}}q_{1}}{2}=\frac{\cos(2\pi\mu_{0})\cos(2\pi\mu_{l})+\cos(2\pi\mu_{\infty})}{\sin(2\pi\mu_{0})\sin(2\pi\mu_{1})}$ (3.4.8)

for functions $p_{0},$ $q_{0},p_{1},$ $q_{1}$ satisfying (3.4.5).

2. Compute $\omega_{0}$ from

$\omega_{0}=\frac{1}{2i\sqrt{\kappa_{11}^{01}\kappa_{12}^{01}}\sqrt{q_{0}q_{1}}}\sqrt{\frac{\mu_{0}}{\mu_{1}}}\sqrt{(q_{0}+q_{1}-p_{0}q_{1}+p_{1}q_{0})(-q0+q_{1}-p_{0}q_{1}+p_{1}qo)}$ .

(3.4.9)

3. Compute $T$ from

$T= \frac{1}{2\sqrt{q_{0}}}(^{\sqrt{X_{0}K}[(\omega_{0}+\omega_{0}^{-1})+p_{0}(\omega_{0}-\omega_{0}^{-1})]}\sqrt{KX_{0}}q_{0}(\omega_{0}-\omega_{0}^{-1})$ $\sqrt{x_{n_{0}}\overline{\mu}}[(\omega_{0}-\omega_{0}^{-1})+p_{0}(\omega_{0}+\omega_{0}^{-1})]\sqrt{X_{\Delta}\overline{\mu}0}q_{0}(\omega_{0}+\omega_{0}^{-1})$

(3.4.10)

Remark 3.10. Note that theorem 3.2 guarantees the existence of the matrix $T$ and
therefore also the solvability of equation (3.4.8) for functions $p_{0},$ $q_{0},p_{1},$ $q_{1}$ satisfying (3.4.5)
as long as the eigenvalues $\mu_{j}$ of the Delaunay matrices $D_{j}$ inducing the potential $\eta$ as
explicated in section 3.1 meet the unitarizability condition (3.1.15). $\ln$ fact, the necessity
of (3.1.15) can be derived from equations (3.4.8) and (3.4.5) itself: It is easy to see that
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for any functions $p_{j},$ $q_{j}$ satisfying (3.4.5) the left hand side of (3.4.8) will only take values
in [-1, 1]. This needs to hold for the right hand side as well, that is

$-1 \leq\frac{\cos(2\pi\mu_{0})\cos(2\pi\mu_{l})+\cos(2\pi\mu_{\infty})}{\sin(2\pi\mu_{0})\sin(2\pi\mu_{1})}\leq 1$ . (3.4.11)

Since on $S^{1}$ we have $0 \leq\mu_{j}\leq\frac{1}{2}$ and therefore $\sin(2\pi\mu_{0})\sin(2\pi\mu_{1})\geq 0$ , this is equivalent
to

$|\cos(2\pi\mu_{0})\cos(2\pi\mu_{1})+\cos(2\pi\mu_{\infty})|\leq\sin(2\pi\mu_{0})\sin(2\pi\mu_{1})$ , (3.4.12)

which in turn-as carried out in remark 3.7.4 of [ll]-is equivalent to (3.1.15).

4 Rotationally symmetric trinoids

4.1 Introductory conventions
In this section we discuss a special class of trinoids, namely CMC-trinoids which are
invariant under the rotation $R$ by the angle $\frac{2\pi}{3}$ around an axis $v=(v_{1}, v_{2}, v_{3})^{T}\in \mathbb{R}^{3}$ :

$(R\circ\psi)(\tilde{M})=\psi(\tilde{M})$ . (4.1.1)

Here $\psi=\psi_{\lambda=1}$ denotes the CMC-immersion, defined on $\tilde{M}=\mathbb{H}$ and generated by a
trinoid potential $\eta$ via the loop group method as described in section 2.4. A CMC-trinoid
$satiS\mathfrak{h}ring$ equation (4.1.1) will be called a rotationally symmetric trinoid.

Remark 4.1. In section 3 we have introduced CMC-trinoids as immersions defined on
$M=\hat{\mathbb{C}}\backslash \{0,1, \infty\}$ . When we talk about CMC-trinoids $\psi$ on $\tilde{M}$ , we mean CMC-immersions
defined on $\tilde{M}$ which descend to $M$ (in the sense of section 3) to yield a CMC-trinoid $\phi$

with embedded ends on $M$ . Note that, since we have by construction $\psi(\tilde{M})=\phi(M)$ ,
equation (4.1.1) is obviously equivalent to $(R\circ\phi)(M)=\phi(M)$ .

Referring to remark 2.2, we recall that the CMC-imnersion $\psi=\psi_{\lambda=1}$ obtained ffom
a holomorphic potential $\eta$ by the loop group method actually takes values in $su_{2}=$

$\{\frac{-i}{2}(\begin{array}{llll} z x +iyx -iy -z\end{array}); x, y, z \in \mathbb{R}^{3}\}$ . To carry out explicit computations, we therefore

need to translate the rotation $R$ on $\mathbb{R}^{3}$ into the $su_{2}$-modell” by use of the isomorphism $J$

defined in (2.3.2). A straightforward computation shows that the corresponding rotation
$JoRoJ^{-1}$ on $su_{2}$ is given by conjugation with the matrix

$D= \pm\frac{1}{2}(I-i\sqrt{3}(_{v_{1}+iv_{2}}v_{3}v_{1}-iv_{2}-v_{3})\in SU(2)$ . (4.1.2)

bom now on, we will no longer distinguish between the rotations $R$ (on $\mathbb{R}^{3}$ ) and $J\circ R\circ J^{-1}$

$($on $su_{2})$ . Thus, we denote the latter again by $R$ and obtain

$R\circ\psi=D\psi D^{-1}$ . (4.1.3)
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4.2 Implications of rotational symmetry
Next, we collect some useful implications of equation (4.1.1).

First we note that (4.1.1) implies that the embedded ends of a rotationally symmet-
ric trinoid are rotated by $R$ into each other. This means that the asymptotic Delaunay
surfaces associated with the ends are rotated into each other as well. Hence, these De-
launay surfaces only differ by a rigid motion on $\mathbb{R}^{3}$ . This implies in particular that the
corresponding Delaunay matrices $D_{j},$ $j=0,1,$ $\infty$ , (see section 3.1 for more details) all
possess the same eigenvalues. Therefore, in the case of a rotationally $s$}$mmetric$ trinoid,
we necessarily have

$\mu_{0}=\mu_{1}=\mu_{\infty}$ . (4.2.1)

By equipping $\tilde{M}$ with the pullback metric induced by $\psi,\tilde{M}$ becomes a complete
Riemannian manifold. Thus, we can make use of the following lemma. While the first
part of the lemma is a consequence of proposition I.11.3 of [13], the second part is obtained
by a simple argument.

Lemma 4.2. Let $\psi_{\sim}be$ an immersion on $\tilde{M}$ and $R$ an element ofAut $(\psi(\tilde{M}))$ , the automor-
phism group of $\psi(M)$ . Then, if $\tilde{M}$ is complete, there entsts an $aut_{omo7}phism\tilde{\sigma}\in$ Aut $(\tilde{M})$

such that the following holds:

1.
$R\circ\psi=\psi\circ\tilde{\sigma}$ . (4.2.2)

2. There exists $z_{*}\in\tilde{M}$ such that
$\tilde{\sigma}(z_{*})=z_{*}$ . (4.2.3)

Let a be an automorphism of $\tilde{M}$ with fixed point $z_{*}$ , associated with the rotation $R$

given by (4.1.3) in the sense of the above lemma. By theorem 2.4.1 of [11], the extended
frame $F$ : $\tilde{M}arrow\Lambda SU(2)_{\sigma}$ corresponding to $\psi$ (cf. section 2.3) transforms under a as
follows:

$F(\tilde{\sigma}(z), \lambda)=\chi(\lambda)F(z, \lambda)k(z)$ , (4.2.4)
where $\chi\in\Lambda SU(2)_{\sigma}$ is independent of $z$ and $k$ denotes a function of $z$ , which is independent
of $\lambda$ . Furthermore, we have

$\chi(1)=D$ . (4.2.5)
By remark 2.1 it is possible to assume w.l.o.g. $F(z., \lambda)=I$ . Thus, (4.2.4) implies

$\chi(\lambda)=(k(z_{*}))^{-1}$ , (4.2.6)

which means that $\chi$ is actually independent of $\lambda$ . Equation (4.2.5) then implies $\chi(\lambda)=D$

for all $\lambda\in S^{1}$ , and we obtain for all $\lambda\in S^{1}$

$F(\tilde{\sigma}(z), \lambda)=DF(z\}\lambda)k(z)$ . (4.2.7)

This carries over to the holomorphic frame $H$ (see section 2.4 of [11]):

$H(\tilde{\sigma}(z), \lambda)=DH(z, \lambda)$ . (4.2.8)

$\ln$ this context, one can prove the following theorem:
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Theorem 4.3. Let $\psi$ : $\tilde{M}=\mathbb{H}arrow su_{2}$ be a rotationally symmetric tnrnoid with respect to
the rotation $R$ , which is carried out on $su_{2}$ by conjugation with the matrix D. Assume $R$

rotates the trrnoid end at $z_{j}$ into the end at $z_{k}$ . Furthermore, let $\tilde{\sigma}$ be an automorphism
of $\tilde{M}$ given by lemma 4.2 with fixed point $z_{*}\in\tilde{M}$ .

Then there exists a holomorphic frame $H$ corresponding to $\psi$ which transforms under $\tilde{\sigma}$

as in (4.2.8). Moreover, the monodromy matrices $M_{j}(\lambda)$ associated with $H$ by surrounding
the singularities $z_{j},$ $j=0,1,$ $\infty_{f}$ are related by

$M_{k}(\lambda)=DM_{j}(\lambda)D^{-1}$ . (4.2.9)

4.3 Simultaneous unitarization of the monodromy matrices as-
sociated with rotationally symmetric trinoids

Let $\eta$ be a trinoid potential generating a rotationally symmetric CMC-trinoid $\psi$ with
regard to the rotation $R$ . In particular, by the previous section, the three Delaunay
matrices $D_{0},$ $D_{1},$ $D_{\infty}$ associated with $\eta$ satisfy $\mu_{0}=\mu_{1}=\mu_{\infty}$ . We will now explicitly
carry out the procedure given in section 3.4 to obtain the “right” solution $\hat{H}$ of the
differential equation $dH=H\eta$ , which produces $\psi$ . This procedure will simplify, as we
are going to implement the implications of the rotational symmetry of the trinoid, which
have been explicated in section 4.2.

As the image $\tilde{\psi}(\tilde{M})$ of a $r_{\sim}otationa1$ symmetric trinoid $\tilde{\psi}$ with arbirary axis of rotation
$v$ differs $hom$ the image $\psi(M)$ of a rotational symmetric trinoid $\psi$ with axis of rotation
$v_{0}=(0,0,1)^{T}$ only by a rigid motion on $\mathbb{R}^{3}$ , we will restrict our discussion of rotational
symmetric trinoids from now on without loss of generality to the case where $R$ denotes
the rotation by the angle $\frac{2\pi}{3}$ around the z-axis in $\mathbb{R}^{3}$ , that is

$v=v_{0}=(0,0,1)^{T}$ . (4.3.1)

In this case, the matrix $D$ corresponding to the rotation $R$ by (4.1.3) is given by

$D=\pm(\begin{array}{ll}e^{\frac{-\pi i}{3}} 00 e^{\frac{\pi}{3}}\end{array})$ . (4.3.2)

Furthermore, we assume w.l. $0.g$ . that the ends of the trinoid are permuted under $R$

as $z_{0}\mapsto z_{1}\mapsto z_{\infty}\mapsto z_{0}$ . (The second possibility of permuting the ends just correponds
to a rotation in the opposite direction.) The Moebius transformation on $\hat{\mathbb{C}}$ satisfying
$0\mapsto 1\mapsto\infty\mapsto 0$ as well as the covering function $\pi$ : $\tilde{M}=\mathbb{H}arrow M=\hat{C}\backslash \{0,1, \infty\}$ are well
known (cf., e.g., [14], p. 52 for the latter). Therefore, an automorphism a corresponding
to $R$ in the sense of lemma 4.2 can be explicitly computed:

$\tilde{\sigma}$ : $\tilde{M}arrow\tilde{M},$ $z \mapsto\frac{-1}{1+z}$ . (4.3.3)

In particular, $\tilde{\sigma}$ has fixed points at $\frac{-1\Leftrightarrow\sqrt{3}}{2}$ .
Recall that we obtain the “right” solution $\hat{H}$ by dressing the solution $H$ given in (3.4.1)

with the $\lambda$ dependent matrix $T$ from (3.4.10) determined by functions $p_{0},$ $q_{0},p_{1},$ $q_{1},$ $\omega_{0}$

satisfying equations (3.4.5), (3.4.9) and (3.4.8). In particular, $\hat{H}=TH$ will have unitary
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monodromy matrices $\hat{M}_{j}=TM_{j}T^{-1}$ given by (3.4.4). By applying theorem 4.3 to $\hat{H}$ , we
furthermore need to require

$\hat{M}_{1}=D\hat{M}_{0}D^{-1}$ . (4.3.4)
By (3.4.4), this immediately implies

$p_{1}=p_{0}$ , $q_{1}=e^{24}3q_{0}$ . (4.3.5)

Thus, in the case of a rotationally symmetric trinoid, we obtain the following equivalent
reformulations of (3.4.5) and (3.4.8):

$p_{0}=\overline{p_{0}}$ and $p_{0}^{2}+q_{0}\overline{q_{0}}=1$ , (4.3.6)

$p_{0}^{2}- \frac{q_{0}\overline{q_{0}}}{2}=\frac{\cos^{2}(2\pi\mu)+\cos(2\pi\mu)}{\sin^{2}(2\pi\mu)}$ , (4.3.7)

where $\mu$ $:=\mu_{0}=\mu_{1}=\mu_{\infty}$ .
An easy calculation shows that all solutions $p_{0},$ $q_{0}$ to this system of equations are

given$-$ by

$p_{0}= \pm\frac{\cos(\pi\mu)}{\sqrt{3}\sin(\pi\mu)}$ , (4.3.8)

$q_{0}= \frac{\zeta_{0}}{\sqrt{3}\sin(\pi\mu)}$ , (4.3.9)

where $\zeta_{0}$ is obtained by solving

$\zeta_{0}\overline{\zeta_{0}}=4\sin^{2}(\pi\mu)-1$ . (4.3.10)

Remark 4.4. Since the expression 4 $\sin^{2}(\pi\mu)-1$ is holomorphic on $\mathbb{C}^{*}$ , it can be written
in a “Weierstrai3 product representation” as a product of factors of the form $(\lambda-\lambda_{j})$ times
$e^{f(\lambda)}$ , where $\lambda_{j}$ denote the roots of 4 $\sin^{2}(\pi\mu)-1$ and $f$ is a function of $\lambda$ . Note that the
roots appear in pairs $\lambda_{j},$

$=^{1}\lambda_{j}$ . It turns out that this ensures the solvability of (4.3.10). As
4 $\sin^{2}(\pi\mu)-1$ possesses infinitely many pairs of roots, there are in fact infinitely many
possibilities to solve (4.3.10), since for each pair one is free to choose which root will
contribute to $\zeta_{0}$ and which one to $\overline{\zeta_{0}}$ .

Finally, in addition to (4.3.4) also the equations $\hat{M}_{\infty}=D\hat{M}_{1}D^{-1}$ and $\hat{M}_{0}=D\hat{M}_{\infty}D^{-1}$

have to hold. An easy calculation shows, that this implies that only

$p_{0}=- \frac{\cos(\pi\mu)}{\sqrt{3}\sin(\pi\mu)}$ (4.3.11)

can occur.
$Altogeth_{\sim}er$ , by computing $\omega_{0}$ from (3.4.9), we obtain T&om (3.4.10) which will produce

a solution $H=TH$ to $dH=H\eta$ , that generates a trinoid via the loop group method
with unitary monodromy matrices $M_{j}$ satisfying (4.2.9). The latter ones are explicitly
given by

$\hat{M}_{0}=\cos(2\pi\mu)\cdot I+\frac{2i}{\sqrt{3}}\cos(\pi\mu)(^{-\cos(\pi\mu)}\zeta_{0}$ $\cos(\pi\mu)\overline{\zeta_{0}}$ , (4.3.12)

$\hat{M}_{1}=\cos(2\pi\mu)\cdot I+\frac{2i}{\sqrt{3}}\cos(\pi\mu)(^{-c(\pi\mu)}e^{\frac{oS2\pi i}{3}}\zeta_{0}$ $\cos(\pi\mu)e--aa^{\underline{\pi i}}\overline{\zeta_{0}}$ . (4.3.13)
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Remark 4.5. Note that $\hat{M}_{j}(\lambda=1)=\pm 1$ and $\partial_{\lambda}\hat{\Lambda}I_{j}(\lambda)|_{\lambda=1}=0$ hold for $j=0,1$ . Thus,
by theorem 2.5 together with remark 3.4, the new solution $\hat{H}=TH$ produces a CMC-
immersion that descends to $M$ .

Remark 4.6. Altogether, we have proved, that the solution $II=TH$ to $dH=H\eta$
corresponding to a rotationally symmetric trinoid is obtained from $H$ given in section
3.4 by dressing with a matrix $T$ of the form above. Furthermore, we obtain monodromy
matrices of the above form. As a consequence, we have classified all CMC-trinoids with
monodromy matrices satisfying the “rotation relation” (4.2.9).

Computer experiments carried out by Kilian, Schmitt, Sterling [16] indicate that there
exist trinoids produced by the given $H$ and a $T$ of the given form which are actually not
rotationally symmetric. Such trinoids would only satisfy the “rotation relation” (4.2.9)
for the monodromy matrices, but not the defining condition given in equation (4.1.1). It
remains to study, in which cases the $T$ given above $wiU$ actually give rise to a solution $\tilde{H}$

generating a rotationally symmetric trinoid.
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