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Receiitly surfaces in three-diiiiensioiial hoiiiogeneous $s^{1}paces$ which differ $fi\cdot om$

the $s\cdot pace$ fornoe attract alot of attention. Mainly for ambient $spac$ there
are taken three-diiiiensional spaces with the Thurston $geo_{2}m$etries 1 or $siniplyarrow$

connected spaces with afoui$\cdot$-dimensional isoinetry group.
We coiisider the case when the anibient space is aLie group because it is

straightforward (see $[4|)$ to geiieralize the Weierstrass representation of surfaces
in $\mathbb{R}^{3}$ to this case. This representation involves $t1_{1}e$ Dirac operator wliich plays
an iiiiportaiit role in maiiy iiitegrable soliton equations and has arich and far-
developed spectral theory [21, 22].

$\ln$ particular, we have been $illteres^{\backslash }ted$ from the beginning in the following
questions:

1 $)$ it is known that certain $clses$ of surfaces in the space $foi^{\backslash }ins$ are $des^{\backslash }cribed$

by sonie integrable $systell\mathfrak{B}$ (for $ins^{\tau}tance$ , constant niean curvature tori).
How such surfaces are described in new geometries?
If these $su\uparrow faces$ are described by some integrable systems how these systems

obtained from the old ones and $ho\cdot w$ the curvature of the ambient space contribute
to the deformation of an $integ\uparrow able$ system?

2 $)$ it is known that some spectral data of the Dirac operator coiiiing in the
Weierstr$s$ representation of asurface in $\mathbb{R}^{3}$ have geometrical nieanings and, in
particular, the Willniore $f\iota inctional$ serves as an exainple [21, 22].

What mean these spectral data for surfaces in other ambient spaces (Lie
groups$)$ ?

We discuss some partial answers to tliese questions in \S \S 4 alld 5.
We also would like to inention tliat the choice of Lie group$s$ as the anibient

spaces is not very $rtrictive$ since it covers all spaces $E(\kappa, \tau)$ but $S^{2}\cross \mathbb{R}$ and
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lThese are the space forms $\mathbb{R}^{3},$ $S^{3}$ , and $\mathcal{H}^{3}$ ; the product geometries $S^{2}x\mathbb{R}$ and $\mathcal{H}^{2}x\mathbb{R}$ ; and

three geometries modeled on the Lie groups Nil, Sol, and $S\overline{L(2,}\mathbb{R}$) with certain left-invariant
metrics.

2 All such spaces are locally isometric to line bundles (with the bundle curvature $\tau$ ) over
space forms (with the curvature $\kappa$): for $\kappa\neq 4\tau^{2}$ we have the spaces $E(\kappa, \tau)$ from the table
below

$\tau=0$
$\mathcal{H}^{2}\cross \mathbb{R}\kappa<0$ $\kappa=0\mathbb{R}^{3}$ $S^{2}\cross \mathbb{R}\kappa>0$

$\tau\neq 0$ $SL(2, \mathbb{R})$ Nil Berger spheres

and for $\kappa=4\tau^{2}$ we have spaces of constant curvature.
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the Thurston geometries again except $S^{2}\cross \mathbb{R}$ (see remarks on page 9).
1. The Weierstrass representation of surfaces in $\mathbb{R}^{3}$ and the Will-

more functional
The original Weierstrass representation of ntinimal surfaces in $\mathbb{R}^{3}$ may be

considered as an integrable system in geometry because it gives an explicit
forinula for a general solution to the minimal surface equation in $\mathbb{R}^{3}$ in terms
of a pair of arbitrary holoniorphic functions. It is as follows. Let $z\in D\subset \mathbb{C}$

and, for siniplicity, assume that a doniain $D$ is simply connected. Let $f$ aiid $g$

be holomorphic functions on $D$ . Then the Weierstrass (-Enneper) formulas

$x^{1}(z, \overline{\approx})=x_{0}^{1}+\frac{i}{2}\int[(f^{2}+g^{2})dz-(f^{\eta}+\overline{g}^{2})d\overline{z})]$ ,

$x^{2}=x_{0}^{2}+ \frac{1}{2}/[(g^{2}-f^{2})dz+(\overline{g}^{2}-\overline{f}^{2})d\overline{z})]$ , (1)

$x^{3}=x_{0}^{3}+/(fgdz+\overline{f}\overline{g}d_{\overline{\tilde{4}}}|)$

define a iiiinimal surface in $\mathbb{R}^{3}$ . Here the integrals defiming $x(P)$ , the image of
$P\in D$ , are taken along a path $\gamma\subset D$ from the point $P_{0}$ such that $x(P_{0})=x0$

to $P$ . Since the integrands are closed forms this is independent on the choice
of $\gamma$ . The induced metric takes the form $(|f|^{2}+|g|^{2})^{2}dzd_{\wedge}^{\overline{\gamma}}$ and therefore $z$ is a
conformal parameter on the surface

In fact, the condition that $z$ is a conformal paranieter is written as

$( \frac{\partial x^{1}}{\partial z})^{2}+(\frac{\partial x^{2}}{\partial z})^{2}+(\frac{\partial x^{\tilde{3}}}{\partial})^{2}=0$ ,

i.e., $(r_{u}, r_{u})=(r_{v}, r_{v}),$ $(r_{u}, r_{v})=0$ where $u$ and $v$ are the $isothern\dot{u}c$ coordinates
such that $z=u+iv$ , and $r_{u}=2{\rm Re} \frac{\partial x}{\partial_{\overline{k}}}$ and $r_{\iota},$

$=-2{\rm Im} \frac{\partial x}{\partial z}$ are the corresponding
tangent vectors to the surface. The quadric

$Q=\{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=0\}\subset \mathbb{C}P^{2}$

gives a one-to-one parametrization of oriented two-planes in $\mathbb{R}^{3}$ by corresponding
to every plane its homogeneous coordinates $((\xi^{1}-i\eta^{1}) : (\xi^{2}-i\eta^{2}):(\xi^{3}-i\eta^{3}))$

where $(\xi, \eta)$ is a positively oriented basis for the plane such that $|\xi|=|\eta|$ and $\xi$

is orthogonal to $\eta$ . Due to the homogeneity of coordinates in $\mathbb{C}P^{2}$ this mapping
is correctly defined, i.e., is independent on the choice of a basis $(\xi, \eta)$ . Hence
the mapping

$P arrow(\frac{\partial x^{1}(P)}{\partial z}:\frac{\partial x^{2}(P)}{\partial_{\tilde{4}}}:\frac{\partial x^{3}(P)}{\partial_{\tilde{4}}})\in Q$

is the Gauss map of the surface. The quadric $Q$ , the Grassmannian of oriented
two-planes in $\mathbb{R}^{3}$ , admits a natural rational parametrization:

$(f:g) arrow(\frac{i}{2}(f^{2}+g^{2}):\frac{1}{2}(g^{2}-f^{2}):fg)$ . (2)

From this interpretation of the Gauss map it is clear that
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$\bullet$ any surface, not only ntinimal, is defined by the Weierstrass forniulas for
the factorization $(f, g)$ of the Gauss map.

The Gauss-Codazzi equations written in terins of $(f, g)$ distinguish mappings
$D(f:g)arrow Q$ which are the Gauss maps of surfaces. It is straightforward to compute
that these equations take the form

$\mathcal{D}\psi=0$

where $\mathcal{D}$ is the Dirac operator

$\mathcal{D}=(-o_{\overline{\partial}}$ $\partial 0$ $+(U0$ $V0$ (3)

and
$\psi=(\begin{array}{l}\psi_{1}\psi_{2}\end{array})(\frac{f}{g})$ .

For surfaces in $\mathbb{R}^{3}$ the potentials $U$ and $V$ and the induced metric are

$U=V= \frac{He^{\alpha}}{2}$ , $e^{2\alpha}dzd_{\overline{\tilde{4}}}=(|\psi_{1}|^{2}+|\psi_{2}|^{2})^{2}dzd^{\overline{\vee}}\sim$. (4)

We conclude that
$\bullet$ a general surface in $\mathbb{R}^{3}$ is represented by the Weierstrass formulas (1) for

some solution to the Dirac equation with the potentials (4) aild the inverse
is also true: any solution to the Dirac equation with real-valued potentials
$U=V$ defines via (1) a surface in $\mathbb{R}^{3}$ with the mean curvature and the
induced metric given by (4).

This representation has some prehistory for which we refer to [22] however
for $U\neq 0$ the formulas in terms of the Dirac operator first appeared in [15]
where they were introduced for inducing surfaces admitting certain soliton de-
foriuations. This operator has a rich spectral theory and, in particular, we
started in $[$21] to study possible relations between the spectral properties of $\mathcal{D}$

and the geometry of the corresponding surfaces. In particular, it appears that
for a closed oriented surface $M\subset \mathbb{R}^{3}$ the integral

$E(M)=/A\prime I$ UVdxdy (5)

is one-fourth of the Willmore functional

$\mathcal{W}(M)=/M^{H^{2}d\mu}$ (6)

where $d\mu$ is the induced measure on $M$ . The Willmore functional is the basic
functional in the conformal surface geometry, and the integral (5) is an impor-
tant spectral quantity of the Dirac operator $\mathcal{D}$ .

The Willmore conjecture states that $\mathcal{W}$ attains its minima for tori which
is equal to $2\pi^{2}$ on the Clifford torus and its images under conformal transfor-
mations of $\overline{\mathbb{R}}^{3}$ . The existence of the lower bounds for $\mathcal{W}$ on closed surfaces is
explained by the Weierstrass representation as follows:
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$\bullet$ there are no compact miniinal surfaces without boundary in $\mathbb{R}^{3}$ . We have
to perturb the potential $U$ from the zero level to achieve compact surfaces
and the threshold for the $L_{2}$-norm of $U$ at which conipact surfaces appear
gives this minimum level. For surfaces in $\mathbb{R}^{3}$ we have $U=\overline{U}=V$ , the
energy (5) is the squared $L_{2}$-noiuu of $U$ and it is also one-fourth of $\mathcal{W}$ .

We $propos^{m}eatl$ approach to the Willmore coiijecture $bed$ on the spectral
properties of the corresponding double-periodic (for tori) Dirac operator. Sev-
eral attempts to realize this approach led to iiiteresting results however the
conjecture stays open until recently. We refer for the survey of the Willniore
coiijecture and the spectral approach to its study to [22].

The classical $Weierstrs$ representation for niinimal surfaces corresponds to
the case $U=0$ and it enables us to consider tlie minimal surface equation in $\mathbb{R}^{3}$

$as^{\backslash }$ an integrable system. The integrability property resolves the local theory and
does iiot help straightforwardly in answering questions on the global behavior
of $surf^{\tau}a$ces. The global theory needs an additional technique concerning global
solutions to the iiitegrable system (in the case of minimal surfaces, holomorpliic
functions).

2. The Weierstrass representation of surfaces in three-dimensional
Lie groups [4]

To geiieralize $t1_{1}eWeierstras^{1}s$ represeiitation for the case when the aiiibient
space is athree-dimensioiial Lie group $G$ with aleft-invariant metric [4] we have
to replace $\frac{\partial x}{\partial z}\in \mathbb{C}^{3}$ by the element of the complexified Lie algebra:

$\frac{\partial}{\partial\approx}\in \mathbb{C}^{3}arrow\Psi=f^{-1}\frac{\partial f}{\partial z}\in g\otimes \mathbb{C}$

where
$f;Marrow G$

is an immersion of a surface and $z$ is a conformal parameter on $M$ . In terms of
$\Psi$ and $\Psi^{*}=f^{-1}f_{\sim}=\backslash \overline{I}!$ the derivational equations take the form

$\partial\Psi^{*}-\overline{\partial}\Psi+\nabla_{\Psi}\Psi^{*}-\nabla_{\Psi}*\Psi=0$ ,

$\partial\Psi^{*}+\overline{\partial}\Psi+\nabla_{\Psi}\Psi^{*}+\nabla_{\Psi}*\Psi=e^{2\alpha}Hf^{-1}(N)$

where the Levi-Civita connection on $G$ is linearly expanded onto complex-valued
vectors $\Psi$ and $\Psi^{*},$ $N$ is the unit nornial vector field to $M$ and $e^{2\alpha}dzd.\overline{\sim}$ is
the induced metric. Originally these equations were first derived for minimal
surfaces in $[$ 11 $]$ .

Given an orthonormal basis $e_{1},$ $e_{2},$ $e_{3}$ for $g$ , we expand $\Psi$ in this basis

$\Psi=Z_{1}e_{1}+Z_{2}e_{2}+Z_{3}e_{3}$ .

The conformality condition again takes the form

$Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}=0$ .
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Let us use the same factorization of $Z$ : $Marrow Q$ as in the Euclidean case:

$Z_{1}= \frac{i}{2}(\overline{\psi}_{2}^{2}+\psi_{1}^{2})$ , $Z_{2}= \frac{1}{2}(\overline{\psi}_{2}^{2_{-S}}\psi_{1}^{2})$ , $Z_{3}\simeq\psi_{1}\overline{\psi}_{2}$ .

The derivational equations take the form of the Dirac equation

$\mathcal{D}\psi=0$

and the induced metric is again equal to

$e^{2\alpha}dzd\overline{z}=(|\psi_{1}|^{2}+|\psi_{2}|^{2})^{2}dzd_{\overline{\tilde{4}}}$ .
Therewith we call $\psi$ a generating spinor of a surface.

In difference with the Euclidean case, the potentials $U$ and $V$ are not always
real-valued and do not always coincide.

Theorem 1 ([4]) The $potentia\underline{ls}$of the Weierstrass representation of surfaces
in the Lie groups $SU(2)$ , Nil, $SL(2,\mathbb{R})$ , and Sol, endowed with the Thurston
geometries, are as follows:

1. $G=SU(2)$ :
$U=^{-}= \frac{1}{2}(H-i)e^{\alpha}$ ;

2. $G=Ni1$ :
$U=V= \frac{He^{\alpha}}{2}+\frac{i}{4}$ $(|\psi_{2}|^{2}$ 一 $|\psi_{1}|^{2})$ ;

3. $G=S\overline{L(2,\mathbb{R}})$ :

$U= \frac{He^{\alpha}}{2}+i(\frac{1}{2}|\psi_{1}|^{2}-\frac{3}{4}|\psi_{2}|^{2})$ , $V= \frac{He^{\alpha}}{2}+i(\frac{3}{4}|\psi_{1}|^{2}-\frac{1}{2}|\psi_{2}|^{2})$ ;

4. $G=So1.\cdot 3$

$U= \frac{He^{\alpha}}{2}-\frac{1}{2}\overline{\psi}_{2}^{2}\frac{\overline{\psi}_{1}}{\psi_{1}}$ , $V= \frac{1}{2}He^{\alpha}+\frac{1}{2}\overline{\psi}_{1}^{2}\frac{\overline{\psi}_{2}}{\psi_{2}}$ .

These potentials are written with respect to certain choices of orthogonal
bases for $g$ wliich are as follows:

a$)$ Sol admits a natural splitting

$1arrow \mathbb{R}^{2}arrow So1arrow \mathbb{R}$

which induces the submersion Sol $arrow \mathbb{R}=So1/\mathbb{R}^{2}$ whose leaves are minimal
surfaces. We put $e_{3}$ to be the pullback of the unit vector on $\mathbb{R}$ . Hence, $Z_{3}=$

$\psi_{1}\overline{\psi}_{2}=0$ if the tangent plane to a surface is tangent to a ntinimal leave. For
3Here we correct the sign of the second term in the expression for $U$ miscalculated in [4].
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a surface in Sol the Dirac equation is correctly defined only in domain $D=$
$\{Z_{3}\neq 0\}$ . It is natural to assunie that $U=V=0$ outside $D$ . Then the Dirac
equations hold everywhere outside $\partial D$ , the boundary of $D$ , at which $4\perp\psi_{1}$ and $\overline{4}z1\int$

)
$2$

inay have indeterininancies;

b $)$ for Nil aiid $SL(2,\mathbb{R})$ we assume that $e_{3}$ is directed along the axis of
isometry rotation. Both these groups admit four-dimensional isometry groups
and such an axis is uniquely defined everywhere.

These Dirac equations differ from their Euclidean analog in several aspects:
a$)$ there are constraints which relate solutions $\psi$ corresponding to surfaces

with potentials. In the Euclidean case any solution corresponds to a surface.
This demonstrates the absence of dilations in these Lie groups;

b $)$ the reconstruction of the surface $f$ : $Marrow G$ from $\psi$ needs solving the
linear equation

$f_{z}=f\Psi$ .
In the Euclidean case a solution to this equation is given by (1);

c $)$ solutions to these Dirac equation does not admit the quaternion symmetry,

i.e., if $(\begin{array}{l}\psi_{l}\psi_{2}\end{array})$ satisfies $\mathcal{D}\psi=0$ then in general $\psi^{*}=(\overline{\psi}_{1})$ does not meet

this equation. This hinders to use the Dirac equation for interpretting surfaces as
holomorphic sections of certain line bundles and applying some ideas of algebraic
geonietry as it is done for surfaces in $\mathbb{R}^{3}$ and $\mathbb{R}^{4}$ in $[$ 8$]$ .

Corollary 1 4 The generating spinors of minimal surfaces in the Lie groups
Nil, $SL(2,\mathbb{R})$ , and Sol are given by the following equations:

1. $G=$ Nil:

$\overline{\partial}\psi_{1}=\frac{i}{4}(|\psi_{2}|^{2}-|\psi_{1}|^{2})\psi_{1}$ , $\partial\psi_{2}=-\frac{i}{4}(|\psi_{2}|^{2}-|\psi_{1}|^{2})\psi_{2;}$

2. $G=S\overline{L(2,}\mathbb{R})$ ;

$\overline{\partial}\psi_{1}i(\frac{3}{4}|\psi_{1}|^{2}-\frac{1}{2}|\psi_{2}|^{2})\psi_{2}$ , $\partial\psi_{2}-i(\frac{1}{2}|\psi_{1}|^{2}-\frac{3}{4}|\psi_{2}|^{2})\psi_{1}$ ;

3. $G=So1$ :
$\overline{\partial}\psi_{1}=\frac{1}{2}\overline{\psi}_{1}^{2}\overline{\psi}_{2}$, $\partial\psi_{2}=\frac{1}{2}\overline{\psi}_{1}\overline{\psi}_{2}^{2}$ .

In other ternrs the Weierstrass type representations for niinimal surfaces in
Nil and Sol were derived in [12, 13].

We remark that Friedrich showed that the $\psi$-spinor for surfaces in $\mathbb{R}^{3}$ may
be interpreted as the restriction of the parall$e1$ spinor field in $\mathbb{R}^{3}$ onto the surface
$[$ 10$]$ . Later a similar description of such representations for surfaces in $S^{3}$ and

$\mathcal{H}^{3}$ was derived in [16] and very recently the same was done for surfaces in the

4We skip here the well-studied case of minimal surfaces in the unit three-sphere $SU(2)$ .
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spaces with a four-diniensional isonietry group [20] (this paper uses description
of immersions in other terms obtained in [6] $)$ . In the first case the parallel spinor
field is replaced by real and imaginary Killing fields and and in the second case
it is replaced by certain generalized Killing spinor fields.

3. Surfaces in general Lie groups and families of Lie groups.
The Weierstrass representation niethod admits us to write such $representaarrow$

tions straightforwardly for a general Lie group and even to consider surfaces in
fainilies of Lie groups. We demonstrate that for a certa\’in family which includes
some well-known spaces.

Let us remind THE BIANCI CLASSIFICATION of real three-dimensional Lie
algebras.

For such an algebra $g$ there is a basis $e_{1},$ $e_{2},$ $e_{3}$ such that the commutation
relations take the form

$[e_{1}, e_{2}]=ae_{2}+b^{(3)}e_{3}$ , $[e_{1}, e_{3}]=ae_{3}-b^{(2)}e_{2}$ , $[e_{2}, e_{3}]=b^{(1)}e_{1}$

with a$b^{(1)}=0$ , hence the Lie algebra is included in the following table

Type $a$
$b^{(1)}$ $b^{(2)}$ $b^{(3)}$ Type $a$

$b^{(1)}$ $b^{(2)}$ $b^{(3)}$

I $0$ $0$ $0$ $0$ $VI_{0}$ $0$ 1 $-1$ $0$

II 01 $0$ $0$ $V1_{a},$ $0<a<\infty,$ $a\neq 1$ a $0$ 1 $-1$

$11IIV$ $11$ $00$ $01$ $-11$ $VlI_{a},a>0VI1_{0}$ $a0$ $01$ $11$ $01$

V 10 $0$ $0$

$v_{1^{1}x^{lI}}$ $00$ $11$ $11$ $-11$

and algebras corresponding to different entries of this table are pairwise noni-
somorphic.

The simply-connected Lie groups with Lie algebras of types I-VII have the
form

$1arrow \mathbb{R}^{2}=Harrow Garrow G/H=\mathbb{R}arrow 1$ (7)

and such an extension is uniquely defined by the action

Ad-X $=zXz^{-1}=e^{Az}X$ , $\approx\in G/H,$ $X=(\begin{array}{l}xy\end{array})\in H,$ $A\in gl(2,\mathbb{R})$ .

In $tern\mathfrak{B}$ of Lie algebras we have

$ad_{\eta}\xi=[\eta, \xi]=A\xi$

where $\eta$ and the Lie algebra $h$ of $H$ span $g$ and $\xi\in h$ . The matrices $A$ and
$\lambda BAB^{-1},$ $\lambda=$ const $\neq 0$ , define isomorphic extensions.

We have
I: $G=\mathbb{R}^{3},$ $A=0$ .
11: $G=$ Nil, the nilpotent group, $A=(\begin{array}{ll}0 10 0\end{array})$ .
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III: $G=\mathbb{R}\cross A(1)$ , where $A(1)$ is the group of all affine transformations of
$\mathbb{R}^{1};A=(\begin{array}{ll}1 00 0\end{array})$ .

IV: $A=(\begin{array}{ll}1 10 1\end{array})$ .

V: $G=A(2)$ , the group formed by three-dimensional afthie transformations
of the form

$(e_{0}^{t}I_{2}$ $s1)$ , $t\in \mathbb{R},$
$s\in \mathbb{R}^{2}$ ; (8)

$A=(\begin{array}{ll}1 00 1\end{array}),$ $I_{2}$ is the unit $(2 x2)$-matrix.

VI$0:G=$ Sol, the solvable group; $A=(\begin{array}{ll}1 00 -1\end{array})$ .

VI $a’ a\neq 0:A=(\begin{array}{ll}a -1-1 a\end{array})$ , the eigenvalues $\lambda_{1,2}$ of $A$ ar$e\lambda_{1,2}=a\pm 1$ .
VII$0:G=A(2)$ , the group of all two-dimensional affine transformations;

$A=(\begin{array}{ll}0 -11 0\end{array})$ .

VI $1_{a},$ $a\neq 0:A=(\begin{array}{ll}a 1-1 a\end{array})$ , the eigenvalues of $A$ are $\lambda_{1,2}=a\pm i$ .
The algebras of types VIII and IX do not contain two-dimensional commu-

tative subalgebras and hence does not admit the representation (7). We have
VIII: $G=SL(2,\mathbb{R})$ , the universal cover of $SL(2,\mathbb{R})$ , which is also locally

isomorphic to $SO(1,2\underline{)alld}SU(1,1)$ .
IX: $G=SU(2)=SO(3)$ .
A left-invariant metric on a Lie group $G$ is uniquely defined by its value

at the unit of $G$ , i.e. by an inner product on the Lie algebra $g$ . Given all
orthonormal basis $e_{1},$ $\ldots,$ $e_{n}$ for $g:\langle e_{i},$ $e_{j}\rangle=\delta_{ij}$ , $i,j=1,$ $\ldots,n$ , we denote by
the saine symbols the corresponding left-invariant vector fields. The Levi-Civita
connection is given by the following formulas:

$\nabla_{e_{k}}e_{j}=\Gamma_{jk}^{i}e_{i}$ , $\Gamma_{jk}^{i}=\frac{1}{2}(c_{kj}^{i}+c_{ik}^{;}+c_{ij}^{k})$ , $[e_{i}, e_{j}]=c_{ij}^{k}e_{k}$ .

Let us denote by $H_{n}$ the group of all n-dimensional affine transformations
of the form (8) with $s\in \mathbb{R}^{n-1}$ . By siiuple computations we obtain

Proposition 1 5 Let us endow the group $H_{n}$ by the left-invari ant $metri\cdot c$ for
which $e_{1}= \frac{\partial}{\partial t},$ $e_{2}= \frac{\partial}{\partial s^{1}},$

$\ldots,$
$e_{n}=\overline{\partial}s4_{n\overline{-1}}$ for the orthonormal basis in $g$ . Then

$H_{n}$ is isometric to the n-dimensional hyperbolic space $\mathcal{H}^{n}$ ,

Corollary 2 The group of type III with a certain left-invari ant metntc is iso-
metric to $\mathcal{H}^{2}x\mathbb{R}$ .

5Recently we have known that such a representation of the hyperbolic three-space was used
by Kokubu for deriving the Weierstrass representation of minimal surfaces in $\mathcal{H}^{3}[14|$ .
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Corollary 3 There is a left-invariant metric on the group of $ti/peV$ such that
such a Riemannian manifold is isometric to $\mathcal{H}^{n}$ .

$H_{n}$ acts isometrically by left translations on $\mathcal{H}^{n}=\{(x, y),$ $x\in \mathbb{R}^{n-1},$ $y\in$

$\mathbb{R},$ $y>0\}$ with the metric $\frac{\ ^{2}+dy^{2}}{y^{2}}$ as follows: $(x,$ $y)=(e^{t}x+s, e^{t}y)$ .

We see that

$\bullet$ all simply-coimected homogeneous three-spaces with a four-dimensional
isometry group except $S^{2}\cross \mathbb{R}$ are isometric to Lie groups with left-invariant
nietrics

$\bullet$ all Thurston geometries except $S^{2}\cross \mathbb{R}$ are modeled by Lie groups with
left-invariant metrics.

Let us consider the $\mu$-parameter fainily $G_{\mu}$ of Lie groups of typ$e(7)$ for
which

$A_{\mu}=(\begin{array}{ll}\mu 00 1\end{array})$ .

For $-1\leq\mu\leq 1$ these groups are pairwise nonisomorphic and as follows:
$\mu=-1$ : Sol, i.e. of the typ$e$ VI $0$ ;
$-1<\mu<0$ : VI$a’ 0<a<1,$ $\mu=\frac{a.-1}{a+1}$ ;
$\mu=0$ : III;
$0<\mu<1$ : $VI_{a},$ $1<a<\infty,$ $\mu=\frac{a-1}{a+1}$ ;
$\mu=1$ : V.
Let us take the orthonormal basis $e_{1},$ $e_{2},$ $e_{3}$ such that

$[e_{1}, e_{2}]=0$ , $[e_{3},$ $e_{1}|=\mu e_{1},$ $[e_{3}, e_{2}]=e_{2}$ .

For the corresponding left-invariant metrics we have

$G_{-1}=So1$ , $G_{0}=\mathcal{H}^{2}\cross \mathbb{R}$ , $G_{1}=\mathcal{H}^{3}$ .

Proposition 2 The potentials of the Weierstrass representation for surfaces in
$G_{\mu}$ are as follows:

$U_{\mu}= \frac{H}{2}e^{\alpha}+\frac{f^{\iota+1}}{4}|\psi_{1}|^{2}+\frac{\mu-1}{4}\frac{\overline{\psi}_{2}^{2}\overline{\psi}_{1}}{\psi_{1}}7$

$V_{\mu}= \frac{H}{2}e^{\alpha}-\frac{\mu+1}{4}|\psi_{2}|^{2}-\frac{\mu-1}{4}\frac{\overline{\psi}_{1}^{2}\overline{\psi}_{2}}{\psi_{2}}$ .

The generating spinor $\psi$ of a minimal surface in $G_{\mu}$ meets the equations

$\overline{\partial}’\psi_{1}=-\frac{\mu+1}{4}\psi_{2}^{2}\overline{\psi}_{2}-\frac{\mu-1}{4}\overline{\psi}_{1}^{2}\overline{\psi}_{2}$ ,

$\partial\psi_{2}=-\frac{\mu+1}{4}\psi_{1}^{2}\overline{\psi}_{1}-\frac{\mu-1}{4}\overline{\psi}_{2}^{2}\overline{\psi}_{1}$ .
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In early $1900s$ for proving the existence of $tlu\cdot ee$ closed nonselfintersecting
geodesics on a two-sphere with a general metric, Poincare proposed to take an
analytical $\mu$-paranieter family of nietrics which joins the metric on the ellipsoid
with three different axes and the given nietric and then to consider the analytical
continuation in $\mu$ of the plane sections of the ellipsoid. This program was not
realized however it led to sonie interesting results on perturbations of closed
geodesics under deformations of metrics.

It also would be interesting to study the $\mu$-deformations of integrable surfaces
in $G_{\mu}$ . Probably that could help to

$ext$en $d$ some $glo$bal results on well-studied minimal or, more general, con-
stant mean curvature surfaces in $G_{1}=\mathcal{H}^{3}$ to $such$ surfaces in Sol.

4. Constant mean curvature (CMC) surfaces in Lie groups
The second fundamental form of a surface in $\mathbb{R}^{3}$ is uniquely determined by

the mean curvature $H$ and the Hopf quadratic differential

$Adz^{2}=(x_{zz}, N)dz^{2}$ ,

where $x_{zz}= \frac{\partial^{2}x}{\partial z^{2}}$ and $N$ is the unit normal vector field. We have

$|A|^{2}= \frac{(\kappa_{1}-\kappa_{2})^{2}e^{4\alpha}}{16}$

where $\kappa_{1}$ aiid $\kappa_{2}$ are the principal curvatures. In terins of $\psi$ this differential
takes the form

$A=\overline{\psi}_{2}\partial\psi_{1}-\psi_{2}\partial\overline{\psi}_{2}$ .

The Gauss-Codazzi equations are

$\alpha_{z\overline{z}}+U^{2}-|A|^{2}e^{-2\alpha}=0$ (9)

which is the Gauss formula for the curvatur$e$ in ternms of the nietric and

$A_{\overline{z}}=(U_{z}-\alpha_{z}U)e^{\alpha}$

which implies that $A$ is holomorphic if and only if $H=$ const. 6

Since the only holoniorphic quadratic differential on a sphere vanishes ev-
erywhere, aiiy CMC sphere in $\mathbb{R}^{3}$ is umbilic, i.e., $\kappa_{1}=\kappa_{2}$ everywhere, and it is
easily to derive that any closed umbilic surface is a round sphere. For tori the
holomorphic quadratic differentials are constant and, since there are no umbilic
tori, the Hopf differential of a CMC torus equals const $dz^{2}\neq 0$ . By a dilation
any CMC torus is transformed into the torus with $H=1$ and then by rescaling
a conformal paranieter we may achieve $A= \frac{1}{2}$ . Then (9) takes the form

$u_{z\overline{z}}+\sinh u=0$ , $u=2\alpha$ , (10)

which is the integrable elliptic sinh-Gordon equation (see the classification of
such tori based on this integrable system in [19] $)$ .

6The analogous results were established by Hopf also for surfaces in other space forms, $S^{3}$

and $\mathcal{H}^{3}$ .
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Recently such an approach was extended for studying CMC surfaces in other
ambient spaces. The breakthrough point was a result of Abresch and Rosenberg
who proved that

$\bullet$ there is a generalized Hopf differential $A_{AR}dz^{2}$ wliich is defined on any
suzface in $S^{2}\cross \mathbb{R}$ or $\mathcal{H}^{2}\cross \mathbb{R}$ such that for $CA/IC_{6^{1}}$urfaces $A_{AR}$ is holomorphic

by deriving the explicit forniula for this differential [2]. This differential vanishes
identically on a CMC sphere and they are shown that if the equations $H=$ const
and $A_{AR}=0$ are satisfied on a closed surface $M$ then $M$ is a sphere of revolution
which iniplies that

$\bullet$ every $CA^{1}IC$ sphere in $S^{2}\cross \mathbb{R}$ or $\mathcal{H}^{2}\cross \mathbb{R}$ is a sphere of revolution.

Later they extended that for surfaces in other homogeneous manifolds with
a four-diniensional isometry group [3]. Moreover Abresch announced that

$\bullet$ only the spaces $E(\kappa, \tau)$ adinit generalized Hopf differentials which are
holomorpliic on $CMC$ surfaces.

The mashinery of the Weierstrass representation admits us to derive very
easily such differentials for surfaces in Nil and $SL(2,\mathbb{R})$ and moreover to study
(the first time) the following problem:

When the holomorphicity of the generalized Hopf differential implies that
the surface has constan$t$ mean curvature?

It appeared that although for Nil the aiiswer is positive as for space forms
in general, there are non-CMC surfaces with holomorphic generalized Hopf dif-
ferential (see [7] and below).

We have

Theorem 2 ([4]) Let us denote by $Adz^{2}=(\nabla_{f_{z}}f_{z}, N)dz^{2}$ the Hopf differential
of a surface $f$ : $Marrow G$ . Then

1. for $G=$ Nil the quadratic differential

$\tilde{A}dz^{2}=(A+\frac{Z_{3^{2}}}{2H+\cdot i})dz^{2}$ (11)

is holomorphic on a surface if and only if the surface has constant mean
curvature;

2. for $G=S\overline{L(2,\mathbb{R}}$) the quadratic differential

$\tilde{A}d\approx^{2}=(A+\frac{5}{2(H-\cdot i)}Z_{3}^{2})dz^{2}$

is holomorphic on constant mean curvature surfaces.
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The original $Abresch-Rosenberg$ differential AAR derived in $[$2, 3$]$ is slightly
different from ours:

$A_{AR}=(H+i_{T})A$

where $\tau$ is the bundle curvature (see footnote on page 1). These differentials
behave differently for non-CMC surfaces. Fernandez and Mira [7] showed how
the definition of $\tilde{A}$ is extended for other spaces $E(\kappa, \tau)$ and proved that

1 a compact $s$ urface $M\subset E(\kappa, \tau)$ wrth holoinorphic differential $\tilde{A}$ (if $\tau\neq 0$

we assume that $M$ is not a torus) is a $CMC$ surface;

$\bullet$ in $\mathcal{H}^{2}\cross \mathbb{R}$ and $S\overline{L(2,\mathbb{R}}$) all $s$urfaces with holomorpliic differential $\tilde{A}ai\cdot e$

CMC-surfaces or some $n$on-compact $s$ urfaces whose complete description
is given in [7];

$\bullet$ there are non-compact rotationally-invariant non-CMC $s$ urfaces with holo-
morphic differential $A_{AR}$ in $S^{2}x\mathbb{R}$ an$d\mathcal{H}^{2}x\mathbb{R}$ however it is still unclear are
there non-CMC surfaces with holomorphic differential $\tilde{A}$ in such ambient
spaces.

As we see above CMC-tori in $\mathbb{R}^{3}$ are described by the elliptic sinh-Gordon
equation. By [4, 7], in the spaces $E(\kappa, \tau)$ except probably some Berger spheres
CMC tori are exactly the tori with holomorphic differential $\tilde{A}$ . It appeared that
for surfaces in Nil the holomorphicity of $\tilde{A}$ again leads to the elliptic sinh-Gordon
equation but for other quantities.

Theorem 3 (Berdinsky) For a certain choice of a conformal parameter the
potential $U=V$ of the Weierstrass representation of a $CMC$ torus has to meet
the equation

$v_{\approx\sim}--+2\sinh 2v=0$ (12)

where $v=\log U$ .

First we prove the following

Lemma 1 (Berdinsky) In terms of $\psi$ and of the differential

$B= \frac{1}{4}(2H+i)\tilde{A}$

the derivational equations for surfaces in Nil are written as follows

$\partial(\begin{array}{l}\psi_{1}\psi_{2}\end{array})(v_{z}-\iota_{H_{z}e^{-v}e^{\alpha}}2-e^{v}$ $Be_{0}^{-v}$ $(\begin{array}{l}\psi_{1}\psi_{2}\end{array})$ , (13)

$\overline{\partial}(\begin{array}{l}\psi_{1}\psi_{2}\end{array})(-\overline{B}e^{-v}0$ $v_{\overline{\overline{k}}}- \frac{1}{2}H- e^{-v}e^{\alpha}e^{v_{\tilde{k}}}$
$(\begin{array}{l}\psi_{1}\psi_{2}\end{array})$ (14)
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Proof of Lemma. We have

$\frac{\partial U}{\partial z}=v_{z}e^{v}=\frac{2H+i}{4}\psi_{2}\partial^{\mathfrak{l}}\overline{\psi}_{2}+\frac{2fI-i}{4}\overline{\psi}_{1}\partial\psi_{1}-\frac{iH}{2}\psi_{1}\overline{\psi}_{2}|\psi_{2}|^{2}-\vdash\frac{H_{\tilde{A}}e^{\alpha^{J}}}{2}$

and conibining that with (11) we yield

$\partial\psi_{1}=(v_{\overline{k}}-\frac{1}{2}H_{z}e^{-v}e^{\alpha})\psi_{1}+\frac{1}{4}(2H+i)\tilde{A}e^{-\iota}’\psi_{2}$,

where $e^{\alpha}=|\psi_{1}|^{2}+|\psi_{2}|^{2}$ . Analogous calculations gives us

$\frac{\partial U}{\partial_{\sim}^{\overline{r}}}=v_{\overline{z}}e^{v}=\frac{2H+i}{4}\overline{\psi}_{2}\overline{\partial}\psi_{2}+\frac{2H-i}{4}\psi_{1}\overline{\partial}\overline{\psi}_{1}-\frac{iH}{2}\psi_{2}\overline{\psi}_{1}|\psi_{1}|^{2}+\frac{H_{\overline{z}}e^{\alpha}}{2}$

and
$\overline{\partial}\psi_{2}=-\frac{1}{4}(2H-i)e^{-v}\overline{\tilde{A}}\psi_{1}+(v_{\overline{z}}-\frac{1}{2}H_{\overline{z}}e^{-v}e^{\alpha})\psi_{2}$ .

Together with the Dirac equation $\mathcal{D}\psi=0$ these equations constitute (13) and
(14). Lemma is proved.

Now let us prove the theorem. We again recall that holomorphic differentials
on tori are constant: const $dz^{2}$ . CMC surfaces in Nil with $\tilde{A}=0$ are spheres of
revolution [3, 5]. Hence $H$ and $\tilde{A}$ are nonvanishing constants and the equations
(13) and (14) are simplified as follows

$\overline{\partial}(\begin{array}{l}\psi_{1}\psi_{2}\end{array})=(-\overline{B}e^{-v}0$ $v_{\overline{\tilde{k}}}- \frac{1}{2}H_{\overline{\tilde{k}}}e^{-v}e^{\alpha}e^{\iota}$

’

$(\begin{array}{l}\psi_{1}\psi_{2}\end{array})$

which implies
$v_{\overline{k}}\overline{z}+e^{2v}-|B|^{2}e^{-2v}=0$ .

By rescaling the conformal parameter we achieve that $|B|=1$ . This proves
Theorem.

In this case the appearance of the sanie integrable system as the Gauss-
Codazzi equations for different classes of surfaces (CMC tori in $\mathbb{R}^{3}$ and in Nil)
does not mean any Lawson type correspondence because for tori in Nil this
equation is written not on the metric but on the potential $U$ of the Weierstrass
representation. 7 Moreover this coincidence does imply the local isometry of
corresponding surfaces.

We would like also to mention that until recently there are no knowii exam-
ples of CMC tori in Nil and this theorem is just a step to proving their existence.
One of the main difficulties is that the systenrs (10) and (12) are very different
from the physical point of vi$ew$ : they describe different fields, i.e., the function
$u$ in (10) is real-valued and the function $v$ in (12) in general has nontrivial real
and imaginary parts. Hence the reality conditions for these systenis are drasti-
cally different. However it sounds possible to use soliton technique kind of the
Lamb ansatz to construct some analogs of the Abresch tori in $\mathbb{R}^{3}[1]$ .

7From the traditional point of view which we do not follow, $U$ is not considered as a
geometrical quantity.
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5. The spinor energy and the $isoperim\underline{etric}$ problem [22]

Although in general for surfaces in Nil aiud $SL(2, \mathbb{R})$ the potentials $U$ and $V$

are complex-valued, the (spinor) energy functional (5) is real-valued for compact
oriented surfaces without boundary. Moreover as in the Euclidean case it is
written in geometrical terms:

Theorem 4 ([4]) For a closed oriented surface $\Lambda l$ in $G$ its (spinor) energy

$E(M)=/M$ UVdxdy

equals

$\frac{1}{4}/_{\Lambda I}(H^{2}+\frac{\hat{K}}{4}-\frac{1}{16})d\mu$ for $G=$ Nil;

$\frac{1}{4}l_{M}$ $(H^{2}+ \frac{5}{16}\hat{K}$ 一 $\frac{1}{4})d\mu$ for $G=S\overline{L(2,\mathbb{R}}$),

where $\hat{If}$ is the sectional curvature of the ambient space along the tangent plane
to the surfacc and $d\mu$ is the induced measure.

These expressions for $E$ are different from the Willmore functional which for
surfaces in a general anibient space is defined as

$\mathcal{W}=/M(|H|^{2}+\hat{K})d\mu$ .

For surfaces in $\mathbb{R}^{3}$ we have

$E= \frac{1}{4}\mathcal{W}=\frac{1}{4}l_{M}(\frac{\kappa_{1}+\kappa_{2}}{2})^{2}d\mu=\frac{1}{4}l_{M}(\frac{\kappa_{1}-\kappa_{2}}{2})^{2}d\mu+\frac{1}{4}\int_{\Lambda I}\kappa_{1}\kappa_{2}d\mu$.

The $Gauss-Bonnet$ theor$em$ implies that for a compact oriented surface $M$ with-
out boundary we have

$E(M)= \frac{1}{4}/M(\frac{\kappa_{1}-\kappa_{2}}{2})^{2}d\mu+\frac{2\pi\lambda’(11I)}{4}$ (15)

where $\chi(M)$ is the Euler characteristic of $M$ . In particular this implies that for
spheres

$E\geq\pi$

and the equality is achieved exactly on the round spheres for which $\kappa_{1}=\kappa_{2}$

everywhere.
We note that the round spheres are exactly the isoperiiuetric profiles in

$\mathbb{R}^{3}$ , i.e. these are closed surfaces of minimal area aniong all surfaces bounding
domains of some fixed volume. It follows from the variational principle that an
isoperimetric profile is always a CMC hypersurface at regular points and it is
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known that if the dimension of the anibient space is not greater than seven then
an isoperinietric profile is smooth.

The isoperimetric problem is not solved until recently for surfaces in Nil.
However it is known that in general for a compact Riemannian manifold for
small volumes the isoperimetric profiles are homeomorphic to a sphere [17].
Hence for small volumes the isoperinietric profiles in Nil are CMC spheres. By
[2] all CMC spheres are rotationally invariaixt, and by [9], CMC spheres of
revolution form a family paranieterized by the mean curvature $H,$ $0<H<\infty$ .
We compute that

Proposition 3 For $CMC$ spheres in Nil

1. the energy functional is constant and equals $E=\pi$;

2. the Willmore functional varies as follows:
$\mathcal{W}(H)=10\pi+\frac{\pi}{2H^{2}}-$

$- \pi\frac{(1+4H^{2})(3H^{2}-\frac{1}{4})H^{3}}{2}$
$( \frac{\pi}{2}$ –arctan $[ \frac{4H^{2}-1}{4H}])$ .

Let us consider general surfaces of revolution in Nil. There is the natural
submersion

Nil $arrow Ni1/SO(2)$

onto the half-plaiie $u\geq 0$ with the metric

$du^{2}+ \frac{4dv^{2}}{4+u^{2}}$ .

Let $\gamma(s)=(u(s), v(s))$ be a path-length parameterized smooth curve in this
halfplane which generates by revolution a surface in Nil. Let us denote by $\sigma$ the
angle between $\gamma$ aiid the vector $\frac{\partial}{\partial u}$ . We have

Theorem 5 ([5]) For a closed oriented surface $M$ in Nil obtained by revolving
a curve $\gamma\subset B$ around $the\sim^{- ax\dot{\eta}s_{f}}\sim$ the spinor energy of $M$ equals

$E( \Lambda’I)=\frac{1}{4}\int(H^{2}-\frac{1}{4}n_{3^{2}})d\mu=$

$\frac{\pi}{8}l_{\gamma}(\dot{\sigma}-\frac{si_{11}\sigma}{u})^{2}\sqrt{4u^{2}+u^{4}}ds-\frac{\pi}{4}/\gamma\frac{\partial[\dot{u}\sqrt{4+u^{2}}]}{\partial s}ds=$

(16)

$\frac{\pi}{8}/\gamma(\dot{\sigma}-\frac{s^{\backslash }in\sigma}{u})^{2}\sqrt{4u^{2}+u^{4}}ds+\frac{\pi\lambda’(hI)}{2}$

where $\chi(\Lambda/I)$ is the Euler characteristic of $M$ .
If $\dot{\sigma}=\frac{8in.\sigma}{v}$ everywhere then the surface is a $CMC$ sphere.
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It iinplies

Corollary 4 For spheres of revolution in Nil we have

$E(M)\geq\pi$

and the equality is attained exactly at $CMC$ spheres.

Corollary 5 For tori of revolution in Nil the spinor energy is positive:

$E(M)>0$ .

It is also straightforward to prove

Proposition 4 ([5]) The $CMC$ spheres in Nil are the critical points of the
spinor energy functional $E$ .

We see now that except the spectral theory of the Dirac operator there are
other reasons to treat the spinor energy as the right analog of the Willmore
functional for surfaces in Nil. Indeed,

$\bullet$ it takes the constant value on the CMC spheres which are the critical
points of this functional;

$\bullet$ there is $a$ strong similarity of formulas (15) and (16). However the quanti-
ties $\dot{\sigma}$ and $\frac{\sin\sigma}{u}$ are not the principal curvatures of $a$ surface of revolution
and two poles are the only umbilic points on $a$ CMC sphere in Nil;

$\bullet$ the conditions $A=0$ and $\tilde{A}=0$ distinguish in $\mathbb{R}^{3}$ and Nil the ininima of
$E$ for spheres of revolution (in. the Euclidean case even for spheres).

Of course, this study has to be complet$ed$ and the following questions are
worth to be answered:

1. is $E$ bounded from $b$elow for each topological type of closed oriented sur-
$face\epsilon$ ?

2. is $E$ positive?

3. are the $CMC$ spheres in Nil are the global minima of $E$ for spheres?

4. how to generalize (16) for general surfaces?

5. what are the minima of $E$ for surfaces of ffied topological type and, in
particular, wliat is the $su$bstitution of the Will$1n$ore conjectu$re$ ?

It is also interesting to study the analogous questions for surfaces in $S\overline{L(2,\mathbb{R}}$)
for which the spinor energy functional also has $a$ geometrical form.

For $S^{2}\cross \mathbb{R}$ we have the following computational observation:
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Proposition 5 $([5|)$ For isoperimetric profiles $M$ in $S^{2}\cross \mathbb{R}$ we have

$/A^{1}I(H^{2}+\hat{K}+1)d\mu=16\pi$ .

The isoperimetric problem for $S^{2}\cross \mathbb{R}$ was solved by $Pe$drosa [18] who proved
that for volumes $d\leq d_{0}$ the isoperinietric profiles are CMC spheres, for $d>$
$d_{0}$ the isoperimetric profiles bound the product cylinders $S^{2} x[0,\frac{d}{4\pi}]$ where
$d_{0}$ is some transition point from one topological class of solutions to another.
The functional mentioned in Proposition takes the same value on all CMC
spheres (not only isoperinietric) and on all isopermetric profiles (connect$ed$ and
disconnected$)$ .

We would like to guess that
the right analog of the Willmore theory (at least for spheres) has to be related

to the isoperimetric problem and the isoperimetric profiles in three-dimensional
homogeneous spaces have to be distinguished as (at least local) minima of the
Willmore type functional which is constant on them.
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