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Abstract

We discuss recent progress in the study of the space of harmonic maps from the 2-
sphere to the unit n-sphere in Euclidean $(n+1)$-space. We consider the structure of
this space as an algebraic variety, the existence of non-manifold points in this space,
and the relation between this question and the integrability of Jacobi fields along
harmonic maps. One of the main tools used is that of the twistor lift of a harmonic
map, which replaces a harmonic map by a holomorphic horizontal map into a K\"ahler

manifold.
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1 Introduction
A smooth map $\phi$ : $Marrow W$ between Riemannian manifolds $AI$ and $W$ is harmonic if it is
an extremal of the energy functional. Here, the energy $\mathcal{E}(\phi)$ of a smooth map $\phi$ : $Marrow W$

between compact Riemannian manifolds is given by

$\mathcal{E}(\phi)=\frac{1}{2}/M|d\phi|^{2}\omega$ , (1)

where $\omega$ is the volume form on $M$ and $|d\phi|$ is the Hilbert-Schmidt nom of $d\phi$ given at
each point by

$|d \phi_{x}|^{2}=\sum_{i}\langle d\phi_{x}(e_{i}),$
$d\phi_{x}(e_{i})\rangle$

for any orthonormal basis $\{e_{i}\}$ of the tangent space $T_{x}\Lambda:[$ of $M$ at $x$ . Equivalently, the map
$\phi$ is harmonic if it satisfies the Euler-Lagrange equations for the energy functional. These
equations may be expressed as $\tau(\phi)=0$ , where $\tau(\phi)$ is a vector field along the map called
the tension field, which is defined by $\tau(\phi)=$ trace $\nabla d\phi$ . Here $\nabla$ denotes the connection
on the bundle $T^{*}M\otimes\phi^{-1}TW$ induced from the Levi-Civita connections on $M$ and $W$ .
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For more details and an extensive survey of harmonic maps, with many references, see the
articles [16, 18].

$i$From now on, we assume that $M$ is 2-dimensional. In this case, $\mathcal{E}(\phi)$ , and hence
harmonicity of $\varphi$ , depends only on the conformal structure of $M$ , and, if $\phi$ is conformal,

the energy is equal to the area of the image of $\phi$ . lf the domain surface $M$ is the unit
sphere $S^{2}$ in $\mathbb{R}^{3}$ , then an argument due to Hopf [32] involving holomorphic differentials
shows that a non-constant harmonic map $\phi$ from $S^{2}$ is weakly conformal, and hence a map
$\phi$ from $S^{2}$ is harmonic if and only if it is a minimal branched [30] immersion.

The case of harmonic maps from $S^{2}$ to the unit sphere $S^{m}$ in $\mathbb{R}^{m+1}$ has a long history
which contains many beautiful and interesting results (see, for example, [10, 13, 14, 2]).
Although this is a special case of the more general case of harmonic maps of a Riemann
surface into $S^{m}$ , for reasons to do with the general theory of singularities of harmonic maps
[42, 43], it is arguably the most important case. It also has a wealth of interesting features.
For instance [13], the area of the image of a harmonic 2-sphere in $S^{m}$ has area $4\pi d$ for
some integer $d$ . Further, if the map is full, that is to say its image is not contained in a
proper vector subspace of $\mathbb{R}^{m+1}$ , then $m=2n$ for some integer $n$ , and $d\geq n(n+1)/2$ ,

In 1975, Lawson [35] posed the problem of studying the structure of the space
Harm$d(S^{2}, S^{2n})$ of harmonic maps of $S^{2}$ into $S^{2n}$ with induced area $4\pi d$ . In the present
article, we shall give a brief survey of some recent results we have obtained in this area; it
may be regarded as a sequel to [6], which appeared in the report of the first Mathematical
Society of Japan International Research Institute held at Tohoku University in 1993.

It was conjectured in [6] that $Harm_{d}(S^{2}, S^{2n})$ is a complex algebraic variety of dimension
$2d+n^{2}$ , and this was proved by Fern\’andez in 2006. We give a brief account of the method
of proof in Section 7.

At the 1993 MSJ conference, Leon Simon asked about the singular points of the al-
gebraic variety $Harm_{d}(S^{2}, S^{2n})$ . It is not hard to show that a non-full harmonic 2-sphere
which is the limit of a l-parameter faimly of full ones is singular, but the question of
whether any full harmonic maps are singular points remains. In $[9|$ , it is shown that the
space $Harm_{d}^{fu1}$

‘ $(S^{2}, S^{4})$ of $fuU$ harmonic 2-spheres of area $4\pi d$ in $S^{4}$ is a manifold for $d\leq 5$ ,
while recent work of Bolton and Fern\’aiidez, see Section 4, shows that $Harm_{6}^{fu11}(S^{2}, S^{4})$ is
also a manifold. As the case $d=6$ is somewhat different from $d<6$ , see Section 8, this is
perhaps rather a surprising result.

One way of understanding the space of harmonic maps is to look at their infinitesimal
deformations, or Jacobi fields; in particular, if they are all integrable, the space of harmonic
maps is a manifold with the Jacobi fields giving the tangent spaces. For $m=4$, this has
been recently addressed by Lemaire and Wood [38], and a brief account of this work is
given in Section 8. The paper ends with applications of this to calculating the nullity of
the energy, and a comparision with the nullity of the area functional.

Remark 1 Similar questions may be asked about the space of harmonic 2-spheres in com-
plex space forms. This has been studied in [15, $36|$ for the case of harmonic 2-spheres in
$\mathbb{C}P^{2}$ . In this case, the components of this space consist of the holomorphic and antiholo-
morphic maps of degree $\pm d$ and energy $4\pi|d|$ , together with harmonic maps of degree $d$ and
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energy $4\pi E$ , where $E=3|d|+4+2r$ for some non-negative integer $r$ . It is shown in [36]
that these components are smooth manifolds, of dimension $6|d|+4$ in the holomorphic and
antiholomorphic cases and $2E+8$ in the other cases; in [37] it is shown that the tangent
bundle is given precisely by the Jacobi fields.

As in the talk on which it is based, the aim of this article is to give an overview and a
flavour of the topic. The interested reader should refer to the papers cited in the text for
further details.

2 Early results
It is clear ffom the characterization of harmonic 2-spheres in $S^{m}$ as minimal branched
ilmnersions that all great 2-spheres are harmonic. Rather more interestingly, we recall
that for each positive integer $d$ , the space $Harm_{d}^{fu11}(S^{2}, S^{2n})$ of full harmonic 2-spheres in
$S^{2n}$ of area $4\pi d$ is non-empty for each $d\geq n(n+1)/2$ .

In fact, some interesting special cases were studied in 1933 by Boruvka [10], who found
full harmonic 2-spheres of constant curvature $K= \frac{2}{n(n+1)}$ in $S^{2n}$ . The particular case
of $n=2$ gives the Veronese surface in $S^{4}$ , given by

$\phi(x, y, z)=(xy,$ $xz,$ $yz,$ $\frac{1}{2}(x^{2}-y^{2}),$ $\frac{x^{2}+y^{2}-2z^{2}}{2\sqrt{3}})$ , $x^{2}+y^{2}+z^{2}=3$ .

These Boruvka spheres all have the smallest possible area among full harmonic 2-spheres
in $S^{2n}$ , namely $4\pi n(n+1)/2$ . However, in 1975 Barbosa [2] gave examples of full harmonic
2-spheres in $S^{2n}$ of area $4\pi d$ for each $d\geq n(n+1)/2$ . Barbosa also showed that if $d=$
$n(n+1)/2$ , then Harm$dfu11(S^{2}, S^{2n})=O(2n+1;\mathbb{C})$ .

The space $Harm_{d}(S^{2}, S^{2})$ consists of those maps $homS^{2}$ to itself which are holomorphic
$(d\geq 0)$ or antiholomorphic $(d\leq 0)$ of degree $d$ , while there are no full harmonic 2-spheres
in $S^{3}$ . Thus the first case where there are full harmonic maps of interest is Harm$d(S^{2}, S^{4})$ ,
which may be studied using the the twistor fibration described in the next section.

3 The twistor fibration
We first recall the definition of the twistor fibration $\pi$ : $\mathbb{C}P^{3}arrow S^{4}$ . Regarding $\mathbb{H}^{2}$ as a left
quaternionic vector space, this is obtained by composing the Hopf map $\rho$ : $\mathbb{C}P^{3}arrow \mathbb{H}P^{1}$

given by
$\rho([z_{1}, z_{2}, z_{3}, z_{4}])=[z_{1}+z_{2}j, z_{3}+z_{4}j]$ ,

with the canonical identification of $\mathbb{H}P^{1}$ and $S^{4}\subset \mathbb{H}\oplus \mathbb{R}=\mathbb{R}^{5}$ given by stereographic
projection of $S^{4}$ from $(0,0,0,0, -1)$ onto the equatoria14-plane $\mathbb{H}$ in $\mathbb{R}^{5}$ which is included
in $\mathbb{H}P^{1}$ by $[q]\mapsto[q, 1]$ . We recall [7, 11] that $\pi$ is a Riemannian submersion when $\mathbb{C}P^{3}$ is
given the lfubini-Study metric of constant holomorphic sectional curvature 1.

153



A map into $\mathbb{C}P^{3}$ is said to be horizontal if its image is everywhere orthogonal to the
fibres of $\pi_{7}$ and full if its image is not contained in a totally geodesic $\mathbb{C}P^{2}$ . It is easy to
see that if $\psi$ : $S^{2}arrow \mathbb{C}P^{3}$ is holomorphic and horizontal then $\pi\circ\psi$ is harmonic, but the
crucial result, as formulated by Bryant [11], is that:

Theorem 1 Every full harmonic map $\phi$ : $S^{2}arrow S^{4}$ is given by

$\phi=\pm(\pi 0\psi)$ (2)

for some uniquely-determined full honzontal holomorphic map $\psi$ : $S^{2}arrow \mathbb{C}P^{3}$ . Every non-
full (and hence totally geodesic) harmonic map $\phi$ : $S^{2}arrow S^{4}$ is the projection of a unique
honzontal totally geodesic $\mathbb{C}P^{1}$ in $\mathbb{C}P^{3}$ .

We $caU$ the sign in (2) the spin of $\phi$ . In some sense, this result reduces the study
of Harm$(S^{2}, S^{4})$ to that of the space HHol$(S^{2}, \mathbb{C}P^{3})$ of horizontal holomorphic maps $\psi$ :
$S^{2}arrow \mathbb{C}P^{3}$ . As we shall see below, the latter space is much easier to work with, as it is
contained in the projectivization of a finite-dimensional vector space.

With the above as motivation, we now give an elementary description of the elements
of HHol $(S^{2}, \mathbb{C}P^{3})$ . Regarding $S^{2}$ as $\mathbb{C}\cup\{\infty\}$ in the usual way, a map $\psi$ : $S^{2}arrow \mathbb{C}P^{3}$ is
holomorphic if and only if it may be written as

$\psi(z)=[f_{1}(z), f_{2}(z), f_{3}(z), f_{4}(z)]$ (3)

where $f_{1}(z),$
$\ldots,$

$f_{4}(z)$ are polynomials which we may assume have no common zeros. The
degree $d$ of $\psi$ is then the maximum of the degrees of the polynomials $f_{1}(z),$

$\ldots$ , $f_{4}(z)$ .
In this way, we identify the space Hol$d(S^{2}, \mathbb{C}P^{3})$ of holomorphic 2-spheres of degree $d$

in $\mathbb{C}P^{3}$ with the projectivization of a dense open subset $V$ of the vector space $(\mathbb{C}[z]_{d})^{4}$ ,
where $\mathbb{C}[z]_{d}$ is the vector space of complex polynoniials in $z$ with degree less than or equal
to $d$ . It is easy to see [11] that a map of the form (3) is horizontal if and only if

$f_{1}f_{2}’-f_{1}’f_{2}+f_{3}f_{4}’-f_{3}’f_{4}=0$ , (4)

in which case the corresponding harmonic map $\phi=\pi 0\psi$ has area $4\pi d$ .

4 The structure of $HHo1_{d}(S^{2}, \mathbb{C}P^{3})$

It follows from the previous section that $HHo1_{d}(S^{2}, \mathbb{C}P^{3})$ , and hence $Harm_{d}(S^{2}, S^{4})$ , may be
given the stmcture of a complex algebraic variety in the projectivization of the vector space
$(\mathbb{C}[z]_{d})^{4}$ . By counting the number of constraints imposed by the horizontality condition
(4), one might expect that the dimension of this algebraic variety should be

$4(d+1)-(2d-1)-1=2d+4$.

This was confirmed independently by Verdier and Loo [39, 45, 46, 47], who both made
a detailed study of this variety, and, in particular, proved the following.
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Theorem 2 (Verdier 1985, Loo 1989) For any positive integer $d,$ $Harm_{d}(S^{2}, S^{4})$ is a con-
nected algebraic variety of dimension $2d+4$ . When $d=1,2$ , it is irreducible; when $d\geq 3$ ,
it has three irreducible components, namely the subset of non-full maps and the closures of
the subsets of full maps of positive and negative spin.

Of course, it is clear from the description above in terms of polynomials that
$Harm_{d}^{fu11}(S^{2}, S^{4})$ is empty for $d=1,2$ .

It is natural to ask if $Harm_{d}(S^{2}, S^{4})$ has any singular points. Non-full harmonic 2-
spheres in $S^{4}$ which are the limits of a l-parameter family of full ones are singular (see
Section 8); on the other hand, it is shown in [9] that $Harm_{d}^{fu11}(S^{2}, S^{4})$ has no singular
points for $d\leq 5$ and hence is a manifold. This uses the twistor correspondence described
in Section 3 to identify $Harm^{fu11}(S^{2}, S^{4})$ as a double cover of $HHo1^{fu11}(S^{2}, \mathbb{C}P^{3})$ ; in [5], it
is shown that the compact-open topology on Har$m^{}$ $(S^{2}, S^{4})$ coincides with that coming
from the complex algebraic variety stmcture on $HHo1^{fu11}(S^{2}, \mathbb{C}P^{3})$ . In fact, Lemaire and
the third author [38, \S 2] have shown that the correspondence is real analytic.

We now outline a proof of the fact that $Harm_{d}^{ful1}(S^{2}, S^{4})$ has no singular points for
$d\leq 5_{7}$ since the techniques will be useful later on. We let $V_{0}$ be the dense open subset
of $V$ consisting of quadruplets of linearly independent polynommials. The condition (4) for
horizontality motivates our definition of

$Q:V_{0}arrow \mathbb{C}[z]_{2d-2}$

as
$Q(f_{1}, \ldots, f_{4})=f_{1}f_{2}’-f_{1}’f_{2}+f_{3}f_{4}’-f_{3}’f_{4}$ . (5)

We hope to show that the zero polynomial in $\mathbb{C}[z]_{2d-2}$ is a regular value of $Q$ , so that
$Q^{-1}(0)$ is a manifold. Since $HHo1_{d}^{fu11}(S^{2}, \mathbb{C}P^{3})$ may be identified with the projectivization of
$Q^{-1}(0)$ , it then follows that $HHo1_{d}^{fu11}(S^{2}, \mathbb{C}P^{3})$ , and hence its double cover $Harm_{d}^{fu11}(S^{2}, S^{4})$ ,
is a manifold, in fact, by [38] a real-analytic submanifold of a suitable space of smooth
mappings from $S^{2}$ to $S^{4}$ .

However, the dimensions of the spaces involved are quite high! For instance, if $d=5$
then the domain has dimension 24 and the codomain 9, so verifying that $dQ$ has maximal
rank at all points of $Q^{-1}(0)$ is quite daunting.

We now describe how we may simplify the problem by using two natural group actions
on $V_{0}$ . Firstly, the standard action of the complexified symplectic group Sp $($ 2, $\mathbb{C})$ on $\mathbb{C}^{4}$

induces a natural action on $V_{0}$ via $Af(z)=A(f(z))$ , and $Q$ is constant on the orbits of this
action. Secondly, for each positive integer $k$ , a M\"obius transformation $\mu=(\alpha z+\beta)/(\gamma z+\delta)$

induces a diffeomorphism $\tilde{\mu}$ : $\mathbb{C}[z|_{k}arrow \mathbb{C}[z]_{k}$ given by

$(\tilde{\mu}f)(z)=(\gamma z+\delta)^{k}(f(\mu(z))$ .

This, in turn, induces a diffeomorphism, also denoted $\tilde{\mu}$ , from $V_{0}$ to $V_{0}$ . It is easily checked
that if $f=(f_{1}, f_{2}, f_{3}, f_{4})\in V_{0}$ , then

$Q(\tilde{\mu}f)=(\alpha\delta-\beta\gamma)\tilde{\mu}(Qf)$ ,
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so that the rank of $dQ$ at $f$ is equal to the rank of $dQ$ at Ajtf.
This reduces the problem to showing that the rank of $dQ$ is maximal at certain special

elements of $V_{0}$ . For instance, for $d=4$ it is shown in [8] that if $f\in V_{0}$ satisfies (4) then
there exists a M\"obius transformation $\mu$ and an element $A$ of Sp $($ 2, $\mathbb{C})$ such that

$A(\tilde{\mu}f)(z)=(1,2z^{4}, -4z, z^{3})$ .

Hence it is enough to show that $dQ$ has maximal rank at

$(f_{1}(z), f_{2}(z), f_{3}(z), f_{4}(z))=(1,2z^{4}, -4z, z^{3})$ ,

and this is easy to see.
For $d=5$ it tums out to be sufficient to consider the case

$(f_{1}(z), f_{2}(z), f_{3}(z), f_{4}(z))=(a0+a_{1}z, b_{4}z^{4}+b_{5}z^{5}, c_{1}z+c_{2}z^{2}, d_{3}z^{3}+d_{4}z^{4})$ ,

where horizontality reduces to the system of equations:

$2a0b_{4}+c_{1}d_{3}=0$ ,

$5a_{0}b_{5}+3a_{1}b_{4}+3c_{1}d_{4}+c_{2}d_{3}=0$ ,

$2a_{1}b_{5}+c_{2}d_{4}=0$ .

This was done by Bolton and Woodward [8], who thus showed that Harm$5fu1l(S^{2}, S^{4})$ is
a manifold.

The third author of this article pointed out that the case $d=6$ may be worth inves-
tigating because some harmonic 2-spheres of degree 6 in $S^{4}$ are the limits of sequences of
harmonic 2-spheres which are full in $S^{6}$ , and hence are not regular points of Harm$6(S^{2}, S^{6})$ .

Taking up the challenge, and using similar methods (and, initially, Mathematica) the first
two authors of this article have proved that Harm$6\iota_{u11}(S^{2}, S^{4})$ is a manifold. In line with the
method used for $d=4$ and $d=5$ , the crucial simplifying result is the following.

Proposition 1 Let $f\in V_{0}$ Then there exists a Mobius transformation $\mu$ and an element
$A$ of Sp $($2, $\mathbb{C})$ such that

$A(\tilde{\mu}f)(z)=(a_{0}+a_{1}z+a_{2}z^{2}, b_{4}z^{4}+b_{5}z^{5}+b_{6}z^{6}, c_{1}z+c_{2}z^{2}+c_{3}z^{3}, d_{3}z^{3}+d_{4}z^{4}+d_{5}z^{5})$,

$or$

$A(\tilde{\mu}f)(z)=(a_{0}+a_{1}z+a_{2}z^{2}, b_{4}z^{4}+b_{5}z^{5}+b_{6}z^{6}, c_{1}z+c_{2}z^{2}+c_{4}z^{4}+c_{5}z^{5}, d_{3}z^{3})$ ,

with, in both cases, $a_{0}b_{6}\neq 0$ , and, in the second case, $d_{3}\neq 0$ , and where both right hand
sides satisfy (4).
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5 Full harmonic maps from $S^{2}$ to $evenrightarrow dimensional$

spheres.
As mentioned earlier, if a harmonic maps from $S^{2}$ to a sphere is full, then the codomain
sphere is even-dimensional [13]. The study of harmonic maps $homS^{2}$ to $S^{2n}$ for general
$n$ has many common features with the case $n=2$ . The twistor fibration explained above
is a particular case of the general construction that appeared in [13, 2]. Recall that the
twistor space of the $2n$-sphere, denoted $\mathcal{Z}_{n}$ , is defined as the subvariety of Gr $(n, \mathbb{C}^{2n+1})$ (the
Grassmanian of n-dimensional subspaces in $\mathbb{C}^{2n+1}$ ) consisting of totally isotropic subspaces
$lt\dot{q}th$ respect to the complex-bilinear extension of the usual dot product. In other words,

$\mathcal{Z}_{n}=\{P\in Gr(n, \mathbb{C}^{2n+1}) : (u, v)=0\forall u, v\in P\}$ ,

where $( u, v)=\sum_{i=1}^{2n+1}u_{i}v_{i}$ for $u=(u_{1}, \cdots, u_{2n+1})$ and $v=(v_{1}, \cdots, v_{2n+1})$ in $\mathbb{C}^{2n+1}$ .
There is a projection $\pi:\mathcal{Z}_{n}arrow S^{2n}$ defined as follows: given $P\in \mathcal{Z}_{n}$ , and $\{E_{1}, \ldots , E_{n}\}$

an orthonormal basis of $P,$ $\pi(P)$ is defined as the (unique) real vector such that the basis
of $\mathbb{C}^{2n+1}$ given by $\{\pi(P), E_{1}, \ldots, E_{n}, \overline{E}_{1}, \ldots, \overline{E}_{n}\}$ is orthonormal and positively oriented.

As in the $n=2$ case, we have the following [2, 13, 27]:

$\bullet$ Given a harmonic and full map $\phi:S^{2}arrow S^{2n}$ there exists a unique holomorphic and
horizontal map $\psi$ : $S^{2}arrow \mathcal{Z}_{n}$ (the twistor lifl of $\phi$) such that $\pi\circ\psi$ is either $\phi$ or $-\phi$ .

$\bullet$ Conversely, if $\psi$ : $S^{2}arrow \mathcal{Z}_{n}$ is holomorphic, horizontal and full, then $\pi\circ\psi$ : $S^{2}arrow S^{2n}$

is harmonic and full.

$\bullet$ The area of $\phi(S^{2})$ is equal to $4\pi d$ , where $d$ is the algebraic degree of $\psi$ (or equivalently,
the image of $1\in \mathbb{Z}\simeq H_{2}(S^{2}, \mathbb{Z})$ under the map $\psi_{*}:H_{2}(S^{2}, \mathbb{Z})arrow \mathbb{Z}\simeq H_{2}(Z_{n}, \mathbb{Z}))$ .

An iimnediate consequence of this is that $Harm_{d}^{fu11}(S^{2}, S^{2n})$ (i.e. the set of harmonic,
full maps from $S^{2}$ to $S^{2n}$ ) can be identified with two copies of $HHo1_{d}^{ful1}(S^{2}, \mathcal{Z}_{n})$ , where
HHo$1_{d}^{ful1}(S^{2}, \mathcal{Z}_{n})$ denotes the variety of holomorphic, horizontal, full maps of degree $d$ from
$S^{2}$ to $\mathcal{Z}_{n}$ .

Therefore, from now on, we will concentrate in the study of $HHo1_{d}^{ful1}(S^{2}, \mathcal{Z}_{n})$ . For the
particular case of $n=2$ , recall that $\mathcal{Z}_{2}$ is just $\mathbb{C}P^{3}$ , and that the horizontality condition,
written in homogeneous coordinates in $\mathbb{C}P^{3}$ , is given by equation (4).

For general $n$ , it is certainly not the case that $\mathcal{Z}_{n}$ is isomorphic to a complex projective
space. However, the variety $\mathcal{Z}_{n}$ is birationally equivalent to $\mathbb{C}P^{n(n+1)/2}$ (note that the
dimension of $\mathcal{Z}_{n}$ is $n(n+1)/2)$ . The idea would then be: Fix a birational map $bhom$
$\mathbb{C}P^{n(n+1)/2}$ to $\mathcal{Z}_{n}$ . Then, for each $\psi\in HHo1_{d}^{fu11}(S^{2}, \mathcal{Z}_{n})$ , define the map $b^{-1}\circ\psi$ : $S^{2}arrow$

$\mathbb{C}P^{n(n+1)/2}$ . This should give some variety of maps from $S^{2}$ into $\mathbb{C}P^{n(n+1)/2}$ satisfying some
sort of horizontality’ condition. Then, instead of studying $\psi\in HHo1_{d}^{iul1}(S^{2}, \mathcal{Z}_{n})$ , study the
set of such maps.

Of course this is $aU$ wishful thinking: the idea of the previous paragraph, although
plausible, is full of obstacles. Several things can go wrong:
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1. Since a birational map is only defined outside of a codimension 2 subvariety, the map
$b^{-1}o\psi$ will not be defined at all if the image of $\psi$ lies entirely in the subvariety where
$b^{-1}$ is not defined.

2. The horizontality condition in $\mathcal{Z}_{n}$ will translate into some condition for maps into
$\mathbb{C}P^{n(n+1)/2}$ . But this condition may be much harder to work with than the original.

3. Even if $b^{-1}\circ\psi$ is defined, we also have to take into account that we want the degree
of maps to be preserved. In other words, if the degree of $b^{-1}\circ\psi$ is not the same as
the degree of $\psi$ we will not be able to study the variety $HHo1_{d}^{ful1}(S^{2}, \mathcal{Z}_{n})$ .

Fortunately all the possible things that can go wrong either go right or not terribly wrong.
But, before giving the answer to these questions, we need to give an explicit description of
some birational maps between $\mathcal{Z}_{n}$ and $\mathbb{C}P^{n(n+1)/2}$ .

Given an orthonormal basis (with respect to the canonical Hermitian product) $\beta=$

$\{E_{0}, E_{1}, \ldots, E_{n}, \overline{E}_{1}, \ldots , \overline{E}_{n}\}$ of $\mathbb{C}^{2n+1}$ , define a birational map $b_{\beta}$ : $\mathbb{C}P^{n(n+1)/2}arrow \mathcal{Z}_{n}$ by

$[s: \alpha_{1}:. . . :\alpha_{n}:\tau_{12}:. . . :\tau_{n-1,n}]arrow^{b\rho}1^{n-p1anegenerbythevectors}\frac{\alpha_{\ell}}{s}E_{0}+E_{\ell}+\sum_{k=1}^{n}(-\frac{\alpha_{\ell}a_{k}ated}{2s^{2}}+\frac{\tau_{\ell k}}{2s})\overline{E}_{k},1\leq\ell\leq n\}$ .

Then, given $\psi\in HHo1_{d}^{iul1}(S^{2}, \mathcal{Z}_{n})$ the idea would be to define the map $\tilde{\psi}_{\beta}=b_{\beta}^{-1}\circ\psi$ : $S^{2}arrow$

$\mathbb{C}P^{n(n+1)/2}$ and study its properties. The questions about what can go wrong are solved as
follows:

$1’$ . The image of $\psi$ cannot lie in the subvariety of $\mathcal{Z}_{n}$ where $b_{\beta}^{-1}$ is not defined. A complete
proof of this appears in [24]. The key ingredient of the proof is that the map $\psi$ is
full.

$2’$ . The fact that the map $\psi$ is horizontal translates into the following relatively nice
differential system:
Writing a map from $S^{2}$ to $\mathbb{C}P^{n(n+1)/2}$ as $[s : \alpha_{1} : . . . : \alpha_{n} : \tau_{12} :. . . : \tau_{n-1,n}]$

(in homogeneous coordinates), the fact that $\psi$ is horizontal translates into the map
$b_{\beta}^{-1}\circ\psi$ : $S^{2}arrow \mathbb{C}P^{n(n+1)/2}$ satisfying the differential system given by

$\alpha_{i}’\alpha_{j}-\alpha_{i}\alpha_{j}’=s\tau_{ij}’-s’\tau_{ij}$ , $1\leq i,$ $j\leq n$ , (6)

where, as usual, the dashes denote differentiation with respect to a conformal param-
eter on $S^{2}$ . Note that this reduces to equation (4) when $n=2$ .

This differential system was actually found by Bryant in [12], although in a different
form. It also appears in $[31|$ in the form presented here.

$3’$ . There are examples for which the degree of $b_{\beta}^{-1}\circ\psi$ is not equal to the degree of $\psi$ .
Although for most maps the degree is the same, since we are trying to study the set
of all holomorphic and horizontal maps into $\mathcal{Z}_{n}$ , it seems that the original idea will
not work. However, this problem can be overcome as follows.
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Define the varieties

$PD_{d}^{fu11}(S^{2}, \mathbb{C}P^{n(n+1)/2})$ $=$ $\{maps[s:\alpha_{1}: . . . \alpha_{n}:\tau_{12}: . . . :\tau_{n-1,n}]:S^{2}arrow \mathbb{C}P^{n(n+1)/2}$

holomorphic of degree $d$ satisfying $\alpha_{i}’\alpha_{j}-\alpha_{i}\alpha_{j}’=s\tau_{ij}’-s’\tau_{ij}$ , and $( \frac{\alpha_{i}}{s})’$ independent

Notice that, since these are maps from $S^{2}$ to $\mathbb{C}P^{n(n+1)/2}$ of degree $d$, each homogeneous
component of one such map can be regarded as a polynomial of degree $d$ in one complex
variable $z$ . We define the follorving open subset of PDdfull $(S^{2}, \mathbb{C}P^{n(n+1)/2})$ :

$PD_{d_{7}0}^{fu11}(S^{2}, \mathbb{C}P^{n(n+1)/2})$ $=$ $\{[s : \alpha_{1}:\ldots]\in PD_{d}^{tul1}(S^{2}, \mathbb{C}P^{n(n+1)/2})$ with

$s= \prod_{\ell=1}^{d}(z-s_{\ell}),$
$s_{\ell}$ distinct, and $\alpha_{1}(s_{\ell})\neq 0_{i}\forall\ell\}$ .

The following proposition gives the key for the subsequent study of $HHo1_{d}^{fu11}(S^{2}, \mathcal{Z}_{n})$ . The
proof is long and technical; details can be found in [26].

Proposition 2 For all $\psi_{0}\in HHo1_{d}^{full}(S^{2}, \mathcal{Z}_{n})$ . there exists a birational map $b_{\beta}$ and an open
set $\mathcal{U}_{\beta}\subset HHo1_{d}^{full}(S^{2}, Z_{n})$ with $\psi_{0}\in \mathcal{U}_{\beta}$ such that the map

$\psi\in \mathcal{U}_{\beta}\subset HHo1_{d}^{fvll}(S_{1}^{2}\mathcal{Z}_{n})$ $arrow$ $\tilde{\psi}_{\beta}=b_{\beta}^{-1}\circ\psi\in PD_{d,0}^{full}(S^{2}, \mathbb{C}P^{n(n+1)/2})$

is an algebraic isomorphism.

In other words, although PD$d_{1}r_{u11}0(S^{2}, \mathbb{C}P^{n(n+1)/2})$ is really not isomorphic to HHoldfull $(S^{2}, \mathcal{Z}_{n})$ ,
we can completely cover the latter variety with patches algebraically isomorphic to the
former.

6 An algebraic construction of harmonic maps from
$S^{2}$ to $S^{2n}$

In view of Proposition 2, in order to study local characteristics of $HHo1_{d}^{fu11}(S^{2}, \mathcal{Z}_{n})$ we
can study PD$df,0(S^{2}, \mathbb{C}P^{n(n+1)/2})$ instead. To this end, we have to analyse the system
$\alpha_{i}’\alpha_{j}-\alpha_{i}\alpha_{j}’=s\tau_{ij}’-s’\tau_{ij}$ where $s$ is a polynomial with $d$ distinct roots $s_{m},$ $1\leq m\leq d$ , and
$\alpha_{i},$ $\tau_{jk}$ are polynomials of degree less than or equal to $d$ , with $\alpha_{1}(s_{m})\neq 0$ for all $m$ .

The obvious idea would be to write the polynontials in the usual basis, substitute into
system (6) and obtain algebraic equations on the coefficients. The equations obtained,
however, turn out to be too entangled and they are too hard to analyse.

Instead, one can write the polynomials as follows: since $s$ has distinct roots $s_{m},$ $1\leq$

$m\leq d$, the polynonials $\{s, \frac{s}{z-\epsilon_{1}}, \ldots, \frac{S}{z-s_{m}}\}$ form a basis for the space of polynomials of
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degree $d$ . Thus we can write

$s= \prod_{m=1}^{d}(z-s_{m})$ , $\alpha_{i}=a_{i0}s+\sum_{m=1}^{d}a_{im}\frac{S}{z-s_{m}}$ $\tau_{ij}=t_{ij0^{S}}+\sum_{m=1}^{d}t_{ijm}\frac{s}{z-s_{m}}$

Using this representation, the system (6) turns into the following algebraic equations (see
[26] for details):

$a_{im} \sum_{k\neq m}\frac{a_{jk}}{(s_{m}-s_{k})^{2}}-a_{jm}\sum_{k\neq m}\frac{a_{ik}}{(s_{m}-s_{k})^{2}}=0,1\leq m\leq d$ (7)

and
$\tau_{ij}=t_{ij0^{S}}+s/\frac{\alpha_{i}’\alpha_{j}-\alpha_{i}\alpha_{j}’}{s^{2}}dz$. (8)

(Equation (7) guarantees that the integrand in equation (8) has no residues and $\tau_{ij}$ is a
polynommial of degree at most $d.$ )

It is useful to write (7) in the following matrix form:

$( \frac{\lambda_{1}1}{(s_{2}-,.s_{1})^{2}}\frac{1}{(s_{d}-s1)^{2}}$
$\frac{1}{(s_{\overline{\lambda}_{2}}1^{s)^{2}}2}\frac{1}{(sd-s2)^{2}}$

$..\cdot.\cdot$

$\frac\frac{(s1s_{d})^{2}\overline{1}1}{(s_{2}-,..s_{d})^{2}}\lambda_{d}$

$(a_{12}a_{11}a_{1d}a_{22}a_{21}a_{2d}$ $..\cdot.$

.

$a_{n2}a_{nd}a_{n1}$ $=0$ , (9)

where $\lambda_{m}=-\frac{1}{a_{1m}}\sum_{k\neq m}\frac{a_{1k}}{(s_{m}-s_{k})^{2}}$ .

This approach immediately gives an interesting result: it provides an algebraic ‘recipe’
to construct any linearly full harmonic map from $S^{2}$ to $S^{2n}$ (and hence any harmonic map
from $S^{2}$ to a sphere): First find $s_{m}$ and $\alpha_{1m}$ so that the nullity of the matrix

$( \frac{\lambda_{1}1}{(s_{2}-s_{1})^{2}}\frac{1}{(s_{d}-s_{1})^{2}}$
$\frac{1}{(s1-,.s2)^{2}\lambda_{2}}\frac{1}{(s_{d}-s2)^{2}}$

$.\cdot\cdot.\cdot$

$\frac\frac{1}{(s1-s_{d})^{2},(s_{2}-s_{d})^{2}1}\lambda_{d}$ (10)

$($where $\lambda_{m}=-\frac{1}{a1m}\sum_{k\neq m(s_{m}-s_{k})^{2}}\ovalbox{\tt\small REJECT}^{a})$ is at least $n$ . Then find $a_{im},$ $2\leq i\leq n,$ $1\leq m\leq d$ , so
that equation (9) is satisfied, and so that the second matrix in that equation has maximal
rank (this $wiU$ guarantee that the map is full). Then use equation (8) to find the $\tau_{ij}$ and
follow the procedure above backwards to obtain a harmonic map. Of course, there will be
some free choices on the way, such as the choice of a basis $\beta$ as explained in Section 5.
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7 $Harm_{d}(S^{2}, S^{2n}(1))$ has dimension $2d+n^{2}$ .
In this section we sketch the proof of the following:
Conjecture (Bolton-Woodward, 1993, First MSJ htemational Research Institute, Tohoku
University [6] $)$ : $Hann_{d}(S^{2}, S^{2n}(1))$ is an algebmic variety of dimension $2d+n^{2}$ .

The algebraic construction of the previous section allows for a very detailed analysis of
the variety PD$d_{2}0fu11(S^{2}, \mathbb{C}P^{n(n+1)/2})$ . In particular, it is possible to give a constructive proof
that there is a $2d+n^{2}$-dimensional variety inside PD$d_{I}f0(S^{2}, \mathbb{C}P^{n(n+1)/2})$ , which shows that
the dimension of PD$dr,0(S^{2}, \mathbb{C}P^{n(n+1)/2})$ , and hence of $Harm_{d}^{ful1}(S^{2}\}S^{2n})$ , is at least $2d+n^{2}$ .
The main steps are as follows:

1. Show that the variety of those $(s_{1}, \ldots, s_{d}, \lambda_{1}, \ldots, \lambda_{d})$ such that the matrix (10) has
nullity $n$ has dimension at least $2d-n(n+1)/2[26|$ .

2. Assuming that the nullity of the matrix (10) is $n$ , it is not hard to see that the
dimension of the set of solutions $a_{im},$ $1\leq i\leq n,$ $0\leq m\leq d$ , of equation (9), is
$n^{2}+n$ .

3. Finally, the $\tau_{ij}$ are completely determined by (8), but each has one degree of heedom
(the $t_{ij0}$ ), giving $n(n-1)/2$ dimensions more.

4. Add up: $2d-n(n+1)/2+n^{2}+n+n(n-1)/2=2d+n^{2}$ , as desired. Hence
$\dim(Harm_{d}^{ful1}(S^{2}, S^{2n}))\geq 2d+n^{2}$ .

To finish the proof of the conjecture stated at the beginning of the section, it only
remains to show that Harm$dfu1|(S^{2}, S^{2n})$ has dimension at most $2d+n^{2}$ . This is actually
easier, and it was essentially known to Bolton and Woodward. It was also proved by Kotani
(see the last corollary in [34]). Another proof of this fact, using different techniques, appears
in [25] for the particular case $n=3$ .

The proof we sketch here is very similar to that in [34], but we use the algebraic con-
struction explained above. The key point is to note that there are well-defined projections

$p_{n}:PD_{d,0}^{fu11}(S^{2}, \mathbb{C}P^{n(n+1)/2})arrow PD_{d,0}^{f}(S^{2}, \mathbb{C}P^{(n-1)n/2})$ ,

defined by deleting the $\alpha_{n+1}$ and the $\tau_{i,n+1}$ :

$p_{n}([s:\alpha_{1} :. . . :\alpha_{n}:\tau_{12}:. . . :\tau_{n-2,n-1}:\tau_{1_{1}n}\cdots:\tau_{n-1,n}])$

$=[s:\alpha_{1} :. . . :\alpha_{n-1}:\tau_{12} :. . . :\tau_{n-2,n-1}])$.

This map has the following properties:

$\bullet$ Its image has codimension at least 1. This is expected but not quite trivial. See [26]
for the detailed proof.
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$\bullet$ The fibre over a generic point has dimension at most $2n$ . This is not hard to see if we
look at equation (9). The points in the fibre are essentially those $\alpha_{n}$ such that the
vector $(a_{n1}, \ldots, a_{nd})$ is in the kernel of the matrix (9). Since this matrix has nullity
$n$ , we have $n$ degrees of freedom. In addition, we have 1 degree of freedom from the
choice of $a_{n0}$ and $n-1$ degrees of freedom from the choice of $t_{in0},1\leq i\leq n-1$ .
Therefore the fibre has dimension $n+1+(n-1)=2n$ .

Then proceed by induction on the dimension of PD$d_{)}0fu11(S^{2}, \mathbb{C}P^{n(n+1)/2})$ . Note that
PD$df,0(S^{2}, \mathbb{C}P^{1})$ , which corresponds to the case $n=1$ , is the set of holomorphic maps
from $S^{2}$ to $\mathbb{C}P^{1}$ of degree $d$ : this has dimension $2d+1$ , so of course the conjecture is true
in this case.

If the conjecture is true at level $n-1$ , then

$\dim(PDd_{1}r_{u11}0(S^{2}, \mathbb{C}P^{n(n+1)/2}))$ $\leq$ dim(Image of $p_{n}$ ) $+\dim$(Fibre of $p_{n}$ )
$\leq$ $(\dim(PDd,0f(S^{2}, \mathbb{C}P^{(n-1)n/2}))-1)+2n$

$\leq$ $2d+(n-1)^{2}-1+2n$
$=2d+n^{2}$ ,

as desired. Therefore we have proved the following.

Theorem 3 The (pure) dimension of $Harm_{d}^{ful}’(S^{2}, S^{2n})$ is $2d+n^{2}$ .

Maybe the curious thing about these proofs is that numbers match very well, but it is
not clear why things work (or at least the second author does not completely understand
why they work). There are also many relationships between the last part of this section
and integrability of Jacobi fields, as $weU$ as the extm eigenfunctions (see below) which
correspond, in our setting, to maps for which the matrix (9) has nullity greater than $n$ .

8 The role of Jacobi fields
A Jacobi field is an infinitesimal deformation of a harmonic map. We can make this more
precise in two ways.

The first way is by means of the the second variation as follows. Let $\phi:Marrow W$ be a
harmonic map between compact Riemannian manifolds. Let $v,$ $w$ be vector fields along $\phi$ ,
i.e, $v,$ $w\in\Gamma(\phi^{-1}TW)$ . Choose a smooth two-parameter variation $\{\phi_{t.s}\}$ of $\phi$ with

$\frac{\partial\phi_{l_{\backslash }s}}{\partial t}(t,s)=(0,0)=v$ and $\frac{\partial\phi_{t,s}}{\partial s}(t.s)=(0,0)=w$ ;

then the second vareation or Hessian of the energy at $\phi$ is defined by

$H_{\phi}(v, w)= \frac{\partial^{2}}{\partial t\partial s}E(\phi_{t_{2}s})(t)s)=(0,0)$
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It is given by the second variation formula (see, for example, [17]):

$H_{\phi}(v, w)=/M\langle J_{\phi}(v),$ $w\rangle\omega_{g}$

where $J_{\phi}$ : $\Gamma(\phi^{-1}Tf4^{\gamma})arrow\Gamma(\phi^{-1}TW)$ is the self-adjoint linear operator defined by

$J_{\phi}(v)=\Delta^{\phi}v$ –Thr $R^{W}(d\phi, v)d\phi$ .

Here $\Delta^{\phi}$ denotes the Laplacian on $\phi^{-1}TW$ and $R^{W}$ the curvature operator of $W$ (conven-
tions as in [17] $)$ . The operator $J_{\phi}$ is called the Jacobi opemtor; a vector field $v\in\Gamma(\phi^{-1}TW)$

is called a Jacobi field if it satisfies the Jacobi equation $J_{\phi}(v)=0$ . By standard eUiptic
theory, the set $kerJ_{\phi}$ of Jacobi fields along a given harmonic map is a finite-dimensional
vector subspace of $\Gamma(\phi^{-1}TW)$ .

A second way to understand the Jacobi operator is as (ninus) the linearization of the
tension field as follows (see [37]).

Proposition 3 Let $\phi$ : $Marrow W$ be harmonic and let $v\in\Gamma(\phi^{-1}TW)$ . Let $\{\phi_{t}\}$ be a
smooth (one-pammeter) variation of $\phi$ which is tangent to $v$ , i. e., with $\partial\phi_{t}/\partial t|_{t=0}=v$ .
Then

$J_{\phi}(v)=- \frac{\partial}{\partial t}\tau(\phi_{t})_{t=0}$ , (11)

$i.e$ ., the components of each side with respect to a local frame on $\phi^{-1}TW$ satisfy $J_{\phi}(v)^{\alpha}=$

$-(\partial/\partial t)\tau(\phi_{t})^{\alpha}|_{t=0}(\alpha=1, \ldots, m)$ .

Thus $v$ is a Jacobi field along $\phi$ if and only if

$\tau(\phi)=0$ and $\frac{\partial}{\partial t}\tau(\phi_{f})_{t=0}=0$ . (12)

Note that equation (11) and condition (12) are independent of the local frame chosen.
We shall call a smooth variation $\{h\}$ harmonic to first order if it satisfies condition (12).
Thus a smooth vantation $\{\phi_{t}\}$ of a harmonic map $\phi$ is harmonic to first order if and only
if it is tangent to a Jacobi field along $\phi$ .

In particular, if $\{\phi_{t}\}$ is a smooth variation of $\phi$ with each $\phi_{t}$ harmonic, its variation
vector field $v=\partial\phi_{t}/\partial t|_{t=0}$ is a Jacobi field. We now ask whether every Jacobi field arises
this way; to discuss this, we make the following definition.

Definition 1 A Jacobi field $v$ along a harmonic map $\phi$ : $Marrow W$ is called integmble if
it is tangent to a smooth variation $\{\phi_{t}\}$ of $\phi$ through harmonic maps, i.e., there exists a
one-parameter family $\{\phi_{t}\}$ of harmonic maps with $\phi_{0}=\phi$ and $\partial\phi_{t}/\partial t|_{t=0}=v$ .
Proposition 4 [1] Let $\phi$ : $Marrow W$ be a harmonic map between compact real-analytic
Riemannian manifolds. Then all Jacobi fields along $\phi$ are integrable if and only if the
space of harmonic maps $(C^{2,\alpha_{-}})close$ to $\phi$ is a smooth manifold whose tangent space at $\phi$

is exactly the space $kerJ_{\phi}$ of Jacobi fields along it.
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The converse is false: there are examples where the space of harmonic maps is a smooth
manifold, but the space of Jacobi fields contains non-integrable ones which are not in a
tangent space, see [37] and below.

Now, to analyse Jacobi fields along harmonic maps from $S^{2}$ to $S^{m}$ , one idea is to use
the twistor construction to replace them with infinitesimal deformations of the twistor
lift. This works well in the case $m=4$, as we now describe. Given a holomorphic map
$\psi$ : $S^{2}arrow \mathbb{C}P^{3}$ , we call a vector field $u$ along $\psi$ an infinitesimal $h_{07}\tau zontal$ holomorphic
deformation (IHHD) if it is holomorphic, i.e, tangent to a curve of holomorphic maps, and
preserves horizontality ’to first order’. Representing $\psi$ by a quadruplet of polynomials as
in Section 3, $f=(f_{1}, f_{2}, f_{3}, f_{4})$ : $\mathbb{C}-\mathbb{C}^{4}\backslash \{0\}$ so that $u$ is represented by a holomorphic
map $U:\mathbb{C}arrow \mathbb{C}^{4}$ , the latter condition reads

$dQ_{f}(U)=0$ . (13)

Given an infinitesimal horizontal holomorphic deformation $u$ of $\psi$ , it is easy to see from
the composition law for harmonic maps [16, \S 4] that $v=d\pi\circ u$ is a Jacobi field along
$\phi=\pi\circ\psi$ . The inverse construction is harder because of the presence of branch points,
however, we can show [38]:

Proposition 5 Let $\phi$ : $S^{2}-arrow S^{4}$ be a full harmonic map with twistor lifl $\psi$ : $S^{2}arrow \mathbb{C}P^{3}$ .
Then setting $v=d\pi\circ u$ defines $a$ one-to-one correspondence between IHHDs $u$ of $\psi$ and
Jacobi fields $v$ along $\phi$ .

This reduces the problem of finding Jacobi fields along $\phi$ to solving equation (13). In
particular, we see that, if $Q$ has maximal rank at $F$ , then, not only is the space of harmonic
maps a smooth manifold at $\phi=\pi 0\psi$ , but also the Jacobi fields along $\phi$ are all integrable
and form the tangent space to that manifold at $\phi$ . If $Q$ does not have maximal rank, then
there will be non-integrable Jacobi fields along $\phi$ .

As we saw earlier, if $d\leq 6$ then $Q$ is always submersive, so that all Jacobi fields are
integmble and form the tangent space to the smooth manifold $Harm_{d}^{ful1}(S^{2}, S^{4})$ .

It is not known whether Proposition 5 generalizes to higher dimensions; the argument
establishing extension over branch points is special to four dimensions. Note that for any
$m\geq 4,$ $d\geq 3$ , the space of all (i.e. full and non-full) harmonic maps from $S^{2}$ to $S^{m}$ is
not a manifold –indeed, harmonic maps can collapse to a non-full harmonic map, see the
work of N. Ejiri and M. Kotani [20, 21, 22, 34]. For $d\geq 3$ , some non-full maps $S^{2}arrow S^{4}$

are the limits of a famuily of full harmonic maps into $S^{4}$ , we shall call such maps collapse
points: see [38] for an analysis of those, especially for $d<6$ . When $d\geq 6$ , a non-full map
might also occur as the limit of $fuU$ maps into higher-dimensional spheres; see [34] for some
results on collapsing in higher dimensions.

Let $\phi$ be a non-full (non-constant) harmonic map $homS^{2}$ to $S^{m}$ with $m=3$ or 4; we
examine the Jacobi fields along $\phi$ . Note first that $\phi$ has image in a totally geodesic $S^{2}$ .
From this, it is easy to see that the space of non-full maps is a smooth manifold. Now any
Jacobi field along such a map decomposes into components tangential and normal to the
image $S^{2}$ . The tangential component is a conformal vector field, so we concentrate on the
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normal component. This may be tangent to the space of non-full maps; if it is not, then
it is called extm. Take a parallel basis for the normal bundle of the image $S^{2}$ . Then the
Jacobi equation assumes a simple form: a vector field along $\phi$ is Jacobi if and only if its
$n-2$ components $v_{i}$ satisfy the genemlized eigenvalue (Schrodinger) equation:

$\Delta v_{i}=|d\phi|^{2}v_{i}$ .

The coordinate functions of $\phi$ considered as a map into $\mathbb{R}^{3}$ span a 3-dimensional space of
trivial solutions to this equation; any other solution is called an extm eigenfunction (of $\phi$).
It is $e$asy to see that a Jacobi field is extra if and only if at least one of its components is
an extra eigenfunction.

Now, it can be shown that a non-full harmonic map from $S^{2}$ to $S^{4}$ has an extra Jacobi
field $v$ if and only if it is a collapse point. But then one of the components of $v$ is an
extra eigenfunction; this gives an extra Jacobi field of $\phi$ considered as a map into $S^{3}$ which
cannot be integrable, since all harmonic maps into $S^{3}$ are non-full. So we see that the
space of harnonic maps from $S^{2}$ to $S^{3}$ is a smooth manifold, however those harmonic maps
$S^{2}arrow S^{3}$ which are collapse points when considered as maps into $S^{4}$ have non-integmble
$Ja\omega bi$ fields.

Thus, integmbility of all $Ja\omega bi$ fields implies that the space of harmonic maps is a
smooth manifold, but not conversely.

9 Area and nullity
The nullity of (the energy) of a harmonic map is the real dimension of the space of Jacobi
fields along it. Since the Jacobi fields are the solutions to equation (13), we obtain

Theorem 4 Let $\phi$ : $S^{2}arrow S^{4}$ be a harmonic map of twistor degree $d$ . Then the nullity of
$\phi$ is greater than or equal to $4d+8$ with equality if and only if $\phi$ is a regular point of $Q$ .

Recalling the results of Bolton-Woodward and Bolton-Fern\’andez cited in Section 3,
we deduce:

Corollary 1 The nullity of a full harmonic map $\phi$ : $S^{2}arrow S^{4}$ of degree $\leq 6$ is exactly
$4d+8$ .

We can consider instead the second variation of the area. This depends only on normal
vector fields. Results of N. Ejiri and M. Micallef [23] imply that, for any non-constant
harmonic map from the 2-sphere, the map $v\mapsto the$ normal $\omega mponent$ of $v$ is a surjective
linear map from the space of Jacobi fields for the energy to the space of Jacobi fields for
the area, with kemel the tangential conformal fields.

S. Montiel and F. Urbano [40, Corollary 7] show that the nullity of the (second variation
of the) area of a (full or non-full) minimal innnersion of $S^{2}$ in $S^{4}$ of twistor degree $d$ is
exactly $4d+2$ . Since the tangential conformal fields form a space of (real) dimension 6,
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the nunity of the energy is precisely $4d+8$ ; we deduce that any immersive harmonic map
is a regular, and so a smooth, point of $Harm_{d}(S^{2}, S^{4})$ .
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