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Abstract: Super-Droplet Method (SDM) is a novel, particle based, probabilistic
simulation model of cloud microphysics. A theoretical analysis to evaluate the
computational efficiency of SDM is developed. It is estimated that SDM will be
computationally less demanding compared to the spectral (bin) method when
the number of attributes, the internal degrees of freedom of each super-droplet,
is increased and the accuracy of the spectral (bin) method is not so high-order.

1 Introduction
Although clouds play a crucial role in atmospheric phenomena, the numerical modeling of
cloud is not yet well established. The fluid motion of the moist air associated with clouds
is called “cloud dynamics process” and the behavior of aerosol/cloud/precipitation particles
floating in the atmosphere is called (cloud microphysics process”. These two processes mu-
tually affect each other in the course of cloud formation and precipitation development, and
this fact suggests that we need to simulate both processes and their interactions concurrently
in order to produce an accurate prediction. Cloud dynamics model to describe the fluid mo-
tion in the atmosphere has been well developed [1]. However, it is still difficult to perform an
accurate simulation of cloud microphysics though several simulation methods, such as bulk
parameterization method [2-8], spectral (bin) method [9-13], and the exact Monte Carlo
method [14, 15], have been proposed. Numerical methods to accurately simulate the cloud
microphysics and the interactions between the cloud dynamics are required to understand
and predict cloud-related phenomena.

Recently, the present author and his coworkers have developed a novel, particle based,
probabilistic simulation model of cloud microphysics, named Super-Droplet Method (SDM)
[16]. Though several extensions and validations are still necessary, we expect that SDM
enables accurate numerical simulation of cloud microphysics with less demanding cost in
computation. The methodology to couple super-droplets and the cloud dynamics model was
also developed. We can use a compressible, non-hydrostatic model to simulate the cloud
dynamics process (the fluid dynamical motion of the moist air). Figure 1 shows a snapshot
of a shallow maritime cumulus formation simulated by the coupled model of SDM and a
non-hydrostatic model. We can see that the turbulent like structures inside the cloud is
resolved in our simulation. SDM provides us a new approach to the cloud-related open
problems, such as the cloud and aerosol interactions, the cloud-related radiative processes,
and the mechanism of thunderstorms and lightning.

The main objective of the present paper is the theoretical analysis of the computational
cost of SDM. For this purpose, we focus our attention to simulate the stochastic coalescence
process, the most computationally expensive elementary process of cloud microphysics pro-
cess. Finally, it is estimated that SDM will be computationally less demanding compared
to the spectral (bin) method when the number of attribute, the internal degrees of free-
dom of real-droplet, becomes larger and the accuracy of the spectral (bin) method is not so
high-order.
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Figure 1: 3-diinen.sional siinulation of a $b^{\backslash }h_{\dot{C}}\backslash 1]_{(\backslash \backslash }\prime iri_{d}ritiiiie$ cumulus forination and preCip-
itation using a coupled model of the Si.rpex-Droplet cloud niicrophysics iiiodel and a non-
hydrostatic $modp1$ .

2 Stochastic coalescence of real-droplets
Let us introduce a svstem in which the coalescence of real-droplets repeatedly occurs as a
stochastic $e$vent.

We use the word real-droplet as a generic term referring to the aerosol/cloud/precipitation
particles. Let $N_{r}(t)$ be the number of real-droplets floating in a region with a volume
$\Delta V$ at time $t$ . The state of i-th real-droplet is characterized by a set of variables $a(t)=$
$(a^{(1)}, a^{(2)}, . , a^{(d)})$ , where $d$ is the number of independent variables. Hereafter, $a_{i}(t)$ is
referred to as the attribute of the i-th real-droplet. For example, following quantities can
be an attribute: the equivalent radius, which represents the amount of water that the real-
droplet contains, defined as the radius of a sphere having the same volume as the contained
water; the mass of $NaC1$ solutc contained in the real-droplet. (In general, several types
of soluble/insoluble aerosols are contained in each real-droplet); the electric charge of the
real-droplet.

Two real-droplets may collide and coalesce into one bigger real-droplet. Let us denote
the attribute of the newly created real-droplet through the coalescence of the real-droplets $j$

and $k$ as $a’=a_{j}+a_{k}$ . Note here that the new attribute $a’$ cannot be expressed in a simple
summation of $a_{j}$ and $a_{k}$ in general, but we employ this expression to simplify the notation.
We consider that the real-droplets are always well-mixed inside the region with the volume
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$\Delta V$ and the real-droplets coalesce with each other in a probabilistic manner. That is, there
exists a probability that an arbitrary pair of real-droplets $j$ and $k$ will coalesce in a short
time interval $(t, t+\Delta t)$ , which is given by

$P_{jk}=K(a_{j}, a_{k}) \frac{\Delta t}{\Delta V}$ , (1)

here $K(a_{j}, a_{k})$ is a certain function of $a_{j}$ and $a_{k}$ .
There are various elementary processes in cloud microphysics, such as the sedimentation

and advection of real-droplets, the condensation/evaporation of vapor, and the chemical
reactions, but we do not consider these processes in this paper to make our discussion simple.

3 Super-Droplets
Let us introduce super-droplets to represent the stochastic coalescence of real-droplets.

A super-droplet is characterized by the attribute $a$ and a multiplicity $\xi\in\{1,2, \ldots\}$ . We
consider that this super-droplet represents $\xi$ number of real-droplets with the same attribute
$a$ . Our idea is to approximate the real-droplets $\{a_{i}|i=1,2, \ldots, N_{r}\}$ by the super-droplets
$\{(a_{i}, \xi_{i})|i=1,2, \ldots, N_{s}\},$ $N_{s}<N_{r}$ .

We define that the super-droplets $j$ and $k$ will coalesce in the following way.

1. If $\xi_{j}\neq\xi_{k}$ , choosing $j$ to satisfy $\xi_{J}>\xi_{k}$ without losing generality, and

$\xi_{j}’=\xi_{j}-\xi_{k}$ , $\xi_{k}’=\xi_{k}$ , (2)
$a_{j}^{l}=a_{j}$ , $a_{k}’=a_{j}+a_{k}$ , (3)

where the dashed valuables represent the updated value after the coalescence.

2. If $\xi_{j}=\xi_{k}$ ,

$\xi_{j}’=[\xi_{j}/2]$ , $\xi_{k}’=\xi_{j}-[\xi_{j}/2]$ , (4)
$a_{j}’=a_{k}’=a_{j}+a_{k}$ , (5)

where Gauss’ symbol $[b]$ is the greatest integer that is less than or equal to the real
number $b$ .

Figure. 2 is a schematic view of the coalescence of super-droplets. In this example, $\xi_{j}=3$

and $\xi_{k}=2$ . We can see that $\min(\xi_{j}, \xi_{k})=2$ pairs of real-droplets undergo coalescence,
which results in the decrease of multiplicity $\xi_{j}$ : $3arrow 1$ and the increase of the size of the
super-droplet $k$ .

This definition of super-droplet coalescence possesses a favorable property that the num-
ber of super-droplets is unchanged in most cases though the number of real-droplets al-
ways decreases. The number of super-droplets decreases through the coalescence only when
$\xi_{j}=\xi_{k}=1$ , i.e., both super-droplets are real-droplets. This results in $\xi_{j}’=0$ and $\xi_{k}’=1$ ,
and we remove the super-droplet $j$ out of the system. Hence, we can say that the number
of super-droplets is conserved in most cases

$N_{s}(t)\simeq$ const. (6)
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Figure 2: Schematic view of the coalescence of super-droplets. Two super-droplets with
multiplicity 2 and 3 undergo coalescence (upper left). This represents the coalescence of two
real-droplet pairs (lower left and right). As a result the super-droplet with multiplicity 2
becomes larger and the multiplicity of the other super-droplet decreases $3arrow 1$ (upper right).

Because the number of super-droplets corresponds to the accuracy of SDM, the number
conservation of super-droplets suggests the flexible response of SDM to the drastic change
of the number of real-droplets.

We have defined how a pair of super-droplets coalesce. The probability that an arbitrary
pair of super-droplets $j$ and $k$ will coalesce in a short time interval $(t, t+\Delta t)$ is given by

$P_{jk}^{(s)}= \max(\xi_{j}, \xi_{k})P_{jk}$ . (7)

With this definition of coalescence probability, the expectation value becomes identical
to that of the coalescence of real-droplets. The super-droplet $j$ represents $\xi_{j}$ number of
real-droplets with attribute $a_{j}$ and the super-droplet $k$ represents $\xi_{k}$ number of real-droplets
with attribute $a_{k}$ . In terms of the real-droplet world, this corresponds to the situation that
there are $\xi_{j}\xi_{k}$ number of real-droplet pairs which have the possibility to coalesce with the
probability $P_{jk}$ . Thus, the number of real-droplet pairs which will coalescence follows the
binomial distribution with $\xi_{j}\xi_{k}$ trials and success probability $P_{jk}$ . Thus, in the real-droplet
world, the expectation value of the number of coalesced pairs is $\xi_{j}\xi_{k}P_{jk}$ . On the other hand, in
the super-droplet world, a coalescence of the super-droplets $j$ and $k$ represents the coalescence
of $\min(\xi_{j}, \xi_{k})$ pairs of real-droplets with attribute $a_{j}$ and $a_{k}$ . Thus, the coalescence of the
super-droplets $j$ and $k$ is expected to represent $\min(\xi_{j}, \xi_{k})P_{jk}^{(s)}=\min(\xi_{j}, \xi_{k})\max(\xi_{j}, \xi_{k})P_{jk}=$

$\xi_{j}\xi_{k}P_{jk}$ number of coalescence of real-droplet pairs, which is identical to the value in the
real-droplet world. It is worth noticing here that the variance in the super-droplet world
becomes larger than that in the real-droplet world. In the real-droplet world, the variance of
the number of coalesced pairs is $\xi_{j}\xi_{k}P_{jk}(1-P_{jk})\simeq\xi_{j}\xi_{k}P_{jk}=:V_{r}$ (Poisson distribution limit).
In the super-droplet world, the variance is $\{\min(\xi_{j}, \xi_{k})\}^{2}P_{jk}^{(s)}-\{\xi_{j}\xi_{k}P_{jk}\}^{2}\simeq\min(\xi_{j}, \xi_{k})V_{r}$ ,
which is $\min(\xi_{j}, \xi_{k})$ times larger than that of the real-droplet world.

The definition of the coalescence process of super-droplets is still theoretical and it can not
be implemented on a computer directly. Based on the above definition, the present author
and his coworkers have developed a novel Monte Carlo scheme to simulate the stochastic
coalescence of super-droplets [16]. We do not show the precise calculation procedure in the
present paper, but one thing worth emphasizing is that the operation count and $memor^{v}y$
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required for the computation of our Monte Carlo scheme is $O(N_{s})$ :

$operation\sim N_{s}$ , $memory\sim N_{s}$ . (8)

4 Computational cost of SDM
In this section we estimate the computational cost of SDM. Before discussing the computa-
tional cost, we have to clarify what is the quantity we want to reproduce or predict using
SDM. Let us choose the number density distribution of real-droplets $n(a, t)$ as the reference
quantity and discuss how much computational cost is necessary to reproduce $n(a, t)$ within
a certain margin of error.

We have to estimate the number density distribution $n(a)$ bom the super-droplets
$\{(\xi_{i}, a_{i})|i=1,2, \ldots, N_{s}\}$ . For the estimation, we use the kernel density estimation method,
which was originally developed to estimate the generating probability distribution from its
random sample [17].

We use the density estimator function $\tilde{n}(a)$ with Gaussian kernel $W_{\sigma}^{(d)}(a)$ , defined by

$\tilde{n}(a):=\sum_{i=1}^{N_{s}}\xi_{i}W_{\sigma}^{(d)}(a-a_{i})$ ,
(9)

$W_{\sigma}^{(d)}(a):= \frac{1}{(\sqrt{2\pi}\sigma)^{d}}\exp\{-a^{2}/2\sigma^{2}\}$.

To evaluate the error let us introduce the Mean Integrated Squared Error (MISE) defined
by

$C(\sigma)=E[/d^{d}a\{n(a)-\tilde{n}(a)\}^{2}]$ . (10)

Note here that $C(\sigma)$ is defined as an ensemble averaged value because each $\{(\xi_{i}, a_{i})\}$ is one of
the random realizations of the stochastic coalescence process, and it measure the difference
of $\tilde{n}(a)$ from the exact solution $n(a)$ .

Before evaluating MISE (10), let us examine the behavior of the number density of
super-droplets $q(\xi, a, t;N_{s})$ , i.e., $q(\xi, a, t;N_{s})\Delta^{d}a$ is the expectation number of super-droplets
with multiplicity $\xi$ and attribute in the small interval $(a, a+\Delta^{d}a)$ at time $t$ . Obviously,
$q(\xi, a, t;N_{s})$ depends on the total number of super-droplets $N_{s}$ . Let us assume that the
following form of scaling law exists:

$q(\xi, a, t;\alpha N_{s})=\alpha^{k_{1}}q(\alpha^{k_{2}}\xi, a, t;N_{S})$ . (11)

The equality below holds good by definition

$1^{d^{d}a\sum_{\xi=0}^{\infty}q(\xi,a,t;N_{S})=N_{s}}$ (12)

and remember that $N_{s}$ is almost conservative in time. Also remember that super-droplets
represent the expected dynamics of the real-droplets irrespective of the choice of $N_{s}$ , which
yields

$\sum_{\xi=0}^{\infty}\xi q(\xi, a, t;N_{s})=n(a, t)$ . (13)
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Assuming that $q(\xi, a.t;N_{s})$ is smooth enough in $\xi$ , the equality below may holds good,

$\sum_{\xi=0,\alpha,2\alpha}^{\infty},\ldots\simeq\frac{1}{\alpha}\sum_{\xi=0,1,2}^{\infty}\ldots$ ’ (14)

for the summation of $q(\xi, a, t;N_{s})$ . Then, from the equations (11)-(14) we can determine the
scaling exponents as $(k_{1}, k_{2})=(2,1)$ .

Based on this scaling law, we can derive the expectation value and variance of $\tilde{n}(a)$ as

$E[ \tilde{n}(a)]\simeq n(a)+\frac{\sigma^{2}}{2}\{\sum_{j}\frac{\partial^{2}n(a)}{\partial a_{j}^{2}}\}$ ,

$V[ \tilde{n}(a)]\simeq\frac{N_{r}n(a)}{N_{s}(2\sqrt{\pi}\sigma)^{d}}$ .

Substituting these two equations into (10), we can determine the $\sigma^{*}$ that minimize the MISE
$C(\sigma)$ , which yields the scaling,

$\sigma^{*}\sim N_{s}^{\frac{-1}{(d+4)}}$ , $C(\sigma^{*})\sim N_{s}^{\frac{-4}{(d+4)}}$ .

Thus, the operation count and memory needed for SDM scales like

$opemtion \sim N_{s}\sim(\frac{1}{\sqrt{C(\sigma^{*})}})^{(d+4)/2}$ ,

(15)

$memory \sim N_{s}\sim(\frac{1}{\sqrt{C(\sigma^{*})}})^{(d+4)/2}$

We have estimated the computational cost of SDM. However, our result depends on our
choice of the estimator kernel function $W_{\sigma}^{(d)}(a)$ though kemel density estimation method
itself is irrelevant to SDM. In general, any function which meets some appropriate conditions
can be chosen as an estimator kernel function, and Gaussian kernel, which we adopted, is a
sort of order-2 kernel. Our estimation could be improved if we use higher order kernel, but
do not discuss this point in detail in this paper.

5 Is SDM computationally more efficient than spectral
(bin) method?

The computational cost of SDM has been estimated, and if the cost is lower than other
cloud microphysics models, we can say that the use of SDM is beneficial. Let us compare
the computational cost of SDM and spectral (bin) method in this section.

Spectral (bin) method is a sort of finite difference scheme to simulate the time evolution
of $n(a, t)[9-13|$ . Rom the governing law of the stochastic coalescence process (1) we can
derive the time evolution equation of $n(a, t)$ :

$\frac{\partial n}{\partial t}=\frac{1}{2}/d^{d}a’n(a’)n(a-a’)K(a’, a-a’)$

(16)
$-n(a)/d^{d}a’n(a’)K(a, a’)$ .
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This d-multiple integro-differential equation is called the Stochastic Coalescence Equation
(SCE).

The basic idea of spectral (bin) method is to discretizing $n(a, t)$ into a several number of
bins (histograms) and simulate SCE. Let $N_{b}$ be the number of bins for each attribute, i.e., the
number of grid points used for the discretization of $n(a)$ per attribute. Then, because SCE
is a d-multiple integro-differential equation, the opemtion count and memory required for the
computation of spectral (bin) method scales like $opemtion\sim N_{b}^{2d}$ ” and $memory\sim N_{b}^{d}.$

”

The error evaluation function corresponding to MISE (10) is the Integrated Squared
Error (ISE) defined by

$C= \int d^{d}a\{n(a)-n_{b}(a)\}^{2}$ (17)

Here, $n_{b}(a)$ is the approximate solution generated by the spectral (bin) method. If the
accuracy of spectral bin method is kth order in attribute-space, $C$ scales like $C\sim N_{b}^{-2k}$ by
definition.

Combining the above mentioned results, we can estimate the scaling of opemtion count
and memory needed for the computation of spectral (bin) method in terms of $C$ as follows,

$opemtion \sim N_{b}^{2d}\sim(\frac{1}{\sqrt{C}})^{2d/k}$

(18)
$memory \sim N_{b}^{d}\sim(\frac{1}{\sqrt{C}})^{d/k}$

Now, we are ready to compare the computational efficiency of SDM and spectral (bin)
method by comparing the exponents in (18) and (15). The result suggest that the operation
count of SDM becomes lower than spectral (bin) method when the condition

$d> \frac{4k}{4-k}$ and $k<4$ ,

is satisfied, and the memory of SDM becomes lower than spectral (bin) method when

$d> \frac{4k}{2-k}$ and $k<2$ .

Hence, if $k=1$ , i.e., the accuracy of the spectral (bin) method is lst order, SDM is more
efficient when the number of attributes $d\geq 2$ . Our results also suggest that when $k\geq 4$ ,
SDM is always not efficient. However, as already mentioned, our estimation depends on the
choice of the estimator kernel function and the computational efficiency should be discussed
more carefully. At least we could say that there is a tendency that SDM is computationally
less demanding when the number of attributes $d$ is large and the accuracy of the spectral
(bin) method $k$ is not so high-order.

6 Concluding remarks
SDM is a novel, particle-based, probabilistic microphysics model. In the present paper,
we estimated the computational cost of SDM. To simplify the discussions, we focused our
attention to simulate the stochastic coalescence process and neglected other elementary
processes, such as sedimentation, evaporation/condensation. Based on a similar discussions
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developed in the kernel density estimation theory [17], we estimated the relationship between
the computational cost and computational error of SDM. Comparing the results with that
of the spectral (bin) methods, it was suggested that SDM is computationally less demanding
when the number of attributes $d$ is large and the accuracy of the spectral (bin) method $k$ is
not so high-order.

In various research areas, many types of particle-based simulation schemes have been
developed in these days. SDM can be regarded as a sort of Direct Simulation Monte Carlo
(DSMC) method, which was initially proposed to simulate the Boltzmann equation for pre-
dicting rarefied gas flows [18]. Our discussions in this paper is based on (11)-(14), which
are fundamental properties and assumptions of SDM and irrespective of the detail proce-
dure of SDM. Consequently, a similar way of evaluation may be also applicable to other
particle-based simulation schemes.
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