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1 Introduction

Let aj, j = 1,2,3, B = ap be Hermite (symmetric) 4 x 4 matrices which
satisfy the following anti-commuting relations.

Q0 + apay; = 25_7‘1«:, 0<Vy, Vk <3, (11)

where d;; denotes Kronecker’s delta. The Dirac operator with which we are
concerned is defined by

3 .
Hpu = cZaijju+mczﬁu+V(:c)u, z € R?, (1.2)
=1
where c is the speed of light, m is a non-negative number and V is a real-
valued function defined on R3. It holds that the free Dirac operator

Hy = ca - Dy + mc?,
is essentially self-adjoint on C§°(R3; C*) in H = L%(R3; C%) and
o(Ho) = (—o0, —mc?] U [mc?, +00).

in view of the identity H3 = (—c2A + m2c*)I,.

When the potential decays at infinity, we may expect that the spectrum
is almost equal to that of the free operator. In fact when the potentials V
are short range type it holds that
(1) 0ess(Hp) = (—00, —mc?| U [mc?, o0),
(2) U.sc(HD) = @,
(3) 0p(Hp) C [—mc?,mc?] is an at most countable set whose elements can
only accumulate to the points +mc? (O.Yamada [12]). This result has been
extended to a class of long range type potentials (V. Vogelsang [11]).
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On the other hand if we allow the potential to be diverge at infinity, the
situation is dramatically changed. In fact it turns out (H. Kalf, T. Okaji and
O. Yamada [8]) that the spectrum of Hp coincides with R and there exist
no eigenvalues if potentials fulfill the following conditions. There exists a
positive number § such that as |z| — oo,

V(z) - q(lel)] = O(jz|7*7°¢"/%(x})),

0,(V(z) = q(jz)I) = O(|=]~*q(|=1)),

where q(r) is a real valued C?([0,00) function diverging at infinity, which
satisfies the following conditions.

) inf q(r) >0, i) [¢'(r)]- = O(r™"’9),
i) ¢'(r) = O~ Y2932,  iv) {'(r) = O@F"17%?)

Our purpose is to investigate the spectrum of Dirac operators with po-
tentials neither decaying nor diverging. In this paper we consider potentials
homogeneous of degree zero.

2 Main results

We always assume that
(V1) V e C=(R3\{0}) is homogeneous of degree zero.

Let V|, = {ur‘leaS%V(w), V.= zré{gr% V(w), Sy = {w € §%, VV(w) = 0} and
define the threshold set

T(HD) = (V(Zv) + mCZ) U (V(Zv) — mcz).
Then our first result for the Dirac operator is as follows.

Theorem 2.1 Suppose that (V-1) holds, m is nonnegative and Xy s at most
countable. Then

1) o(Hp) = (=00, Vy — mc?| U [V- + mc?, +00)

2) 0,(Hp) is an at most countable set whose elements can only accumulate
to T(HD),

3) os.(Hp) = 0.
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We can improve the above result when the light speed c is large enough.

Theorem 2.2 Suppose that (V1) holds and m is positive. Then there ex-
1sts a positive constant ¢y such that the spectrum of Hp is purely absolutely
continuous if ¢ > cy.

For Schrodinger operators
1
Hy=-50+V(z) in L*R%Y, d>3

it is well known that the same conclusion is true for more general poten-
tials. In fact Lavine [7] proved that if (z - D)V < 0 (repulsive), then the
spectrum of Hp is purely absolutely continuous. In connection to the study
of asymptotic behavior of solutions Herbst [3] has proved a uniform limit-
ing absorption principle for homogeneous potentials of degree zero by use of
complex dilation method. Later Agmon, Cruz and Herbst [1] applied Mourre
theory to generalize it and Hassel, Melrose and Vasy [2] investigated more
general operator from the view point of propagation of singularities.

3 Idea of proof of Theorem 2.1

Define a unitary operator (Uf)(z) = (h/c)™%2f(hz/c). Then
U™'eD,U = hD, :=p and U"VU = V.

Let H=U"'HpU = a-p+mc*B+V and define a selfadjoint operator Aj,
called conjugate operator

1
~ 2h
where Hy = a-p+mc?f, v > 0 is a small parameter and G = E,:zp-V(V(x)).
Here

A, (Hy 'pz + zpHJ?) — %(G +GY)

VIRDE T m2ch, if m >0
V|hD|? + 1, if m=0.
and V(z) = (1 — xe(z))|z|*V (2) with x. € C*(R?) satisfying
0 |z| > 2¢

X€($)= , €>0.
1 Jz|<e
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If m > 0,then %?: hDH,/E} is called the classical velocity operator ([10]). |
0

Theorem 2.1 is a simple consequence of Mourre estimates [9] outside the
threshold 7(H).

Theorem 3.1 Let I C R\7(H). Then there exist positive constant § > 0
and a compact operator K in L2(R3; C*%) such that

Eg(D[iH, A)Ex(I) 2 6Ex(I) + K,
where Ey s the spectral projection of H.

The most essential step to prove Mourre estimate is the following result.

Lemma 3.2

(i) [iHo, Ai] = —R*AE;?,

(i) if e, v and h are small enough, then there exists a positive constant C
such that

[iH, A\ > S E;* {|hDP + W (z, D)} B,
W(z, D) = v]z|*|VV(2)|* — C(y + h)|hD],
(it3) [[H,1A:1],14;] < C

Once the Mourre estimate is verified, it holds that the (local) limiting
absorption principle.

Theorem 3.3 If J CC R\{7(H) U o,(H)}, then for any s > 1/2,

sup |{z)*(H — X Fie) H{z)"°|lr2) < oo.
AEJ, e>0

4 Uniform limiting absorption principle

To prove Theorem 2.2, we shall establish a uniform limiting absorption prin-
ciple which is derived from the one for relativistic Schrodinger operators Hp.
Define a unitary operator (U f)(z) = (mc)~*2f(mecz). Then

U 'eD,U =mc*D, and U™'VU = V.
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Then
U'HpU = mc? {a-Dw + B+ —1—5V}
me
Let p = D, and

1 1
H=aq- V. Hp= 2 i 7
a-p+ft+—V, Hp=+|pP+1+—=V

It is known that there exists a unitary operator T', called Foldy-Wouthuysen-
Tani transform defined later explicitly such that

- EI, 0
T(a-p+ BT = 1,
(a-p+B) ( 0 —EI2)

where E = /|p|?2 + 1 is called the relativistic Schrodinger operators. Con-
sider two unitary operator T on L2(R3; C*)

E+1 F-1 a D a-D
\/ 5E 'Dl = /55 (\/E—i- 1,06 ,__.__..1>

A-l

Then it holds that
7 =T_, T\T_.=I4

T =T, is called Foldy-Wouthuysen-Tani transform 7" ([10]).
The result in Theorem 2.1 can be improved if we consider H as a pertur-
bation of a pair of relativistic Schrodinger operators because

3 1
= VIDP +1+ —V(z)

has a nice property as follows.

1
Theorem 4.1 Letm > 0 and Hgr = /|D|?> + 1—%—@‘/. Suppose that (V1).
Then there exist positive constants L and co such that

sup |{z) ' (Hr — AFie) " Hz) By < L, forall c> ¢y
AER,e>0

Corollary 4.2 If c is large enough, then the spectrum of Hp is purely abso-
lutely continuous.
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We can show that the conclusion of Corollary 4.2 is true without limitation on
¢ by using the Mourre theory and absence of eigenvalues of Hg. In applying a

perturbation argument, however, we need a uniform estimate as in Theorem
4.1

Theorem 4.3 Suppose that (V1) . Then there exists a positive constant cg
such that if ¢ > ¢y, then it holds that

sup |{z)"HTHT' - AFie) z) Br2) < 00.
A€eR.,e>0

Corollary 4.4 If ¢ is large enough, then the spectrum of Hp is purely abso-
lutely continuous.

5 Proof of Theorem 4.3

Approximate H by a pair of 2 Hg via FWT transform.

\/iD|2+1+;1-1-c—2V 0
1
0 ~(VIDP+1~ —V)

+W, (5.1)

where
1

Let H = T.(a- D+ B)T- + (mc*)~'V. Then T.HT. = H + W. We shall
use the following results to handle the remainder term W.

Lemma 5.1 Suppose

sup |[(z)"*(H = AFie) Hz) || =M < oo.

A€J, >0

If |{(z)*W (z)(z)*®|| < 35, then the same conclusion is valid for H replaced by
H+W.
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Lemma 5.2 (Remainder estimate): Let V(z) = (1 — x.(2))V(z). Then

oo — 7= Wi W)
Wor Woo

where
(@)Wjj(z) € LIH), (2)*Win(z)/? € L(H), j#k.

Proof: Let

oy = 0 with o1 = 01 o2 = 0 — 03 = L0
77\ o 0 ' 10/ \si o0 ) \o -1)

Then it holds that

T, =a+b a= A. O b= 0 £A_ -
0 A, FA_. O

Here

1 oD
Ay = —==VE+1, A_ = .
T VRE V2EVE £ 1

Note that a* = a, b* = —b and

TVT ~V =0, V],a] - 5 [b,V].5

+5 (0, VIp+b{a,V]) ~ 5 (b, Via+ab,V]). (5.2)

N

To derive the conclusion we use a calculus of ¥DO. Let g = (|z|* + 1)~ 1dz? +
(J€]* + 1)"1d¢? be a metric on R?¢. A smooth function a(z,£) defined on
R? x R? belongs to a class of symbols ST*(g) if

Va, 8, |808¢a(z,&)| < C(z)*Plg)™ 1, (2,6) e R? x R?
Define the pseudo-differential operator OP(a) with symbol a by
OP(a)u(z) = (Qw)_d/ei(m“y)'ga (

It is easily verified that W) is a 2 x 2 matrix-valued pseudo-differential op-

3 e) ut)due, v e O (RY)

]

erator with symbol

W;j(z,€) € S73(g), Wir(z,§) € SZ1(9), j # k.
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Q.E.D.
Let H = Hy Wi where
Wor H_
1 .
H+=E+——5V, H_ =-— (E————EV)
me mc

Then (U “1HpU — z) u = f is equivalent to

1 | fy
-0 ] = |

which means that if ( = z(mc?)™!,

(Hy = Quy — Wia(H_ — () ' Woiuy = El'c'g [fe —Wu(H- -],

(H- = Qu- = Wa(H, = O Wigu_ = — [~ Wn(Ha — )7 £.]
In virtue of
o(Hy)No(H.) =0, zf—( -V.)<2

it follows from Lemma 5.1 with s = 0 and s = 1 that

) uxll < C (K@) foll + K21

6 Proof of Theorem 4.1

We shall apply weakly conjugate operator method to Hgr (a weak version of
Mourre estimates). |
This method is applied for many cases. One of them treats the free Dirac
operator with positive mass a - D + mg (Iftimocvici and Méntoiu [6].)
In our case we consider relativistic Schrodinger operators with homoge-
neous potential.

Az = % (E7'Dy-z+2-D,E™), E=(|D|*+1)¥?
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Lemima 6.1 There exist positive numbers cg and § such that

([iHR, AoJu,u) > 8| By *ul)?
By '?([Hg,145),iA5) By ? € B(LX(R?)),

where By = |D*(|D|* +1)7.
Proof: A simple computation gives

[{E, As) = |DP(ID?+1)"' = By > 0.
Moreover

200V, A = E'D-2iV+ D -zE™ Y%V —iVz . DE™* —iVE 'z - D
+3E7'V - 3VE™!
=2E7'D-izV —2iVz-DE™ '+ [D -z, E7'iV —iV[E™},z - D]
+3E7'V - 3VE™!

where ([E~',iz - D] = [E™',D -ix] = E iz - D,EJE™' = ByE™'. Let
Vi(z) = x(z)V(z) and Va(z) = (1 — x(z))V(z) with x € C°(R®). Note that
(E7'Dju, z;Viu) = <l%—'|33/2u, z;(z) Vi (z) 1By 2 BY*u).

By virtue of

By'? = \/1+D? < 1+|D| ™,

and Hardy’s inequality

Nzl ull 2mey < Calll Dlullz2mey with Caq = 75
it holds that
() By 2v]| < (1+ Cs)lloll,

Since

sup |a; (@)Vi(@)] < max {12l(1 + &)}V e
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if we take suppx C {|z| < 1/2}, we obtain
(E7'D - ziViu,u)| < 2 (1 + C) IV oo || Ba 2wl
Similarly

([D -z, E7iViu,u)| < (1 + Co) IV llool| By *ull?,

(E~Viu,u)| < 1 + C0)? |V lloo|| By w2

To deal with V5 we now use the identities

—[iVa, A —([E'“ iVa]D -z +z - D[E™,iV5)])

+%(E‘ [D-2,Vs] — [iVa,z - D]),

[E~,iVa] =E7'[iVe, EJE™Y,
[E,iVs) =E~'D -VV + K(z, D),
where K is a YDO with symbol satisfying
K(z,8) = (&2 +m*)22AV + (2 + M) VPAV +-- -,

Va, B, |0508K (z,€)| < Clz) > Wl(g)™o, (z,¢) e R* x RY.
Thus, it holds that

(E7K (e, D)E™ u,u)| < O||By*ul|*.
Therefore if we take ¢ to be large, then
([iHR, Az)u, u) = (1 — CL(mc®) M|V |oo) | By *ul* 2 6| By ull*.

Q.E.D.

Let
F, = (u,(Hgr — A\ FieB)™'u)

where B = [H,iA2]. Then it holds that

de

< Ce 2| F|*?||(z)ul| L2




75

Integrating it on [g, 9] C (0, 1) with aid of a Gronwall-type lemma and taking
the limit

lim F, = Fp,
e—+0

we can conclude that

| Fol < Cli{w)ullZs.
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