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1 Introduction

Wavelet analysis allows a sparse representation of turbulence. The
wavelet transform decoinposes a turbulent flow field into space-scale
contributions. The small scale coiitributions are significant only in ac-
tive regions but iiot in weak regions. If we can neglect or inodel the
non-significant coiitributions, we can reduce the number of the wavelet
coefficients to track turbulence sigiiificantly. A wavelet-based method to
extract coherent vortices from turbulent flows has been introduced [1, 2].
It splits the voricity field into two sets, coherent and iiicoherent vorticity.
The coherent vorticity exhibits similar statistical behavior as tlie total
vorticity. The incoherent vorticity reconstructed from most of the weaker
coefficients is an ahnost uncorrelated random background flow. A new
turbulence inodel, called Coherent Vortex Siinulation (CVS), has been
proposed[3]. It is based on a deterministic computation of the coherent
flow evolution by tlie use of an adaptive wavelet basis and modelling of
the influence of the incoherent flow.

The aims of this work are the followings;

(1) We examine the Reynolds number dependence of contirbution of
coherent and incohereiit vorticity to high Reynolds nuinber hoino-
geneous istropic turbulence as a prior test on CVS.
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(2) We estiinate liow the nuinber of the wavelet coefficients, corre-
sponding to the coherent vortices, depends on the Reynolds num-
ber.

These are the key questions for tlie feasibility of the CVS approach. The
details are found in ref. [5]

2 Wavelet analysis and coherent vortex extrac-
tion

First, we suiilinarize the inain ideas of wavelet analysis, tlie coherent
vortex extraction and DNS datasets we used.

2.1 Vector valued orthogonal wavelet decomposition

Wavelets are functions well localized in both physical and spectral
space. In particular, orthnogonal wavelet analysis the fast wavelet trans-
forinatioii with linear complexity and has no redundancy. It unfolds a
vector field into scale, positions and directions and decomposes it into
an orthogonal wavelet series

$v(x)= \sum_{\lambda\in\Lambda}\tilde{v}_{\lambda}\cdot\psi_{\lambda}(x)$
. (1)

From a vector field sampled on $N$ equidistant grid points, we obtaiii
tlie $N$ wavelet coefficients by the fast wavelet transform. When scale
becomes sinaller ($j$ increases), we have inore wavelet coefficients.

2.2 Coherent Vortex Extraction

The wavelet-based Coherent Vortex Extraction (CVE) method[l, 2] is
based on the following:

(1) $)\backslash r_{e}$ consider the vorticity field rather than the velocity field, since
it preserves Galilean invariance.

(2) We consider the minimal but hopefully consensual statement about
coherent structures: ‘coherent structures are not noise and corv e-
spond to what remain after denoising’.
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(3) As the simplest guess, the noise is supposed to be additive, Gaus-
sian and uncorrelated.

We briefly sketCli the CVE procedure. Readers interested in the de-
tails may be refered to the original papers.[1, 4] An ortliogonal wavelet
decomposition is applied to the vorticity field $\omega$ . A threshold based
on denoising theory[6], which depends on the enstrophy and resolution
of tlie field, splits the wavelet coefficients into two sets. The coherent
vorticity $\omega_{C}$ is reconstructed from few wavelet coefficients whose mod-
uli are larger tlian the threshold. The incoherent vorticity which can
be reconstructed from the inany remaining weaker coeffcients satisfies
the equation $\omega_{1}=\omega-\omega_{C}$ due to the ortliogonality of the wavelet ba-
sis. In the CVE, we prefer the Coifman 12 wavelet, which is compactly
supported, has four vanishing moments, and is quasi-syininetric.

3 DNS data sets at $R_{\lambda}=167$ , 257,471 and 732
We used the four DNS datasets of three-dimensional incompressible

turbulence of $k_{\max}\eta\simeq 1$ computed on the Earth Simulator[7, 8]. $k_{\max}$ is
tlie inaximum wavenumber of the retained modes, $\eta$ is the Kolmogorov
length scale.

The number of grid points aiid Taylor microscale Reynolds number
for each DNS are listed in Table 1 of ref.[5].

4 Coherent vortex extraction for $R_{\lambda}=732$

Now we apply the colrerent vortex extraction inethod to the DNS data
for the highest Reynolds number case.

4.1 Visualization

Figure 2(top) in ref.[5] shows the inodulus of vorticity of the total flow,
after zooming on a subcube to enhance structural details. Then we de-
coinpose the flow into the coherent and incoherent contributions. The
cohereiit flow retains the vortex tubes present in the total vorticity, and
well superimposes with the total one as shown in figs. 2(top) and (bot-
tom left) in ref.[5]. In contrast, the incoherent vorticity is structureless
(fig. 2(bottom right) in ref.[5]).
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4.2 Velocity probability density functions

Figure 3(top) in ref.[5] sliows the PDFs of the velocity components of
the total, coherent and incoherent velocity. The Gaussian distributioii,
whicli is norinalized so that it has zero mean and tlie saine standard de-
viation as tliat of the incohereut velocity, is also plotted. The total and
coherent velocity PDFs coincide well. We find that the incoherent veloc-
ity PDF is quasi-Gaussian with a strongly reduced variance compared
to the total velocity PDF.

4.3 Vorticity probability density functions

The PDFs of the vorticity components are shown in fig. 3(bottom) in
ref.[5]. The coherent vorticity PDF is in good agreement with the total
one. They show a stretched exponential behavior wliich illustrates the
interinittency due to tlie presence of coherent vortices. The PDF of the
incoherent vorticity has an exponential shape with a reduced variance
coinpared to that of the total vorticity.

4.4 Energy spectra

Tlie energy spectra of the total, colierent and incoherent flows are
illustrated in fig. 4 of ref.[5]. This shows that the eiiergy spectrum of
the coherent flow is identical to the total one all along the inertial range.
In tlie dissipation range, we see the difference between the coherent
energy spectruin and the total one, though the cohereiit vortices still
keep a significant contribution for the range. For the incoherent flow,
we observe that the scaling of the incoherent energy spectrum is close to
$k^{2}$ , which corresponds to an equipartition of incoherent energy between
all wavenumbers.

4.5 Energy transfers and fluxes

Studying the energy transfer in Fourier space enables us to check the
contributions of the coherent and incoherent flows to energy flux in spec-
tral space. Using the decoinposition of the total velocity $v$ into the
coherent and incoherent velocity $v_{c}+v_{i}$ , we obtain 8 energy transfer
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functions and enegy fluxes for possible combinations betwcen coherent
and incoherent flows.

$T_{a\{3\gamma}(k)=- \sum_{k-1/2\leq|p|<k+1/2}\mathcal{F}[v_{a}](-p)\cdot \mathcal{F}[(v_{\beta}\cdot\nabla)v_{\gamma}](p)$
, (2)

and the energy flux $\Pi_{\alpha\beta},\rangle.(k)=-\int_{0}^{k^{n}}T_{\mathfrak{a}\cdot\beta\gamma^{1}}(k)dk$ for $(\alpha, \beta, \gamma^{1})\in\{c, i\}$ .
$\mathcal{F}[v](k)$ expresses the Fourier transform of $v$ .

Figure 7 in ref.[5] shows the energy fluxes normalized by the dissipation
rate $\Pi(k)/\langle\epsilon\rangle$ versus $k\eta$ , together with the total flux denoted by $\Pi_{ttt}$ . We
find that, all along the inertial range, the coherent flux coincides with
the total one and the other fluxes are almost zero. In tlie dissipative
range, the coherent flux still dominates, though it begins to depart from
the total one, since $\Pi_{cci}$ and $\Pi_{icc}$ start to build up. The fluxes $\Pi_{cci}$ and
$\Pi_{icc}$ tend to coinpensate each other with increasing $k\eta$ . The remaining
terms are negligible.

4.6 Velocity flatness

We examine the relationship between the scale dependent flatness of
wavelet coefficients for the total velocity field and the scale dependent
coinpression rate defined by the percentage of wavelet coefficients corre-
sponding to the coherent vortices at each scale. Figure 6 in ref.[5] shows
that the flatness increases with the wavenumber. The scale dependent
coinpression rate is plotted by the symbol $O$ in fig. 10 in ref.[5]. For
larger scales, almost all coefficients are retained by the coherent part,
while the rate decreases for this range $k_{j}\eta>0.1\sim$ . So, the wavelet rep-
resentation detects the flow iiitermittency, which means that the spatial
support of active regions decreases with scale.

5 Influence of the Reynolds number from $R_{\lambda}=$

$167$ to 732
We exainine the influence of the Reynolds nuinber on the overall com-

pression rate and the number of the wavelet coefficients corresponding
to the coherent vortices.
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5.1 Compression rate

Tlie overall compression rate is the percentage of the coherent wavelet
coefficients which are kept. Figure 8(top) in ref.[5] shows tlie $R_{\lambda}$ depeu-
dence of the coiiipression rate. The compression rate decreases inoiio-
tonically froixl 3.6% to 2.6% according to $C\propto R_{\lambda}^{-0.21}$ . This reflects
the fact that the flow interinittency increases with $R_{\lambda}$ which is shown
in the previous experimental results presented in [9]. The exponent is
estimated by a least square fit of the four available data points. Thus,
we conjecture that the wavelet representation becoine the more efficient
with increasing $R_{\lambda}$ .

5.2 Degree of freedom

Figure 8(bottoin) in ref.[5] slrows the nuinber of retained coefficients
for tlie total and the coherent parts versus $R_{\lambda}$ . As the overall com-
pression rate decreases rnonotonically with increasing $R_{\lambda}$ , the nuinber of
$c:oefficieiits$ of the coherent part grows slower than that of tlie total flow
obtained bv DNS.

6 Conclusion

We have applied the CVE method to DNS data of hoinogeneous
isotropic turbulence for different Taylor microscale Reynolds nuinbers,
ranging from $R_{\lambda}=167$ to 732, in order to study the role of colierent
and incolrerent vorticity fields with respect to the flow intermittency.
We have shown that few wavelet coefficients are sufficient to represent
the coherent vortices which preserve the total flow in the inertial range,
while the large majority of the coefficients corresponds to an incoherent
background flow, which is structureless. We find that, as the Reynolds
number increases, the percentage of wavelet coefficients represeiiting the
coherent vortices decreases. Although the number of degrees of freedom
necessary to track the coherent vortices remaiixs sinall, they preserve
$t.1_{1}e$ nonlinear dynamics of the flow. Thus it is conjectured that the
wavelet representation could reduce the nuinber of degrees of freedom to
coinpute fully developed turbulent flows in coinparison to the standard
estimation based on Kolmogorov’s theory.

The present results motivate further developinents of the Coherent
Vortex Simulation (CVS)[10]. The present estimation shows that CVS
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inight becoine inore efficient as the Reynolds number increases, since tlte
percentage of retained coherent inodes decreases. First results of CVS
for a three-dimensional turbulent mixing layer are shown in ref.[10].
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