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Abstract

We formulate the accuracy of quantum measurement for a qubit system in terms of a 3 by

3 matrix. This matrix, which we refer to as the accuracy matrix, can be calculated from

a POVM corresponding to the quantum measurement. Based on the accuracy matrix, we

derive new $trad\triangleright 0ff$ relations between the measurement accuracy of two or three noncommuting

observables of a qubit system. These trade-off relations offer a quantitative information-theoretic

representation of Bohr’s principle of complementarity. We also show that the accuracy matrix

is closely related to the maximum-likelihood estimation and the Fisher information matrix for

a finite number of samples; the accuracy matrix tells us how accurately we can estimate the

probability distributions of observables of an unknown state by quantum measurement.
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I. INTRODUCTION

Accessible information about a quantum system is restricted by the noncommutability

of observables. The nature of this restriction can be classified at least into two categories:

fluctuations inherent in a quantum system and the error caused by the process of mea-

surement. These two aspects of uncertainty constitute the distinctive feature of quantum

mechanics.

The Kennard-Robertson uncertainty relation such as $\Delta x\Delta p\geq\hslash/2$ describes quantum

fluctuations independent of the measurement process. According to Bell’s theorem, this

type of quantum fluctuations prohibits us from presupposing any “element of reality”

behind the probability distributions of observables. The measurement error, on the other

hand, is determined by thc process of measurement which is characterized by a POVM. In

the idealized error-free limit, quantum measurement is dcscribed by projection operators

which, however, cannot always be implemented experimentally.

The information about more than one observable can be obtained from a single POVM
in simultaneous measurement of two noncommuting observables and quantum state to-

mography. It is known that, in simultaneous measurements, at least one of the observables

cannot be measured without incurring a measurement error. Furthermore, various uncer-
tainty relations between the measurement errors of noncommuting observables have been

studied.

In our paper [1, 2], we quantify the measurement accuracy and the measurement error

of observables in tcrms of given POVM $E=\{\hat{E}_{k}\}$ , by introducing 3 $x3$ accuracy matrix

$\chi(E)$ calculated from POVM E. Based on this accuracy matrix, we derive the trade-off

relations between the measurement accuracy of two or three observables, which can be

interpreted as the uncertainty relations between the measurement errors of noncommuting

observables by generalized simultaneous measurements. In the following, we review our
main results without proofs.
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II. QUANTUM MEASUREMENT OF A QUBIT SYSTEM

We consider a quantum measurement described by POVM $E=\{\hat{E}_{k}\}(k=1,2, \cdots, m)$

on state $\hat{\rho}$ of a qubit (i.e. spin-1/2) system, where $k$ denotes the outcome of the mea-

surement. POVM $E$ satisfies $\sum_{k}\hat{E}_{k}=\hat{I}$ , with $\hat{I}$ being the identity operator, and can be

parameterized as
$\hat{E}_{k}=r_{k}(\hat{I}+v_{k}\cdot\hat{\sigma})$ , (1)

where $\hat{\sigma}\equiv(\hat{\sigma}_{x},\hat{\sigma}_{y},\hat{\sigma}_{z})$ represents the Pauli matrices. The requirements that the sum of
$\text{\^{E}}_{k^{S}}$ equals the identity operator and that all of them be nonnegative are met if and only

if

$\sum_{k}r_{k}=1,$ $\sum_{k}r_{k}v_{k}=0,$
$r_{k}>0$ , I $v_{k}|\leq 1$ for all $k$ . (2)

We can also parameterize density operator $\hat{\rho}$ as

$\hat{\rho}=\frac{1}{2}(\hat{I}+s_{0}\cdot\hat{\sigma})$ , (3)

where $s_{0}$ is the Bloch vector satisfying $|s_{0}|\leq 1$ . Conversely, for given $\hat{\rho},$ $s_{0}$ is calculated

as $\epsilon_{0}=$ tr $(\hat{\rho}\hat{\sigma})$ . The probability of obtaining measurement outcome $k$ is then given by

$q_{k}\equiv tr(\hat{E}_{k}\hat{\rho})=r_{k}(1+v_{k}\cdot s_{0})$. (4)

Any observable $\hat{O}$ of the qubit system can be diagonalized as

$\hat{O}=\lambda_{+}\hat{P}(+;n)+\lambda_{-}\hat{P}(-;n)$ , (5)

where $\lambda_{+}$ and $\lambda_{-}$ are the corresponding eigenvalues and $\hat{P}(+;n)$ and $\hat{P}(+;n)$ are projec-

tion operators with $n$ being a three-dimensional unit vector, and

$\hat{P}(\pm;n)=\frac{1}{2}(\hat{I}\pm n\cdot\hat{\sigma})$ . (6)

The probability distribution of observable $\hat{O}$ is then given by

$p( \pm;n)\equiv tr(\hat{P}(\pm;n)\hat{\rho})=\frac{1}{2}(1\pm n\cdot s_{0})$. (7)

If we are not interested in eigenvalues of the observables but are only concemed with

the directions $(\pm)$ of the outcome, we can replace $\hat{O}$ with $n\cdot\hat{\sigma}$ by setting $\lambda_{\pm}=\pm 1$ . $\ln$ the

following analysis, we identify observable $\lambda_{+}\hat{P}(+;n)+\lambda_{-}\hat{P}(-; n)$ with observable $n\cdot\hat{\sigma}$ ,

and refer to the probability distribution in Eq. (7) as that in the direction of $n$ .
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III. ACCURACY MATRIX

A. Definition of the Accuracy Matrix

We will characterize the accuracy of arbitrary observable in such a manner that it

depends only on the process of measurement and not on measured state $\hat{\rho}$ . We first define

the accuracy matrix:

Definition 1 (Accuracy matrix) The 3 $x3$ accuracy matrix $\chi(E)$ characterizes the

measurement accuracy of observables in terms of POVM $E_{7}$ and is defined as

$\chi(E)_{ij}\equiv\sum_{k}r_{k}(v_{k})_{i}(v_{k})_{j}$ , (8)

where $(v_{k})_{i}$ denotes the ith component of real vector $v_{k}$ and $ij$ shows indexes of matrix

elemcnts of $\chi(E)$ . We introduce notation $vv^{T}$ with $v\in R^{3}$ as

$(vv^{T})_{ij}\equiv(v)_{i}(v)_{j}$ ; (9)

that is, $vv^{T}$ denotes the projection matrix onto direction $v$ in $R^{3}$ whose $ij$ matrix element

is given by $(v)_{i}(v)_{j}$ . We can thcn rewrite (8) in matrix form as

$\chi(E)\equiv\sum_{k}r_{k}v_{k}v_{k}^{T}$
. (10)

Note that $\chi(E)$ is positive semidefinite and Hermitian, and can therefore be diagonalized

by an orthonormal transformation.

The physical meaning and useful properties of the accuracy matrix will be investigated

subsequently, and its foundation from an information-theoretic point of view will be es-
tablished in terms of the maximum-likelihood estimation of the probability distribution of

observables in Sec. VI. In fact, the accuracy matrix is closely related to Fisher information

matrix (41) or (42), although physical quantities such as the measurement error can be

directly derived from the accuracy matrix without resort to Fisher information.

Noting that $\sum_{k}r_{k}|v_{k}|^{2}\leq\sum_{k}r_{k}=1$ , we can obtain the following fundamental inequal-

ity which forms the basis of trade-off relations to be discussed later.

Theorem 1 Three eigenvalues $\{\chi_{1}, \chi_{2}, \chi_{3}\}$ of $\chi(E)$ satisfy

$\chi_{1}+\chi_{2}+\chi_{3}\leq 1$ , (11)
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or equivalently,
$Sp(\chi(E))\leq 1$ , (12)

where we denote the trace of 3 $x3$ matrix as Sp $(\cdots)$ to reserve symbol tr $(\cdots)$ for the

trace of a quantum-mechanica12 $x2$ matrix. The equality $\chi_{1}+\chi_{2}+\chi_{3}=1$ , or Sp$(\chi)=1$ ,

holds if and only if $|v_{k}|=1$ for all $k$ .

The following corollary follows from the positivity of $\chi(E)$ .
Corollary 1 The accuracy matrix satisfies the following matrix inequality:

$0\leq\chi(E)\leq I_{3}$ , (13)

where $I_{3}$ is thc 3 $x3$ identity matrix, and $\chi(E)\leq I_{3}$ means that all eigenvalues of $I_{3}-\chi(E)$

are non-negative.

The following two examples illustrate the physical meaning of the accuracy matrix.

Example 1 (Nonideal measurement) We consider POVM $E$ consisting of two positive

operators which can be parameterized as

$\hat{E}(+;n)=r(\hat{I}+\epsilon_{1}n\cdot\hat{\sigma}),\hat{E}(-; n)=(1-r)(\hat{I}-\epsilon_{2}n\cdot\hat{\sigma})$ , (14)

where $n$ is a unit vector, $r\epsilon_{1}-(1-r)\epsilon_{2}=0,0<r<1,$ $-1\leq\epsilon_{1}\leq 1$ , and-l $\leq\epsilon_{2}\leq 1$ .
This POVM corresponds to a nonideal measurement of observable $n\cdot\hat{\sigma}$ . It can be reduced

to projection measurement $\{\hat{P}(+;n),\hat{P}(-; n)\}$ if and only if $\epsilon_{1}=\epsilon_{2}=1$ and $r=1/2$ .

On the other hand, the POVM is trivial $($ i.e., $\hat{E}_{+}=r\hat{I}$ and $\hat{E}_{-=}(1-r)\hat{I})$ if and only

if $\epsilon_{1}=\epsilon_{2}=0$ ; we cannot then obtain any information about $\hat{\rho}$ . Equation (14) can be

rewritten as

$(\begin{array}{l}\hat{E}_{+}\hat{E}_{-}\end{array})=F(\begin{array}{l}\hat{P}(+\cdot n)\hat{P}(-\cdot n)\end{array})$ , (15)

where $F$ is the $2\cross 2$ transition-probability matrix

$F=(\begin{array}{ll}r(1+\epsilon_{1}) r(1-\epsilon_{1})(1-r)(1- \epsilon_{2})(1-r)(1+\epsilon_{2})\end{array})$ , (16)

satisfying $\sum_{i}F_{ij}=1$ and $0\leq|\det F|^{2}\leq 1$ . Note that $F$ describes a binary symmetric

channel if and only if $r=1/2$ and $\epsilon_{1}=\epsilon_{2}$ . It follows $hom$ Eq. (15) that any measurement
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process described by a POVM consisting of two positive operators is formally equivalent to

a measurement process in which a classical error is added to the projection measurement.

The physical origin of this error, however, lies in the quantum-mechanical interaction. We

can rewrite Eq.(14) as

$\hat{E}_{1}=r(\hat{I}+v_{1}\cdot\hat{\sigma}),\hat{E}_{2}=(1-r)(\hat{I}+v_{2}\cdot\hat{\sigma})$ , (17)

where $v_{1}=\epsilon_{1}n$ and $v_{2}=-\epsilon_{2}n$ . The accuracy matrix can then be represented by

$\chi(E)\equiv rv_{1}v_{1}^{T}+(1-r)v_{2}v_{2}^{T}=\chi_{11}nn^{T}$ , (18)

where $\chi_{11}$ is the eigenvalue of $\chi$ corresponding to the eigenvector $n$ , and is given by

Xn $=r|v_{1}|^{2}+(1-r)|v_{2}|^{2}$ . (19)

We can also write $\chi_{11}$ in terms of the transition-probability matrix as

$\chi_{11}=\frac{|\det F|^{2}}{4r}+\frac{|\det F|^{2}}{4(1-r)}=\frac{|\det F|^{2}}{4r(1-r)}$ . (20)

Accuracy parameter $\chi_{11}$ satisfies
$0\leq\chi_{11}\leq 1$ , (21)

where $\chi_{11}=1$ holds if and only if $|v_{1}|=|v_{2}|=1$ and $r=1/2$; that is, $E$ describes the

projection measurement of observable $n\cdot\hat{\sigma}$ . Note that $\chi(E)=nn^{T}$ holds in this case. On

the other hand, $\chi_{11}=0$ holds if and only if $|v_{1}|=|v_{2}|=0$ . In this case, $\chi(E)=O$ holds,

and we cannot obtain any information about $\hat{\rho}$ . Nonzero eigenvalue $\chi_{11}$ thus characterizes

the measurement accuracy of $n\cdot\hat{\sigma}$ ; the larger $\chi_{11}$ , the more information we can extract

about $n\cdot\hat{\sigma}$ from the measurement outcome. These properties can be generalized for an
arbitrary POVM as shown below.

Example 2 (Probabilistic measurement) Suppose that a nonideal measurement of
$\hat{A}=n_{A}\cdot\hat{\sigma}$ is performed with probability $\xi(0<\xi<1)$ and $\hat{B}=n_{B}\cdot\hat{\sigma}$ is performed with

probability $1-\xi$ . The POVM corresponding to this probabilistic measurement consists

of four operators:
$E=\{\xi\hat{E}(\pm;n_{A}), (1-\xi)\hat{E}(\pm;n_{B})\}$ . (22)

As the number of measured samples increases, this measurement asymptotically ap-

proaches the measurements on $N$ identically prepared samples which are divided into
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two groups in the ratio $\xi$ : $1-\xi$ , with $\hat{\mathcal{A}}$ being measured for the first group and $\hat{B}$ for

the second group. Suppose that the accuracy matrix of the measurement of $\hat{A}$ is given by

$\chi An_{A}n_{A}^{T}$ and that of $\hat{B}$ is given by $\chi Bn_{B}n_{B}^{T}$ . The accuracy matrix of the probabilistic

measurement is given by

$\chi(E)=\xi\chi An_{A}n_{A}^{T}+(1-\xi)\chi_{B}n_{B}n_{B}^{T}$ . (23)

This representation suggests that the measurement accuracy conceming $\hat{A}$ is degraded by

a factor of $\xi$ compared with the single nonideal measurement of $\hat{A}$ , because we cannot

observe $\hat{\mathcal{A}}$ with probability $1-\xi$ . A similar discussion applies to $\hat{B}$ as well.

Equation (23) shows that $\chi(E)$ is the convex combination of the accuracy matrix of

the POVMs measuring $\hat{A}$ and $\hat{B}$ , where coefficients $\xi$ and $1-\xi$ give the probabilities of

measuring $\hat{A}$ and $\hat{B}$ , respectively.

This relationship can be generalized as follows. Let us consider three POVMs:
$E’=\{\hat{E}_{1},\hat{E}_{2}, \cdots,\hat{E}_{m}\},$ $E”=\{\hat{E}_{m+1},\hat{E}_{m+2)}\cdots,\hat{E}_{n}\}$ , and $E=\{\xi\hat{E}_{1},$ $\cdots,\xi\hat{E}_{m},$ $(1-$

$\xi)\hat{E}_{m+1},$
$\cdots,$

$(1-\xi)\hat{E}_{n}\}$ with $0<\xi<1$ . POVM $E$ describes the probabilistic measure-

ment of $E’$ with probability $\xi$ and of $E”$ with probability $1-\xi$ . According to the definition

of the accuracy matrix, we obtain the following theorem.

Theorem 2 (Linearety)

$\chi(E)=\xi\chi(E’)+(1-\xi)\chi(E’)$ , (24)

or more symbolically,

$\chi(\xi E’+(1-\xi)E’’)=\xi\chi(E’)+(1-\xi)\chi(E’’)$ . (25)

B. Accuracy Parameter in a Specific Direction

We next parameterize the measurement accuracy of a particular observable. We in-

troduce the subspace $V(E)$ of $R^{3}$ spanned by the eigenvectors of $\chi(E)$ corresponding to

nonzero eigenvalues.

Definition 2 (Measurement Accuracy) Accuracy parameter $\chi(n;E)$ in direction $n\in$

$V(E)$ is defined as
$\chi(n;E)\equiv\frac{1}{n\cdot(\chi(E)^{-1})n}$ , (26)
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where $\chi(E)^{-1}$ is assumed to act only on subspace $V(E)$ . If $n\not\in V(E)$ , we set $\chi(n;E)\equiv 0$ .

This definition is closely related to the Fisher information of a particular direction in

Eq. (46) of Sec. VI. The inverse of $\chi(n;E)$ provides a measure of the measurement error.

Definition 3 (Measurement Error) The error parameter of the measurement in direc-

tion $n$ is defined as

$\epsilon(n;E)\equiv\frac{1}{\chi(n;E)}-1=n\cdot(\chi(E)^{-1})n-1$ . (27)

These parametcrs satisfy the following inequalities.

Theorem 3

$0\leq\chi(n;E)\leq 1$ , (28)

$0\leq\epsilon(n;E)\leq\infty$ . (29)

Equality $\chi(n;E)=1$ , or equivalently $\epsilon(n;E)=0$ , holds if and only if the measurement

described by $E$ is equivalent to a projection measurement in direction $n$ . In this case,

the measurement involves no measurement error. The other limit of $\chi(n;E)=0$ , or

equivalently $\epsilon(n;E)=\infty$ , holds if and only if $n\not\in V(E)$ . In this case, we cannot obtain

any information about direction $n$ from the measurement.

Let $n_{1},$ $n_{2}$ , and $n_{3}$ be the eigenvectors of $\chi(E)$ , and $\chi_{1},$ $\chi_{2}$ , and $\chi_{3}$ be the corresponding

eigenvalues. It can be shown that

$\chi(n_{i};E)=\chi_{i},$ $(i=1,2,3)$ . (30)

According to Theorem 1, we cannot simultaneously measure the three directions corre-
sponding to the eigenvectors with the maximum accuracy $\chi_{i}=1$ for all $i$ . This tradeoff

relation represents the uncertainty relation between the measurement errors.
The nonideal measurement of $\hat{A}=n_{A}\cdot\hat{\sigma}$ with POVM $E_{A}$ is characterized with accuracy

matrix $\chi nn_{A}^{T}$ . In this case, we can show that $V(E_{A})=\{a|a=\lambda n_{A}, \lambda\in R\}$ . It

follows that $\chi(\pm n_{A};E)=xA$ and $\chi(n;E)=0$ for $n\neq\pm n_{A}$ .

The probabilistic measurement of $E_{A}$ and $E_{B}$ in characterized with accuracy matrix

of the joint POVM $E$ given in (23), so $V(E)$ contains the subspace spanned by $n_{A}$ and

$n_{B}$ . A straightforward calculation shows that

$\chi(n_{A};E)=\xi\chi A,$ $\chi(n_{B};E)=(1-\xi)\chi B$ . (31)
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C. Reconstructive subspace

We next introduce the concept of ”reconstructive subspace” and “reconstructive direc-

tion”. We begin by the following theorem.

Theorem 4 $V(E)$ corresponds to the subspace spanned by the set of basis vectors

$\{v_{k}\}$ of accuracy matrix (10).

Suppose that we perform measurement $\{\hat{E}_{k}\}$ and obtain probability distribution $\{qk\}$

for each outcome $k$ . Can we then reconstruct pre-measurement distribution $\{p(n;\pm)\}$ of

the system from $\{q_{k}\}$ ? The answer is given by the following theorem.

Theorem 5 (Reconstructive subspace and reconstructive direction) We can reconstruct

probability distribution $\{p(\pm;n)\}$ from measured distribution $\{q_{k}\}$ , if and only if $n\in$

$V(E)$ . We thus refer to $V(E)$ as a reconstructive subspace, and to a unit vector in $V(E)$

as a reconstructive direction.

In thc case of the nonideal measurement in Example 1, the reconstructive subspace

is given by $V(E)=\{\lambda n|\lambda\in R\}$ . On the other hand, in the case of the probabilistic

measurement in Example 2, the reconstructive subspace is two-dimensional: $V(E)=$

$\{\lambda_{A}n_{A}+\lambda_{B}n_{B}|(\lambda_{A}, \lambda_{B})\in R^{2}\}$ .

IV. TRADE-OFF RELATIONS FOR GENERALIZED SIMULTANEOUS MEA-

SUREMENT OF A QUBIT SYSTEM

We now derive the general trade-off relations between the measurement errors of non-

commuting observables, which are the main results of this paper.

Let $n_{1},$ $n_{2}$ , and $n_{3}$ be the respective eigenvectors of $\chi(E)$ corresponding to the eigen-

values $\chi_{1},$ $\chi_{2}$ , and $\chi_{3}$ , where $\chi_{i}=\chi(n_{i};E)(i=1,2,3)$ . We define the error parameters

as $\epsilon_{i}\equiv\epsilon(n_{i};E)=(\chi_{i})^{-1}-1$ . Inequality (11) or (12) in Theorem 1 can be rewritten in

terms of the error parameters as

$\epsilon_{1}\epsilon_{2}\epsilon_{3}\geq\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+2$. (32)

Considering two eigenvalues alone $(i.e., \chi_{1}+\chi_{2}\leq 1)$ , we can simplify the trade-off relation:

$\epsilon_{1}\epsilon_{2}\geq 1$ . (33)
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The trade-off relations (32) and (33) can be generalized to the case of arbitrary direc-

tions. We first consider the case of two observables.

Theorem 8 (Trade-off relation) We comsider a simultaneous measurement in two

directions $n_{A}$ and $n_{B}(n_{A}\cdot n_{B}=\cos\theta)$ described by POVM E. We assume $n_{A}\in V(E)$

and $n_{B}\in V(E)$ , and define $\epsilon_{\alpha}\equiv\epsilon(n_{\alpha};E)$ and $\chi_{\alpha}\equiv\chi(n_{\alpha};E)(\alpha=A, B)$ . Then trade-off

relation
$\epsilon_{A}\epsilon_{B}\geq\sin^{2}\theta$ , (34)

or equivalently,

$\chi_{A}+\chi_{B}-\chi_{A}\chi_{B}$ cos2 $\theta\leq 1$ (35)

holds. The equality in (34) or (35) holds if and only if $\epsilon_{1}\cos\theta_{A}\cos\theta_{B}+\epsilon_{2}\sin\theta_{A}\sin\theta_{B}=0$ .
$\ln$ the case of $\epsilon_{A}=\epsilon_{B}$ (i.e., the measurement errors are symmetric), the equality holds if

and only if $\sin(\theta_{A}+\theta_{B})\sin(\theta_{A}-\theta_{B})\cos(\theta_{A}+\theta_{B})=0$.

The accessible regime for $xA$ and $\chi_{B}$ is illustrated in FIG.1 for the case of $\theta=\pi/2$ ,

$\theta=\pi/6$ , and $\theta=0$ .
The trade-off relations (34) and (35) can be interpreted as the uncertainty relations

between measurement errors. They offer a rigorous representation of Bohr’s principle of

complementarity which dictates “the mutual exclusion of any two experimental proce-

dures” to measure two noncommuting observables.

The trade-off relation between three observables can be formulated as follows:

Theorem 9 Wc consider a simultaneous measurement in three directions $n_{A},$ $n_{B}$ , and

$n_{C}$ described by POVM E. Let us assume that $n_{A},$ $n_{B}$ , and $n_{C}$ are linearly independent.

We set the notation $\epsilon_{\alpha}\equiv\epsilon(n_{\alpha};E)$ and $\chi_{\alpha}\equiv\chi(n_{\alpha};E)$ , where $\alpha=A,$ $B,$ $C$ . Then

inequality
$\epsilon_{A}\epsilon_{B}\epsilon_{C}\geq 8\{n_{A}\cdot(n_{B}xn_{C})\}^{2}$ (36)

holds. The equality in (36) holds if and only if $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=2$ and $\{n_{\alpha}\}$ are orthogonal.

V. MAXIMUM-LIKELIHOOD ESTIMATION

$\ln$ this section, we point out the close connection between the accuracy matrix and the

Fisher information.
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FIG. 1: Tkade-off relation for the accuracy of noncommuting observables. $P$ indicates the

regimes satisfying the inequality for the case of $\theta=\pi/2,$ $P$ and $Q$ indicate the regimes satisfying

inequality (35) for the case of $\theta=\pi/6$ , and $P,$ $Q$ and $R$ indicate the regimes satisfying the

inequality for the case of $\theta=0$ . We can only access regime $Q$ through simultaneous measurement

for the case of $\theta=\pi/6$ .

We first formulate quantum measurements in terms of the maximum-likelihood esti-

mation. We consider the quantum measurements described by POVM $E=\{\hat{E}_{k}\}$ for each

of $N(<\infty)$ samples prepared in the same unknown state $\hat{\rho}$ . Note that $\hat{E}_{k}=r_{k}(\hat{I}+v_{k}\cdot\hat{\sigma})$ .

Our task is to estimate the Bloch vector $\epsilon_{0}$ by maximum-likelihood estimation. Suppose

that we obtain outcome $k$” $N_{k}$ times. The likelihood function then becomes

$L(s) \equiv\sum_{k}N_{k}\ln f_{k}(s)$
, (37)

where $f_{k}(s)\equiv r_{k}(1+v_{k}\cdot s)$ . We denote $s^{*}$ as the maximum-likelihood estimator of $s_{0}$ kom

$N$ measurement outcomes; $L(s)$ takes the maximum value with $\epsilon=s^{*}$ under condition

$|s|\leq 1$ .

If we can determine unique estimator $\epsilon^{*}$ , then we can calculate the maximum-likelihood

estimator of $p(\pm;n)$ for arbitrary direction $n$ :

$p( \pm;n)^{*}=\frac{1}{2}(1\pm n\cdot s^{*})$ . (38)
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In general, however, we cannot uniquely determine estimator $s^{*}$ from measurement out-

comes; $L(s^{*})=L(s^{*}+a)$ holds for all $a\in V(E)^{\perp}$ , where $V(E)^{\perp}$ is the orthogonal

complement of $V(E)$ , because $v_{k}\cdot s^{*}=v_{k}\cdot(s^{*}+a)$ holds for all $k$ . Corresponding to this

indeterminacy, we cannot estimate the probability distribution of all observables $n\cdot\hat{\sigma}$ in

general. In fact, we can uniquely estimate the probability distribution of the observable
$n\cdot\hat{\sigma}$ only if $n\in V(E)$ , because $n\cdot s^{*}=n\cdot(s^{*}+a)$ holds for all $a\in V(E)^{\perp}$ only if

$n\in V(E)$ . $\ln$ other words, we can uniquely estimate $p(\pm;n)^{*}$ only if $n\in V(E)$ .

We next discuss the asymptotic behavior of the maximum-likelihood estimation.

In general, it is known that maximum-likelihood estimation is asymptotically unbiased;

in the present context, it holds that

$\lim_{Narrow\infty}s^{*}=s_{0}$ , (39)

in the case of $V(E)=R^{3}$ ; we can precisely evaluate $s_{0}$ if an infinite number of samples

are available.

In the case of $V(E)\neq R^{3}$ , however, we cannot determine component of $V(E)^{\perp}$ of $s_{0}$ .
In other words, we can uniquely determine $n\cdot s_{0}$ only if $n\in V(E)$ . We can thus generalize

Eq. (39) for the case that $V(E)\neq R^{3}$ :

$\lim_{Narrow\infty}n\cdot s^{*}=n\cdot s_{0},$ $\forall n\in V(E)$ . (40)

Theorem 5 in Sec. $m$ has revealed the necessary and sufficient condition for direction

$n$ about which we can reconstruct the true probability distribution $p(\pm;n)$ from the

measurement outcomes in the limit of $Narrow\infty$ .

The asymptotic accuracy of maximum-likelihood estimation is characterized by the

Fisher information. The Fisher information takes the matrix form in our situation, given

by

$I_{ij} \equiv-\sum_{k}q_{k}\frac{\partial^{2}\ln f_{k}(s)}{\partial(s)_{l}\partial(s)_{j}}|_{\iota=r_{0}}=\sum_{k}\frac{r_{k}^{2}}{q_{k}}(v_{k})_{i}(v_{k})_{j}$ , (41)

or equivalently,

$I= \sum_{k}\frac{r_{k}^{2}}{q_{k}}v_{k}v_{k}^{T}$ . (42)

Note that $I$ is a 3 x3 positive and Hermite matrix, so it can be diagonalized by orthonormal

eigenvectors.
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It can be shown in the same manner as Theorem 4 that $V(E)$ corresponds to the

subspace of $R^{3}$ spanned by the eigenvectors of $I$ corresponding to nonzero eigenvalues;

the Fisher information matrix has the information about the reconstructive subspace.

A remarkable property of the Fisher information is that it characterizes the asymptotic

variance of the estimator $s^{*}$ . To see this, we introduce the 3 $x3$ correlation matrix of the

probability variable $s^{*}$ given by

$T_{ij}\equiv\langle\{(s^{*})_{i}-(\epsilon_{0})_{i}\}\{(\epsilon^{*})_{j}-(s_{0})_{j}\}\rangle$ , (43)

where $\langle\cdots\rangle$ describes the statistical average. Note that $(s^{*}\rangle=s_{0}$ . Let $T(n)$ be the

variance of $n\cdot s^{*}:T(n)=\langle(n\cdot s^{*})^{2}\rangle-(n\cdot s_{0})^{2}$ . It can be easily shown that

$T(n)=n\cdot Tn$ . (44)

We first consider the case of $V(E)=R^{3}$ . In this case, it is well-known that the

probability distribution of $s^{*}$ approaches the normal distribution with average $s_{0}$ and

correlation matrix $T=(IN)^{-1}$ as the number of samples $N$ increases. This theorem does

not hold if $\hat{\rho}$ is a pure state $(e.g. Is_{0}|=1)$ which, however, does not affect the following

discussions. Focusing on particular direction $n$ , we can reduce the foregoing theorem to

the following form: the distribution of $n\cdot s^{*}$ approaches the normal distribution with

average $n\cdot s_{0}$ and variance
$T(n)= \frac{1}{I(n)N}$ , (45)

as the number of samples $N$ increases. Here,

$I(n) \equiv\frac{1}{n\cdot I^{-1}n}$ (46)

is the Fisher information in direction $n$ .

We next consider the case of $V(E)\neq R^{3}$ and $V(E)\neq\{0\}$ . We can meaningfully

consider $I^{-1}$ even in this case by restricting the domain of $I$ to $V(E);n\cdot I^{-1}n$ is well-

defined. We can thus generalize the above theorem: the distribution of $n\cdot s^{*}$ approaches

the normal distribution with average $n\cdot s_{0}$ and variance $T(n)=1/I(n)N$ as the number

of samples $N$ increases.

The greater the Fisher information, the more information we can extract from the

measurement outcome. In the case of $I(n)=0$ , the variance of estimator $p(\pm;n)$ diverges,
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so we cannot gain any information about the probability distribution in direction $n$ . This
is the case of $n$ not being in any reconstructive direction.

Replacing $q_{k}$ by $r_{k}$ in the Fisher information (41) or (42), we can obtain the accuracy
matrix in Eq. (8) or (10). Note that $r_{k}$ is the average of $q_{k}$ over the entire Bloch sphere. We
can thus say that the accuracy matrix characterizes a certain average of the asymptotic
accuracy of maximum-likelihood estimation. Although the Fisher information matrix does
not characterize the asymptotic accuracy when $\hat{\rho}$ is a pure state, the average is meaningful

because the Lebesgue measure of the pure states is zero. The trade-off relations (34),

(35), and (36) can thus be interpreted as the trade-off relations between the asymptotic
accuracy of maximum-likeliho$od$ estimation of the probability distributions of observables.
A finite number of samples only give us an imperfect information about the probability

distribution of an observable for an unknown state. As we have shown, this imperfection

further deteriorates in the case of simultaneous estimation due to the noncommutability

of the observables.

VI. CONCLUSION

We have considered the accuracy matrix of the most general class of measurements
of a qubit system. Our main result is trade-off relations (34), (35), and (36) between
the accuracy parameters and the error parameters. We can interpret them as the uncer-
tainty relations between measurement errors in generalized simultaneous measurements;

the more information we obtain about an observable, the less information we can obtain
about another noncommuting observable. We have also pointed out the close relation-
ship between the accuracy matrix and the Fisher information; the accuracy matrix is an
average of the Fisher information matrix over the measured states. We have shown that
the trade-off relations can be interpreted as being between the accuracy of the maximum-
likelihood estimators of the probability distributions of noncommuting observables.

$[1|$ Y. Kurotani, T. Sagawa, and M. Ueda, Phys. Rev. A 76, 022325 (2007).

[2] T. Sagawa and M. Ueda, Phys. Rev. A 77, 012313 (2008).

209


