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1 Introduction
In this paper, all manifolds and maps are differentiable of class $C^{\infty}$ . Let $M$ be a
compact connected oriented surface with exactly one boundary component. For
a map $F$ : $Marrow R^{2}$ , we define the set of singularities of $F$ as $\Sigma(F)=(q\in$

$M|$ rank $dF_{q}<2$}. The map $F$ : $Marrow R^{2}$ is called a pseudo-immersion if the
following set of conditions is fulfilled:

1. There is some open neighborhood $U$ of $\partial M$ , such that $F|U$ : $U+\Rightarrow R^{2}$ is an
orientation preserving mmersion.

2. In the neighborhood of every singularity $x\in M,$ $F$ can be represented, in
appropriate coordinate systems, by: $y1=x_{1},y2=x_{2}^{2}$ . We call this type of
singularity afold singularity.

Note that if $F$ : $Marrow R^{2}$ is a pseudo$-\dot{u}$imersion, then $\Sigma(F)$ is a union of circles
and $F|\Sigma(F)$ is an immersion. A pseudo-immersion was defined by Po\’enaru [6] for
a smooth map $F$ : $M^{n}arrow N^{n}$ between n-manifolds. In his definition, he added a
condition for the position of a singular set. In this paper, we do not consider an
inmersion as a pseudo-immersion.

Let $M$ be a compact connected oriented surface with exactly one boundary
component. The boundary $\partial M$ has the induced orientation of $M$ . That is, let $n$ be
the outward normal vector field of $\partial M$ in $M$ then, $\partial M$ is oriented by the unit tangent
vector $\tau$ such that the frame $(n,\tau)$ represents the positive orientation of $M$ . Let
$F$ : $M+\div R^{2}$ be an orientation preseiving immersion. The winding number $W(F|\partial)$

of the restricted immersion $F|\partial M$ is the degree of the map $dF(\tau)$ : $\partial M=S^{1}arrow S^{1}$ .
By the Poincar\’e-Hopf’s theorem, we have

(1.1) $W(F|\partial M)=\chi(M)$ ,

where $\chi(M)$ is the Buler characteristic class of $M$.
Our problem is the following: if $F$ : $Marrow R^{2}$ is a pseudo-immersion, then

what is the relation between $W(F|\partial),\chi(M)$ and $\#\Sigma(F)$? Here $\#\Sigma(F)$ is the number
of connected components of $\Sigma(F)$ .

Before stating the main theorem, we should define an invariant which relates
to the number of singular set components.
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Definition 1.1. For two odd integers $\chi$ and $W$, we define

(1.2) $m(\chi, W)=\{\begin{array}{ll}\frac{\chi+W}{2}+1 if W>0,\frac{\chi-W}{2} if W<0.\end{array}$

The main theorems are the following.

Theorem 1.2. Let $F$ : $Marrow R^{2}$ be a pseudo-immersion of a compact connected
oriented $su\phi ace$ with exactly one bounda $y$ component of the plane.

(1.3) $If\chi(M)-W(F|\partial)\equiv 0$ $(mod 4)$, then $\#\Sigma(F)\geq\max\{m(\gamma(M), W(F|\partial)),2)$ .
(1.4) $If\chi(M)-W(F|\partial)\equiv 2$ $(mod 4)$, then $\#\Sigma(F)\geq\max(m(\gamma(M), W(F|\partial)),$ $1\}$ .

Theorem 1.3. For any fixed odd integer $W$ and odd integer $\chi\leq 1$ , there exists
a pseudo-immersion $F$ : $Marrow R^{2}$ of a compact connected oriented $su\phi ace$ with
exactly one boundary component such that

(1.5) $\chi(M)=\chi,$ $W(F|\partial)=W$

and such that

(1.6) $\#\Sigma(F)=\max(m(\gamma, W), 2)$ $if\chi-W\equiv 0$ $(mod 4)$

$or$

(1.7) $\#\Sigma(F)=\max(m(\chi, W),$ $1\}$ $if\chi-W\equiv 2$ $(mod 4)$.

Remark 1.4. Conceming Theorems 1.2 and 1.3, we note the following.

1. Nagase [5] introduced a folding-map. The singularity of a folding-map is
the same as that of a pseudo-immersion, but it may attach the boundary of a
source manifold. Nagase proved that any immersion of $S^{2}$ into the interior
of a homotopy 3-ball $V$ extends to a folding-map of $D^{3}$ into $V$ whose fold-set
consists of mumally disjoint disks.

2. Bkholm and Larsson [1] defined an admissible map. The singularity of an
adnuissible map has not only fold singularities but also cusp singularities.
For an admissible map of $D^{2}$ to the plane, Ekholm and Larsson expressed
the minimal number of singular set components as a function of cusps and
the normal degree of the image of the boundary curve of $D^{2}$ .

3. Eliashberg [2] proved the existence of stable maps between oriented sur-
faces. Similar results of Theorems 1.2 and 1.3 for fold maps between ori-
ented closed surfaces were found by the author [7].

The author would like to thank the organizers Professor Satoshi Koike and
Professor Toshizumi Fukui for organizing and including him in the conference,
“The second Australian-Japanese Workshop on Real and Complex Singularities”.
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2 Preliminaries
In this section, we state an important tool to prove Theorem 1.2.

Let $F$ : $Marrow R^{2}$ be a pseudo-immersion of a compact connected oriented
surface with exactly one boundary. Note that $\Sigma(F)\subset M$ is two colourable. Here,
to say that a l-dimensional submanifold $V\subset M$ is two colourable means that $V$

divides $M$ into a pair of nonempty open surfaces $(B,R)$ of $M$ such that $B\cap R=\emptyset$,
$B\cup R=M\backslash V$ and the closures $\overline{B}$ and $\overline{R}$ of $B$ and $R$ in $M$ respectively both contain
V.

For a connected component $\gamma\subset\Sigma(F)$ , we define the normal vector field $v_{\gamma}$ of
$F(\gamma)$ as follows: $v_{\gamma}$ points towards the direction in which the number of preimages
of the regular value near $F(\gamma)$ decreases. Since $F|\gamma:\gamma\mapsto R^{2}$ is an immersion, $\gamma$ is
oriented by the tangent vector field $\tau_{\gamma}$ such that the frame $(v_{\gamma},dF(\tau_{\gamma}))$ represents
the positive orientation of $R^{2}$ . The winding number $W(F|\gamma)$ is the degree of the
map $dF(\tau_{\gamma})$ : $\gamma=S^{1}arrow S^{1}$ in which the source has the above orientation.

Let $N(\gamma)=\gamma x[-1,1]$ be a tubular neighborhood of $\gamma\subset\Sigma(F)$ such that $\gamma=$

$\gamma x(0\}$ and we set $N( \Sigma(F))=\bigcup_{\gamma\subset\Sigma(F)}N(\gamma)$ . Let $E$ be a connected open surface of
$M\backslash N(\Sigma(F))$ such that En $N(\gamma)\neq\emptyset$ . Since $E$ is orientable and $F|E$ is an immersion,
we define the orientation of $E$ such that $F|E$ : $E\mapsto R^{2}$ is an orientation preserving
immersion. Each comected component of $\partial E$ has the induced orientation of $E$ .
Note that if $E$ contains $\partial M$, the induced orientations of $\partial M$ from that of $M$ and $E$

are the same. Suppose that $\gamma x\{i\}$ $(i=-1 or 1)$ belongs to $\partial E$ . Since the orientation
of $\gamma x\{i\}$ is the same as that of $\gamma x\{0\}$ , we have

(2.1) $W(F|\gamma x\{i\})=W(F|\gamma\cross\{0\})$ .

3 Proof of Theorem 1.2
In this section, we prove Theorem 1.2. Let $F$ : $Marrow R^{2}$ be a pseudo-inmersion
of a compact connected oriented surface with exactly one boundary component.
Since $\Sigma(F)\subset M$ is two colourable, we set $(B,R)$ as a two colour decomposition of
the pair $(M, \Sigma(F))$ such that $\partial\overline{B}$ contains $\partial M$ . By (3.1) and the fact that $\Sigma(F)$ is a
closed l-dimensional submanifold, we have

(3.1) $\chi(\overline{B})=W(\Sigma(F))+W(F|\partial)$ ,

(3.2) $\chi(\overline{R})=W(\Sigma(F))$ ,

(3.3) $\chi(M)=\chi(\overline{B})+\chi(\overline{R})$.

Therefore, we have

(3.4) $W(F|\partial)=\chi(M)-2W(\Sigma(F))$ ,

(3.5) $W(F|\partial)=\chi(\overline{B})-\chi(\overline{R})$ .

Since $\chi(M)$ is odd, we have the following proposition.
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Proposition 3.1. The winding number $W(F|\partial)$ ofthe restricted immersion $F|\partial M$ is
odd.

Suppose that the number of connected components of $\overline{B}$ (resp. $\overline{R}$) is $n_{B}$ (resp.
$n_{R})$ , the sum of the genuses of each connected component of $B$ (resp. $R$) is $gB$ (resp.
$gR)$ and the genus of $M$ is $g$ . Since the number of boundary components of $B$ is
equal to $\#\Sigma(F)+1$ and the number of boundary components of $R$ is equal to $\#\Sigma(F)$ ,

(3.3) and (3.5) are written as;

(3.6) $\chi(M)=2n_{B}-2gB+2n_{R}-2gR^{-2\#\Sigma(F)-\iota}$ ,

(3.7) $W(F|\partial)=2n_{B}-2gB^{-2n_{R}}+2gR^{-\iota}$ .

Thus, we have

(3.8) $\chi(M)-W(F|\partial)=4n_{R}-4gR-2\#\Sigma(F)$.

By this equation, we have the following.

Proposition 3.2. $If\chi(M)-W(F|\partial)\equiv 0(mod 4)$ , then the number of singular set
components $\#\Sigma(F)$ is even. $If\chi(M)-W(F|\partial)\equiv 2(mod 4)$ , then the number of
singular set components $\#\Sigma(F)$ is odd.

Suppose that $W(F|\partial)>0$ . Then by (3.8), we have

$\#\Sigma(F)=\frac{-\chi(M)+W(F|\partial)}{2}+2n_{R}-2gR$

(3.9) $\geq\frac{-\chi(M)+W(F|\partial)}{2}+2-2g$

$= \frac{\chi(M)+W(F|\partial)}{2}+1$ .

Here, $g$ is the genus of $M$.
Suppose that $W(F|\partial)<0$ . Then instead of (3.8), we have

(3.10) $\chi(M)+W(F|\partial)=4n_{B}-4gB-2\#\Sigma(F)-2$.

Therefore,

$\#\Sigma(F)=\frac{-\chi(M)-W(F|\partial)}{2}+2n_{B}-2_{9B}-1$

(3.11) $\geq\frac{-\chi(M)-W(F|\partial)}{2}+2-2g-1$

$= \frac{\chi(M)-W(F|\partial)}{2}$ .

Combining (3.9), (3.11) and Proposition 3.2, we have the desired inequalities. This
completes the proof of Theorem 1.2.
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4 Examples

To prove Theorem 1.3, it is necessary to construct the desired pseudo-immersions
concretely by using Francis’ theorem [4]. Instead of giving such pseudo-immersions
in all the cases, in this section, we give typical.examples.

4.1 The case of$\chi=1-2g$ and $W=2g-1$

Let $M_{g}$ be a closed oriented surface of the genus $g$ and $M_{g,1}=M_{g}\backslash D^{2}$ . It is
obvious that$\chi(M_{g,1})=1-2g$ . $\ln$ this subsection, we constmct a pseudo-immersion
$F$ : $M_{g,1}arrow R^{2}$ such that $W(F|\partial)=2g-1$ and $\#\Sigma(F)=m(1-2g,2g-1)=1$ .

Let $N(\partial M_{g,1})=\partial M_{g,1}x[-1,0]$ be a tubular neighborhood of $\partial M_{g,1}$ such that
$\partial M_{g,1}=\partial M_{g,1}\cross(0\}$ . Let $F_{1}$ : $M_{g,1}\backslash N(\partial M_{g,1})+\div R^{2}$ be an orientation preserving
immersion and $F_{2}$ : $N(\partial M_{g,1})*\div R^{2}$ an orientation preserving immersion such
that $F_{1}|\partial M_{g,1}\cross(-1\}=F_{2}|\partial M_{g,1}\cross(-1\}$ . Then, by attaching $F_{1}$ and $F_{2}$ and by
changing the orientation of $\overline{M_{g,1}\backslash N(\partial M_{g,1})}$, we have a desired pseudo-immersion
$F=F_{1}\cup F_{2}$ : $M_{g,1}arrow R^{2}$ such that $W(F|\partial)=2g-1,$ $\Sigma(F)=\partial M_{g,1}\cross(-1\}$. See
Figure 1.

Figure 1: The cases of $g=0,1$ .

4.2 The case of$\chi=1$ and $W=-2n+1$

Let $n$ be a positive integer. In this subsection, we construct a pseudo-immersion
$\tilde{F}$ : $M_{0,1}arrow R^{2}$ such that $W(\tilde{F}|\partial)=-2n+1$ and $\#\Sigma(F)=m(1, -2n+1)=n$ .

Before constructing the desired pseudo-immersion, we will explain a boundary
connected sum of two pseudo-immersions. Let $F$ : $Marrow R^{2}$ and $G$ : $Narrow R^{2}$ be
two pseudo-immersions such that $F(M)\cap G(N)=0$ . Let $I_{a}xI_{b}$ be a rectangle of
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two closed intervals $I_{a}=I_{b}=[0,1]$ and $H$ : $I_{a}\cross I_{b}arrow R^{2}$ an orientation preserving
embedding. Let $i_{M}$ : $(0\}\cross l_{b}arrow\partial M$ and $i_{N}$ : $\{1\}\cross l_{b}arrow\partial N$ be orientation
reversing embeddings such that $F\circ i_{M}=G\circ i_{N}=H$ . Then $F \cup\iota_{M}H\bigcup_{i_{N}}G$ :
$M U_{i_{M}}I_{a}\cross I_{b}\bigcup_{i_{N}}Narrow R^{2}$ is a pseudo-immersion. We denote $F \bigcup_{i_{M}}HU_{i_{N}}G$ as
$F\# G$ and $M \bigcup_{i_{M}}I_{a}xI_{b}\bigcup_{i_{N}}N$ as $M\# N$ and we call $F\# G$ a boundary connected sum
of $F$ and $G$ . Note that $W(F\# G|\partial)=W(F|\partial)+W(G|\partial)-1$ . See Figure 2.

$\partial N$

$\downarrow F$ $\downarrow G$

$\partial M\#\partial N$

$\downarrow F\#G$

Figure 2: A boundary connected sum of two pseudo-immersions.

Let $F_{i}$ : $M_{0,1}arrow R^{2}(i=1,2, \ldots,n)$ be a copy of the pseudo-immersion
which is constructed in Subsection 4.1. We take a boundary connected sum of
$F_{1},F_{2},$ $\ldots,F_{n}$ . We set $\tilde{F}=F_{1}\# F_{2}\#\cdots$ in $F_{n}$ and we have $M_{0.1}\# M_{0,1}\#\cdots\# M_{0,1}=$

$M_{0,1}$ . Because $W(\overline{F}|\partial)=-n-(n-1)=-2n+1$ and $\#\Sigma(\tilde{F})=n$ , the pseudo-
immersion $\tilde{F}$ : $M_{0,1}arrow R^{2}$ is the desired one. See Figures 3 and 4 in the case
$n=3$ .

5 Supplement

5.1 Position of the singular set

In this section, we remark on the positions of the singular set of a pseudo-immersion
$F:Marrow R^{2}$ .

Proposition 5.1. Let $F_{1}$ and $F_{2}$ : $Marrow R^{2}$ be two pseudo-immersions of a
compact connected oriented suiface with exactly one boundary component. If
$\Sigma(F_{1})=\Sigma(F_{2})=1$ , then an orientation $preser\nu ing$ diffeomorphism $\Phi$ : $Marrow M$

such that $\Phi(\Sigma(F_{1}))=\Sigma(F_{2})$ exists.
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Figure 3: Pseudo-immersions $F_{i}$ : $M_{0,1}arrow R^{2}(i=1,2,3)$ .

Figure 4: A pseudo-immersion $\tilde{F}$ : $M_{0,1}arrow R^{2}$ .
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This proposition is obvious. If the number of singular set components is more
than one, the above proposition is not true. For example, let $\Sigma_{1}$ and $\Sigma_{2}$ be two
simple closed curves in $M_{1,1}$ that splits $M_{1,1}$ into three connected surfaces. Two of
them are annuli and the other is one punctured toms. Let $\Sigma_{3}$ and $\Sigma_{4}$ be two simple
closed curves in $M_{1.1}$ that splits $M_{1,1}$ into two connected surfaces. Both of them
are annuli. By using Francis’ theorem [4], we have two pseudo-immersions $F_{1}$ and
$F_{2}$ : $M_{1,1}arrow R^{2}$ such that $\Sigma(F_{1})=\Sigma_{1}\cup\Sigma_{2},$ $\Sigma(F_{2})=\Sigma_{3}\cup\Sigma_{4},$ $F_{1}(\Sigma_{1})=F_{2}(\Sigma_{3})$ ,
$F_{1}(\Sigma_{2})=F_{2}(\Sigma_{4})F_{1}(\partial M_{1,1})=F_{2}(\partial M_{1,1})$ and $W(F_{1}|\partial)=W(F_{2}|\partial)=-1$ . See
Figure 5.

Figure 5: Two pseudo-immmersions $F_{1}$ and $F_{2}$ : $M_{1,1}arrow R^{2}$ such that $F_{1}(\Sigma(F_{1}))=$

$F_{2}(\Sigma(F_{2}))$ .

5.2 Image of the boundary of a pseudo-immersion

In this subsection, we state the existence of a pseudo-immersion such that the given
plane curve is the image of the boundary of the map.

Applying Eliashberg and Francis’ theorem [2, 3], we have the following theo-
rem.

Theorem 5.2. Let $M$ be a compact connected oriented suiface with exactly one
boundary component. If $f$ : $\partial M^{q}- R^{2}$ is an oriented immersion such that $W(f)$ is
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odd, then there exists a pseudo-immersion $F$ : $Marrow R^{2}$ such that

(5.1) $F|\partial M=f$

and

(5.2) $\#\Sigma(F)=\max\{m(\chi(M), W(f)), 2\}$ $if\chi(M)-W(f)\equiv 0$ $(mod 4)$

$or$

(5.3) $\#\Sigma(F)=\max(m(\chi(M), W(f), 1)$ $if\chi(M)-W(f)\equiv 2$ $(mod 4)$.
The details of Theorem 5.2 are in [8].
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