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On pseudo-immersions of a surface into the plane

AEATLESGEFEHEMER  (UA 2 Minoru Yamamoto)
Kurume National College of Technology

1 Introduction

In this paper, all manifolds and maps are differentiable of class C*. Let M be a
compact connected oriented surface with exactly one boundary component. For
amap F : M — R?, we define the set of singularities of F as X(F) = {q €
M|rank dFy; < 2}. Themap F : M — R? is called a pseudo-immersion if the
following set of conditions is fulfilled:

1. There is some open neighborhood U of M, such that F|U : U +» R2? is an
orientation preserving immersion.

2. In the neighborhood of every singularity x € M, F can be represented, in
appropriate coordinate systems, by: y; = x1,y2 = xg. We call this type of
singularity a fold singularity.

Note thatif F : M — R?is a pseudo-immersion, then X(F) is a union of circles
and F|Z(F) is an immersion. A pseudo-immersion was defined by Poénaru [6] for
a smooth map F : M" — N" between n-manifolds. In his definition, he added a
condition for the position of a singular set. In this paper, we do not consider an
immersion as a pseudo-immersion.

Let M be a compact connected oriented surface with exactly one boundary
component. The boundary M has the induced orientation of M. That is, let n be
the outward normal vector field of M in M then, M is oriented by the unit tangent
vector T such that the frame (n, T) represents the positive orientation of M. Let
F : M +> R? be an orientation preserving immersion. The winding number W (F|3)
of the restricted immersion F|0M is the degree of the map dF(7) : M = S1 — §1.
By the Poincaré-Hopf’s theorem, we have

(1.1) W(F|0M) = x(M),

where x(M) is the Euler characteristic class of M.

Our problem is the following: if F : M — R? is a pseudo-immersion, then
what is the relation between W(F|8), y(M) and $Z(F)? Here §Z(F) is the number
of connected components of Z(F).

- Before stating the main theorem, we should define an invariant which relates
to the number of singular set components.
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Definition 1.1. For two odd integers y and W, we define
x+Ww
(1.2) m, W) =4, 2y
‘ 2
The main theorems are the following.

+1 ifW>0,
ifW<0.

Theorem 1.2. Let F : M — R? be a pseudo-immersion of a compact connected
oriented surface with exactly one boundary component of the plane.

(1.3) Ifx(M)— W(F|@) =0 (mod 4), then §E(F) > max{m(x(M), W(F|9)),2}.
(1.4) Ifx(M)-W(F|3) =2 (mod 4), then $5(F) > max{m(x(M), W(F|3)), 1}.

Theorem 1.3. For any fixed odd integer W and odd integer xy < 1, there exists
a pseudo-immersion F : M — R? of a compact connected oriented surface with
exactly one boundary component such that

(1.5) X(M) = x, W(F|d) = W

and such that

(1.6) #3(F) = max{m(y, W),2} ifx—W=0 (mod4)
or
a.7n §Z(F) = max{m(y,W),1} ifx-W=2 (mod 4).

Remark 1.4. Concerning Theorems 1.2 and 1.3, we note the following.

1. Nagase [5] introduced a folding-map. The singularity of a folding-map is
the same as that of a pseudo-immersion, but it may attach the boundary of a
source manifold. Nagase proved that any immersion of S2 into the interior
of a homotopy 3-ball V extends to a folding-map of D? into V whose fold-set
consists of mutually disjoint disks.

2. Ekholm and Larsson [1] defined an admissible map. The singularity of an
admissible map has not only fold singularities but also cusp singularities.
For an admissible map of D? to the plane, Ekholm and Larsson expressed
the minimal number of singular set components as a function of cusps and
the normal degree of the image of the boundary curve of D?.

3. Eliashberg [2] proved the existence of stable maps between oriented sur-
faces. Similar results of Theorems 1.2 and 1.3 for fold maps between ori-
ented closed surfaces were found by the author [7].

The author would like to thank the organizers Professor Satoshi Koike and
Professor Toshizumi Fukui for organizing and including him in the conference,
“The second Australian-Japanese Workshop on Real and Complex Singularities”.



2 Preliminaries

In this section, we state an important tool to prove Theorem 1.2.

Let F : M — R? be a pseudo-immersion of a compact connected oriented
surface with exactly one boundary. Note that Z(F) c M is two colourable. Here,
to say that a 1-dimensional submanifold V c M is two colourable means that V
divides M into a pair of nonempty open surfaces (B,R) of M suchthat BN R = 0,
BUR = M\ V and the closures B and R of B and R in M respectively both contain
' :

For a connected component y C 2(F), we define the normal vector field v, of
F(y) as follows: v,, points towards the direction in which the number of preimages
of the regular value near F(y) decreases. Since Fly : ¥ +» R? is an immersion, 1y is
oriented by the tangent vector field 7, such that the frame (v,, dF(t,)) represents
the positive orientation of R?. The winding number W(Fly) is the degree of the
map dF(t,) 1y = S1 - S in which the source has the above orientation.

Let N(y) = y x [~1, 1] be a tubular neighborhood of ¥ ¢ Z(F) such that y =
¥ X {0} and we set N(Z(F)) = Uyczr) N(7). Let E be a connected open surface of
M\NE(F)) such that ENN (y) # 0. Since E is orientable and F|E is an immersion,
we define the orientation of E such that F|E : E > R? is an orientation preserving
immersion. Each connected component of F has the induced orientation of E.
Note that if E contains dM, the induced orientations of dM from that of M and E
are the same. Suppose that"yx {i} i = —1 or 1) belongs to JE. Since the orientation
of y x {i} is the same as that of v x {0}, we have

(2.1 W(Fly x {i}) = W(Fly x {0}).

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let F : M — R? be a pseudo-immersion
of a compact connected oriented surface with exactly one boundary component.
Since X(F) c M is two colourable, we set (B, R) as a two colour decomposition of
the pair (M, %(F)) such that 6§_ contains M. By (3.1) and the fact that 2(F) is a
closed 1-dimensional submanifold, we have

(3.1) x(B) = W(E(F)) + W(F|0),
(3.2) X(R) = WE(F)),
(3.3) x(M) = x(B) + x(R).

Therefore, we have

3.4 W(F|0) = x(M) — 2W(Z(F)),
(3.5) - W(FI9) = x(B) — x(R).

Since x(M) is odd, we have the following proposition.
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Proposition 3.1. The winding number W(F|0) of the restricted immersion F|0M is
odd.

Suppose that the number of connected components of B (resp. R) is np (resp.
ng), the sum of the genuses of each connected component of B (resp. R) is gg (resp.
gr) and the genus of M is g. Since the number of boundary components of B is
equal to §Z(F) + 1 and the number of boundary components of R is equal to §X(F),
(3.3) and (3.5) are written as;

(3.6) x(M) = 2ng —2gp + 2ng — 2gg — 24Z(F) - 1,
(3.7) W(F|9) = 2ng —2g5 — 2ng + 2gg — 1.

Thus, we have
(3.8) Xx(M) — W(F|0) = 4ng — 4gr — 28Z(F).
By this equation, we have the following.

Proposition 3.2. If y(M) ~ W(F|0) = 0 (mod 4), then the number of singular set
components §Z(F) is even. If (M) — W(F|9) = 2 (mod 4), then the number of
singular set components §5(F) is odd.

Suppose that W(F|d) > 0. Then by (3.8), we have

(M) + W(ED) |
2

L XD+ WEFID)

- 2

XD WED)

HZ(F) 2ng — 29R

3.9)

2g

Here, g is the genus of M.
Suppose that W(F|d) < 0. Then instead of (3.8), we have

(3.10) X(M) + W(F|9) = 4ng — 4gs — 24Z(F) — 2.
Therefore,
ixcp) = XM ;W(F 9) \ 2np —2g5 -1
(3.11) > "X(M);W(F'a) +2-2g-1
_x) ~2W(F |5).

Combining (3.9), (3.11) and Proposition 3.2, we have the desired inequalities. This
completes the proof of Theorem 1.2.
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4 Examples

To prove Theorem 1.3, it is necessary to construct the desired pseudo-immersions
concretely by using Francis’ theorem [4]. Instead of giving such pseudo-immersions
in all the cases, in this section, we give typical examples.

4.1 Thecaseof y =1-2gand W=2g-1

Let M, be a closed oriented surface of the genus g and M, = M, \ D?. Itis
obvious that y(M, 1) = 1—-2g. In this subsection, we construct a pseudo-immersion
F:M;;— R? such that W(F|9) = 2g —land §5(F) = m(1 - 29,29 -1) = 1.

' Let N(OM,1) = OMy,; x [~1, 0] be a tubular neighborhood of M, ; such that
OM, = My X {0}). Let F1 : My \ N(OM,,;) + R? be an orientation preserving
immersion and F» : N(GM,;) + R? an orientation preserving immersion such
that F1|0M,, X {~1} = F3|0My; x {—=1}. Then, by attaching F, and F, and by
changing the orientation of My ; \ N(GM,,1), we have a desired pseudo-immersion
F=F UF;: Mgl — R? such that W(F|0) = 2g — 1, Z(F) = 0M,,1 X {-1}. See
Figure 1.

N/ ﬂ
5

Mg =oM% {0} 5 L=2M, 1 (0)

|

_— F(2M,) — F(oM, 1)
— H(F) ——F(5(F)

Figure 1: The cases of g = 0, 1.

S (F)y=2M; x{-1}

- -
€«
1

4.2 Thecaseof y =land W = -2n+1

Let n be a positive integer. In this subsection, we construct a pseudo-immersion
F : Mg, — R? such that W(F|9) = —2n + 1 and §Z(F) = m(1,—2n+ 1) = n.
Before constructing the desired pseudo-immersion, we will explain a boundary
connected sum of two pseudo-immersions. Let F : M — RZand G : N — R? be
two pseudo-immersions such that F(M) N G(N) = 0. Let I, X I;, be a rectangle of
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two closed intervals I, = I, = [0, 1] and H : I, x I, — R? an orientation preserving
embedding. Let iy : {0} X I, — OM and iy : {1} X I, — ON be orientation
reversing embeddings such that F oiy = Goiy = H. Then FU;, HU;, G :
M U, I, x I U;y N — R? is a pseudo-immersion. We denote F U;,, H U;,, G as
FhG and M U;,, 1, X I U;, N as MhN and we call F}G a boundary connected sum
of F and G. Note that W(F{G|d) = W(F|9) + W(G|J) — 1. See Figure 2.

dMBEoN
oM

e S LEEY

lF lG thG

| FEG(dMBEAN)

T A A==

F(@M)  G(aN)

Figure 2: A boundary connected sum of two pseudo-immersions.

Let F; : My; — R? (i = 1,2,...,n) be a copy of the pseudo-immersion
which is constructed in Subsection 4.1. We take a boundary connected sum of
Fi,Fs,...,F,. We set F = FijFah---hF, and we have Mo 1Mo - -hMo; =
My,. Because W(flﬁ)_ =-n-mn-1)=-2n+1 and ﬂZ(f ) = n, the pseudo-
immersion F : My, — R? is the desired one. See Figures 3 and 4 in the case
n=3.

S Supplement

5.1 Position of the singular set

In this section, we remark on the positions of the singular set of a pseudo-immersion
F:M - R%

Proposition 5.1. Let Fy, and Fy : M — R? be two pseudo-immersions of a
compact connected oriented surface with exactly one boundary component. If
X(F1) = Z(F) = 1, then an orientation preserving diffeomorphism ® : M — M
such that ®(Z(F,)) = Z(F3) exists.
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N >
N E(S(F)—————

Figure 3: Pseudo-immersions F; : Mo; — R? (i = 1,2, 3).

2 2

N
NFEF) = ——

Figure 4: A pseudo-immersion F : My; — R2.
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This proposition is obvious. If the number of singular set components is more
than one, the above proposition is not true. For example, let ; and X, be two
simple closed curves in M ; that splits M; ) into three connected surfaces. Two of
them are annuli and the other is one punctured torus. Let £3 and £4 be two simple
closed curves in M) that splits M) into two connected surfaces. Both of them
are annuli. By using Francis’ theorem [4], we have two pseudo-immersions F; and
Fa : My, — R? such that Z(Fy) = I; U %, 5(F2) = Z3 U Z4, F1(Z)) = Fa(Z3),
Fi(X2) = Fa(Z4) F1(0My1) = F2(0My,1) and W(F|8) = W(F,|0) = —1. See
Figure 5.

z3 24
F---g---7 %
)
", g,
F\I /Fz
Fl(Wm) [ ’ A
=FZ(W],])
A
N —F1(3,)=F2(55)

O

I\

Fi(2;)=F2(Z,)

Figure 5: Two pseudo-immersions F; and Fp : M} — R? such that F{(X(F))) =
Fa(X(F2)).

5.2 Image of the boundary of a pseudo-immersion

In this subsection, we state the existence of a pseudo-immersion such that the given
plane curve is the image of the boundary of the map.

Applying Eliashberg and Francis’ theorem [2, 3], we have the following theo-
rem. :

Theorem 5.2. Let M be a compact connected oriented surface with exactly one
boundary component. If f : M +» R? is an oriented immersion such that W(f) is
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odd, then there exists a pseudo-immersion F : M — R? such that

G FiOM = f

and

(5-2) #E(F) = max{m(y(M), W(f)),2} ifx(M)~W(f)=0 (mod 4)

or

(5.3) HZ(F) = max{mQy(M), W(f),1} ifx(M)~W(f)=2 (mod 4).

The details of Theorem 5.2 are in [8].
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