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Minimax Programming in Complex Spaces!?
—Necessary and Sufficient Optimality Conditions—
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Abstract.
In this note we study a nondifferentiable minimax programming in complex spaces. We
establish the Kuhn-Tucker type necessary optimality conditions, and the existence theorem

for optimality in complex programming under the framework of generalized convexity.
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1. Introduction

Mathematical programming in complex space was first studied by Levinson at 1966 for
linear programming (LP). Shortly later Swarap and Sharma in 1970 studied for linear frac-
tional programming (LFP). Henceafter nonlinear complex programming for fractional or
nonfractional were treated by numerous authors. For instance Mond and Craven (1975),
Das and Swarup (1977), Datta and Bhata (1984), and others, Hanson, Saxena, Jain, Ferrero,
Lai, Liu and Schaible etc. were also studied complex programming for nonlinear fractional
or nonfractional in different viewpoint.

Recently Chen-Lai-Schaible introduced a generalized Charnes-Cooper variable transfor-
mation to change fractional complex programming into nonfractional programming, and
prove that the optimal solution of complex fractional programming can be reduced to an
optimal solution of the equivalent nonfractional programming and vice versa.

In programming problem, the existence of optimal solution, continuity, convexity, and its
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various generalization are valuable in analysis as well as in the existence of optimal solution
for programming problems under the considered framework.

Applications of complex programming (cf. Lai and Liu [5]) could be employed to electrical
networks with complex variable z € C™ to representing the currents or voltages for element
of network. Various fields in electric engineering are employed. Like blind deconvolution,
blind equalization, minimal entropy, maximal kurtosis, and optimal receiver etc. for example
in a given statistical signal processing, one will maximize the equalizer output kurtosis as
|B(21%) - 2(E(21%)* - | BG)P|

E(|2]?)

K(z) =

where E stands for expectation, and |2|? = z - Z.
In this note we establish the necessary and sufficient optimality conditions for a nondif-

ferentiable minimax complex programming.
2. Nondifferentiable minimax complex programming

Consider a complex programming as the form:

(P)  Mincexsup,ey Re[f(¢,n) + (27 A2)'/?]
subject to X = {¢ = (z,2) € C* | — h(¢) € S}

where (1) Y = {n = (w,®@) | w € C™} is a compact subset in C?",
(2) A € C**" is a positive semidefinite Harmitian matrix,
(3) S is a polyhedral cone in CP,
(4) f(-,) is continuous, and for each n € Y,
(5) f(-,n) : C* — C and h(-) : C** — CP are analytic in ¢ = (2,%Z) € Q C C?",
Q = {(z,%) | z € C*} is a linear manifold over real field.
Problem (P) is nondifferentiable programming if the optimal point (o = (20, Z5) with 2& Az, =
0, the term z¥ Az vanishes in a neighborhood of 2. So (2¥ Az)!/2 is nondifferentiable at 2o,

and problem (P) is then nondifferentiable.
Remark 2.1.

(a) If Y vanishes, problem (P) is reduced to:
(P) Minimize Re[f(¢) + (27 Az)'/?]
subject to { = (2,2) € X = {{ = (2,2) | —h({) € S}



which is a nondifferentiable problem given in Mond and Craven [11].

(b) If A= 0, problem (P) becomes a differentiable complex programming;:
(Rp) Mingex sup,ey Ref(¢,7n). s.t. —h({) € S. (see Datta-Bhatia [4])

(c) Problem (Pp) extended the real minimax programming given by Schmittendorff (12]:
(F)  Mingexcre SUpyeycrm f(,y) s.t. h(z) <0 in RP,

where f(-,:) and h(-) are C* functions.

Remark 2.2. We give some complementary explanations, as follows:

(a) Ployhedral cone S in CP means that there is & positive integer k and a matrix B € Ck*?
such that S = {¢€ € CP | Re(B¢) > 0}.

(b) The dual cone S* of S is defined by the set S* = {z € CP | Re(&, ) > 0 for £ € S}.
Obvious that (S*)* = S.

(c) For s € 8, the set S(sq) is defined by the intersection of those closed half spaces
including s in their boundaries. Thus if sy € int(S), then S(sp) = C?, the whole

space.

3. Necessary optimality conditions

Definition 3.1. The problem (P) is said to satisfy the constraint qualification

at a point (o = (20, %), if for any nonzero u € S* c C?,

( h:;(Co)(C - C0)7/"' ) 74 0’ for C 7£ (0- (31)

Lemma 3.1. The constraint qualification (3.1) for problem (P) is equivalent to
UTVR(Go) + W Vzh(Co) = 0 only if = 0, (3.2)

where pH = /T,

Indeed, ( h¢(Co)(¢ — Go), 1 )
= ( Vah(Go)(z = 2) + Vsh(G)( 7= % ), )
= B"V:h(¢)(z — 20) + BT Vzh(o) (7= 20)
=<z—zo , uTm>+<uHV7h((o) , 2 — 2o >




So the real part of above identity (3.1) is equal to
Re [(z — 20, u”TV A(Co) + uF Vzh(Co) )] # 0 if u # 0 in C?.
That is equivalently to the expression (3.2).
The necessary optimality condition follows easily from Kuhn-Tucker type conditions as

the following:

Theorem 3.1. Let (o = (20,%) € Q be (Py)-optimal. Suppose that (P) satisfies the
constraint qualification at 3. Then there exist 0 # p € S* C CP and integer k with properties

(i) : € Y({), i =1,--- ,k, where
Y()={n€Y | Re f(¢o,n) = sup Re fo,v)},

.. . . . k
(ii) multipliers \; >0, i=1,--- ,k, > ;. =1

such that the Lagrangian ¢(() = Z,_ Xif(¢,m) + (h({), u) satisfies the Kuhn-Tucker con-
dition at {o. That is,

k
Z Aife(Co,m) (€ — o) + <h2(Co) (¢ - Co),#> =0 (3.3)

Re (h(¢o), 1) = 0. (3.4)

Proof. It follows from the compactness of Y in C?™ that there exist finite k points
M, Mk € Y({o) satisfying conditions (i) and (ii), and hence the Lagrangian ¢({) satisfies
the Kuhn-Tucker type conditions. O

Remark 3.1. The real part of the left hand side of (3.3) deduces the real part of
k
< 2=20, D N[Vl Corm) + Vaf (Go,m)] + (WTVRG) + 47 V2h(G) ) >
i=1

It follows that

Z i [ 2f(Co, M) + V£ (Co, 71:)] + uT V(o) + pTVzh(G) = 0. (3.5)

Mond [10] employed Eisenberg transformation theorem to establish the following

Lemma 3.2. Let E€ CP**, A € C"*" and b€ C", y € S* C CP. Then the following
two statements are equivalent

(i) E¥p = Au+b, uf Au < 1 has solution u € C™.

(ii)) If Ez € S C CP for z € C*, then Re [(zHAz)l/"’ + sz] > 0. O



By this Lemma, Mond reduced the generalized Schwarz inequality in complex space:
Re(2¥ Au) < (29 A2)Y*(u¥ Au)'/?, (3.6)

The equality of (3.6) holds if Az = AMAu or z = Au for A > 0.

Accordingly Mond and Creven [11] proved the Kuhn-Tucker type necéssary optimality
conditions hold for problem (P) provided the optimal solution (o = (29,%) € Q satisfying
28 Azp > 0. That is

Theorem 3.2 Let (o = (20,%0) € Q be a (P)-optimal. Suppose that the constraint
qualification holds for (P) at (o and 2l Azy = (Azp, 20) > 0. Then there exist 0 # p € S* C
C?, u € C" and integer k with

(i) finite points p; € Y((o), i=1,--+ ,k;

.. . . . k
(ii) multipliers \; >0, i =1,--- k, Y, =1

k
such that ZA,- F(Cm) + (u, h(C)) + (Az, 2)Y?  satisfies the following conditions

i=1

. ,
Z A [m + Vzf (Co,mi) + AU] + (MTW + NHVEh(CO)) =0; 3.7)
i=1

Re( h(Go), 1 ) = 0; (3-8)
ufAu < 1; (3.9)
(257 Az)'? = Re(2 Au). (3.10)

Proof. Since A is a positive definite Harmitian matrix and for each n € Y, f({,n) is
analytic in ¢, thus for nonzero u € S* C CP, the function f({,n) + (2# A2)Y% + (u, h(C)) is

analytic at {o. Hence by Theorem 3.1, there exist k, n; € Y(¢), M >0, i = 1,--- ,k and

¥ . A =1 in conditions (i), (ii) such that

Az

L9
( AZO:ZO )1/2

k .
SN[ VaF o) + Vef (6o, m)] + (WTVR(G) + w7 Vsh(%)) +

i=1

and Re( p,h({o) ) = 0. Putting u = 20/( Az, 2 )'/?, it follows that (3.7)~(3.10) hold. O

In Theorem 3.2, if the (P)-optimal (o = (20,%;) satisfies (A2, zp) = 0, then the objec-
tive of (P) is not analytic at z (or ¢p). The result of Theorem 3.2 still hold. The further



assumption needs that a set Zz,) defined later will be empty. Since Y'({o) C Y is compact,
there is an integer £k > 0 with n; € Y (o), \s > 0, i = 1,--- |k, E:;l Ai = 1 satisfying (i)
and (ii). Let 7= (n1,--- ,m) € Y(Co)*. If (Azg, 20) = O for ¢y = (20, %), we define
Zr(a) = {c € € | = K@) € S(-h(@)),
¢(=1(2,%Z) €Q and

k
Re[ - MfilGum)¢ + (4x 27] <o),

i=1

Then we can prove the necessary theorem as following.

Theorem 3.3. Let {y = (20,%) € Q be (P)-optimal. Suppose that problem (P) possess
the constraint qualification at (o, (Azo,20) = 0 and Zz(¢o) = 0. Then there exist a nonzero

u € §* C C? and a vector u € C* such that conditions (3.7)~(3.10) hold.

4. Sufficient optimality conditions

A sufficient optimality theorem may be regarded as the inverse of necessary theorem with
extra assumptions. We need several generalization for convexity of complex functions. Since
a nonlinear analytic function have a convex real part, it must be considered that the complex
functions are defined in the linear manifold Q = {¢ = (z,%Z) € C?" | z € C"}. For detail, one
can consult Lai and Liu [5] and the references therein.

For eachn € Y C C*™, consider function f(-,7n) : C*™ — C and mapping h(-) : C** — CP
that are analytic at (o = (20,%5) € @. For any ¢ € Q, we denote

Il = Re[f(Ca 77) - f(CO’ 77)]7 Jl = Re[fé(CO)(C - CO)L
and for u € §* C C?, denote

I; = Re( h(¢) — h(Co), 1 ), J2 = Re( hé((o)(g = Go)s 14 )

Then the generalized convexities are defined as following,.
Definition 4.1 The real part of analytic function f(-,n) : C** — C is called, respectively,
(i) convex at ¢ = (o, if I > Jy;
(i) pseudoconvex (strictly) at { = (o, if 1 > 0= 1, >0 (I; > 0);

(i%i) quasiconvex at { = (o, if 1, < 0= J; <O0.

Definition 4.2. The analytic mapping h(-) : C** — CP is called, respectively,



(i) convex at ( = (o w.r.t. the polyhedral cone S in CP,

if there exists u € S* C CP such that Iy > Jo;

(i) pseudoconvex (strictly) at { = {, w.r.t. to S in CP,
if there exists u € §* C CP such that J, > 0= I, > 0 (I, > 0);

(iii) quasiconvex at ¢ = (o w.r.t. to S in CP,

if there exists p € S* C CP such that I, < 0= J, <0.

Now we can state here three sufficient optimality theorems for a feasible solution of (P)

becomes optimal.

Theorem 4.1. (Sufficient optimality conditions).

Let (o = (20,%) € Q be a feasible solution of (P). Suppose that there ezist \; > 0 with
f=1 Ai=1lmn€eY i=1--k and 0 # u € 8 C C?, u € C" satisfying conditions
(3.7)~(3.10) in Theorem 3.2. Further assume that any one of the following conditions (i),
(i) and (iii) holds:

(i) Re[ f=1 Xf(C,m) + zHAu] s pseudoconvez on ( = (2,Z) € Q, h({) is quasiconver
on Q w.rt. S cC Cr

(i) Re[Zf__,l Aif(¢,m) + zHAu] is quasiconver on { = (z,Z) € Q and h({) is strictly

pseudoconvez on Q w.r.t. S C CP;
(iit) Re[Zf___l Aif(€,mi) + 2H Au+ (h(g),u)] is pseudoconvez on { = (z,%) € Q.

Then (o = (20,%0) 15 an optimal solution of (P).

5. Further Plausible Work

As we have established (necessary and sufficient) optimality conditions, it is naturely arise
a plausible problem that one may consider some duality models for the complex programming

problem (P). We would like left it for later oportunity in details.
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