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ON DERIVATIVES OF SET-VALUED MAPS IN SET OPTIMIZATION
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1 Introduction

Let E be a locally convex topological vector space over R, let K be a closed convex
cone in F, and assume K is pointed, that is, K N (—K) = {6} where 6 is the null
vector of E. We define an order relation < on E by

,yeEE, <Ly & y—z € K.

For a given set-valued map F from a set X to E, we consider the following set-
valued optimization problem:

(P) Minimize F(z) subject toz € X.

When we consider the set-valued problem (P), there are two types criteria. One
is the criterion in vector optimization: the criterion of solutions is based on com-
parisons of all elements of all values of F, and the solution of vector optimization
(VP) is an element zp € X satisfying the condition: there exists yo € F(xp) such
that

c€X, yeF(z), y<Sypo = w<y, or (w-K)n|J F@)={w}
zeX

The other criterion is called ‘set optimization,” which introduced by the author,
see [3, 6]. A solution of set optimization is an element o € X satisfying the
following condition:

z € X, F(z) X F(zo) => F(x0) X F(x),

where < is a certain binary relation on 2%. This criterion is based on comparisons
of sets, values of F', with respect to <. For example, we can consider the following
six natural set relations: for given A, B C E, A < B means,

(1) Vze A,Vye B,z <y;

(2) 3z € A such that Vy € B, < y;
(3) Vy € B, 3x € A such that z < y;
(4) 3ye BsuchthatVz € A, z < y;
(5) Vz € A, 3y € B such that z < y;
(6) 3z € A, 3y € B such that z < y.

In this paper, set relations SIK on 2F are defined as follows: for A, B € 2F,
A<t B &L JA+K)DB  of (9)

and we observe the following notions of solutions:

Definition 1. An element zo € X is said to be a minimal solution of (SP) if

r € X, F(z) <% F(zo) = F(xo) <4 F(2).



In this paper, we consider first order optimality conditions of the set-valued
optimization problem (SP). To the purpose, we introduce an embedding space into
which our minimization problem (SP) is embedded in Section 2, and we define a
notion of directional derivative for set-valued maps in Section 3. In Section 4,
we give some results about necessary and sufficient optimality conditions by the
derivatives.

2 An embedding space

A subset A of E is said to be K-convex if A+ K is convex, and A is said to be
K*-bounded if (y*, A) is bounded from below for any y* € K+, where K™ be the
positive polar cone of K, that is

Kt ={y* € E*| (y*,k) >0,Vk € K}.

Let G be the family of all nonempty K-convex and K*-bounded subset of E. In
this section, we introduce a process of construction of a normed space V into which
G is embedded. All results in this section, see [5].

At first, we introduce an equivalence relation = on G2: for each (4, B),
(C,D) € G2,

(A,B)=(C,D) &€& cl(A+ D+ K)=c(B+C + K).
We denote the quotient space G%/= by V, that is
V= {[A’ B] | (A,B) € g2},

where {A,B] = {(C,D) € G? | (A,B) = (C,D)}. Define addition and scalar
multiplication on the quotient space V as follows:

[A,B]+[C,D}=[A+C,B+ D),

(A4, AB] if A>0
A-[4,B] = { [(=)\)B, (~A)A] i A<O0.

Then (V,+, -) is a vector space over R. Also let
k)= {14 Blev |B<i 4},

then pu(K) is a pointed convex cone in V. Now we define order relation <, xy, or
simply <, on V as follows:

[4, B] Z.x) [C, D] €5 [C, D] - (A, B] € u(K).

Then, (V, I P K)) is an ordered vector space over R. Let a function ¢ from
GtoV by

p(A) =[A, {0} forall A€ G,

then
A<k B <= ¢(A) <uxk) ¢(B),
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for any A, B € . By using this function ¢, our set optimization problem (SP) is
regarded as a vector optimization problem, that is, when F is a map from X to
G, zo € E is a minimal solution of (SP) if and only if

@oF(X) N (poF (o) — u(K)) = {poF(z0)}.

Finally we introduce a norm |-| in G%/=. Let W be abase of K*, that s R, W = K,
and 0* ¢ W. For each [4,B] €V,

|[A, B]| = sup |inf (y*, A) —inf (y*, B)|,
Yy eW

is well-defined, and let V(W) = {[A,B] € V | |[A, B]| < oo}, then we can see
(V(W),]| -]) is a normed vector space, and u(K) is closed in (V(W),|-]).

3 A directional derivative of set-valued maps in set
optimization

In the rest of the paper, assume that X is a convex set of a normed space (Z, || - ||)
over R, W is a closed base of K*, V = V(W), that is |[A, B]| < oo when [4,B] € V,
and F' : X — G. About all results of the rest of the paper, see [7].

Definition 2. Letz € X andd € Z.

CF(z,d) = {[A,B] Y

e} L O s.t. Xl—{F(a: + Med), F(z)] — [A, B] }
k

s said to be V-directional derivative clusters of F' at = in the direction d. If
CF(z,d) is a singleton, then the element is written by DF(z,d) and called V-
directional derivative of F' at x in the direction d, and F is said to be V-directional
differentiable at x in the direction d.

Example 1. Let F : R — 28 be a set-valued map defined by
F(z) = co{(lz|, ~|z| + 1), (—|z| + 1,|=])}, Vz€R,

and let K = R% = {(21,%2) | 21,22 > 0}. Then F is V-directional differentiable
in the any direction d € R, for example, when ¢ = 0,

DF(zo,d) = [{(0,0)},|dco{(1,-1),(-1,1)}], Vd€R,

when 0 < xq < %,

_ [{(0’ 0)}’ Idl C {(1! —'1), ("]w 1)}]’ 2fd Z 0,
DF(@o,d) = { [ eo{(d —1), (-1, 1, {O.0)}], ifd <0,

and when zg = %,
DF(zo,d) = [|d|co{(1,-1),(-1,1)},{(0,0)}], VdeR.
Example 2. A set-valued map F : X — 2E defined by

F(@) = g(2) + o ri@)As, zeX,

iel
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where g is a function from X to E which is directional differentiable at 9 € X,
I is a nonempty finite set, and for each i € I, r; 18 a function from X to (0,00)
which is directional differentiable at zo € X, and A; € G. Then F is V-directional
differentiable at xo for each direction d € Z, and we have,

DF(zo,d) = [g'(z0,d), {8} + > _ ri(zo,d)[As, {6}]
el

= g,(zo’d)'*' Z r;(mO)d)Ai’ - Z T;(zO’d)Aﬂ'
i€l (d) i€l_(d)

where I.(d) = {i € I | r{(z0,d) > 0} and I_(d) = {i € I | r{(z0,d) < 0}.

4 Optimality conditions of a set optimization problem

In this section we observe necessary and sufficient optimzality conditions of solu-
tions of (SP). At first, we define weak minimal solutions of (SP). To the purpose,
we introduce a binary relation <lK on G: for A, Beg,

A< B & WcE: a neighborhood of 8 such that A+ K > B+ V.

Proposition 1. For any A, B € G, [A, B] € Intu(K) implies B <% A, where
Intu(K) is the set of all interior points with respect to (V,] - |).
Definition 3. An element zo € X is said to be a weak minimal solution of (SP)
if
Bz € X s.t. F(z) <% F(zo).
Also we define local solutions of (SP).

Definition 4. An element o € X 1s said to be, a local minimal solution of (SP)
if there exists N a neighborhood of zy such that

re NNX, F(z) <k F(zg) = F(z0) <% F(2),

a local weak minimal solution of (SP) if there exists N a neighborhood of o such
that
Bz € NNX st F(x) <4 F(xo).

Now we have a result of a necessary condition of local weak optimality of (SP).

Theorem 1. If o be a local weak minimal solution of (SP) of F, then we have
CF(zg,z — xo) N (—Int u(K)) =0, vz € X.
Also we have a result of a sufficient condition of local optimality of (SP).

Theorem 2. Assume that Z is a finite dimensional space, and F is V-directional
derivative at zo € X in each direction. Moreover, we assume that

DF (z0,d) = lim F (@0 + Ad), F(zo)]
converges uniformly and continuous with respect to d on the unit ball. If

DF(zo,d) ¢ —i(K),  Vd € Tx(xo) \ {6},

then zg is a local minimal solution of (SP).



Example 3. We discuss Example 1, in the standpoint of the above optimality
conditions. At first, we can check easily that no (global) minimal, and no {global)
weak minimal solution of (SP), 0 is the only local minimal solution of (SP), and
for each x € R, x is a local weak minimal solution of (SP).

When zo = 0, DF(z9,d) € —u(K) holds if and only if

Ri > ‘dl CO{(la —1)’ (—15 1)}7

but it does not hold when d # 0. From Theorem 2, we have x¢ is a local minimal
solution of (SP). Also when 0 < zo < %, DF(xg,d) € —u(K) holds if and only if

{ R%- o) Idl CO{(]., _._1), (”1’ 1)}’ Zfd 20,
R?}- + idl CO{(]., -1)’ (_11 1)} 3 (Ov 0)» Zfd <0.

and RZ + |d|co{(1,-1),(~1,1)} > (0,0) is always true when d < 0. This is
consistent with Theorem 2, since zo is not local minimal solution. Moreover,
DF(z¢,d) € —Intu(K) holds if and only if

(0,00)? D |d| co{(1, ~1), (=1, 1)}, ifd>0
{ (0,00)2 + |d| co{(1, 1), (=1,1)} 3 (0,0), ifd <0

does not hold for each d € R. This is also consistent with Theorem 1, since g 1s
a local weak minimal solution of (SP).
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