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Throughout this note, all spaces are assumed to be $T_{1}$ and $\lambda$ stands for an
infinite cardinal number. For undefined terminology, we refer to [3]. The purpose
of this note is to introduce some results of $[15|$ and [16].

Let $X$ be a space and $(Y, \Vert\cdot\Vert)$ a Banach space. By $2^{Y}$ , we denote the set of
all non-empty subsets of $Y$ . For a mapping $\varphi$ : $Xarrow 2^{Y}$ , a mapping $f$ : $Xarrow Y$

is called a selection if $f(x)\in\varphi(x)$ for each $x\in X$ .
For $K\in \mathcal{F}_{c}(Y)$ , a point $y\in K$ is called an extreme point if every open line

segment containing $y$ is not contained in $K$ . For $K\in \mathcal{F}_{c}(Y)$ , the weak convex
interior wci $(K)$ of $K$ ([5]) is the set of all non-extreme points of $K$ , that is,

wci $(K)=\{y\in K|y=\delta y_{1}+(1-\delta)y_{2}$ for some $y_{1},$ $y_{2}\in K\backslash \{y\}$ and $0<\delta<1\}$ .
Our concern of this note is to obtain theorems on continuous selections avoiding
extreme points, which is motivated by Problem 3 below posed by V. Gutev, H.
Ohta and K. Yamazaki [5].

1. A PROBLEM OF GUTEV, OHTA AND YAMAZAKI

A Hausdorff space $X$ is called countably paracompact if every countable open
cover of $X$ is refined by a locally finite open cover of $X$ . Let $R$ be the space of
real numbers with the usual topology. The following insertion theorem due to
C. H. Dowker [2] and M. Kat\v{e}tov [7] is fundamental in our study.

Theorem 1 (Dowker [2, Theorem 4], Kat\v{e}tov [7, Theorem 2]). A $T_{1}$ -space $X$ is
normal and countably paracompact if and only if for every upper semicontinuous
function $g:Xarrow R$ and every lower semicontinuous function $h:Xarrow R$ with
$g(x)<h(x)$ for each $x\in X$ , there exists a continuous function $f$ : $Xarrow R$ such
that $g(x)<f(x)<h(x)$ for each $x\in X$ .

The cardinality of a set $S$ is denoted by Card $S$ . A $T_{1}$-space $X$ is called $\lambda-$

collectionwise normal if for every discrete collection $\{F_{\alpha}|\alpha\in A\}$ of closed
subsets of $X$ with Card $A\leq\lambda$ , there exists a disjoint collection $\{G_{\alpha}|\alpha\in A\}$ of
open subsets of $X$ such that $F_{\alpha}\subset G_{\alpha}$ for each $\alpha\in A$ . The space $c_{0}(\lambda)$ is the
Banach space consisting of functions $s$ : $D(\lambda)arrow R$ , where $D(\lambda)$ is a set with
Card $D(\lambda)=\lambda$ , such that for each $\epsilon>0$ the set $\{\alpha\in D(\lambda)||s(\alpha)|\geq\epsilon\}$ is
finite, where the linear operations are defined pointwise and $\Vert s\Vert=\sup\{|s(\alpha)||$

$\alpha\in D(\lambda)\}$ for each $s\in c_{0}(\lambda)$ . In order to connect insertion theorems with
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selection theorems, V. Gutev, H. Ohta and K. Yamazaki [5] introduced lower and
upper semicontinuity of a mapping to the Banach space $c_{0}(\lambda)$ and, with the aid
of these concepts, they proved sandwich-like characterizations of paracompact-
like properties. Moreover, they introduced generalized $c_{0}(\lambda)$ -spaces for Banach
spaces and established the following theorem. A mapping $\varphi$ : $Xarrow 2^{Y}$ is called
lower semicontinuous ( $l.s.c$ . for short) if for every open subset $V$ of $Y$ , the set
$\varphi^{-1}[V]=\{x\in X|\varphi(x)\cap V\neq\emptyset\}$ is open in $X$ . By $C_{c}(Y)$ we denote the set of
all non-empty compact convex subsets of $Y$ and let $C_{c}^{l}(Y)=C_{c}(Y)\cup\{Y\}$ .

Theorem 2 (Gutev, Ohta and Yamazaki [5, Theorem 4.5]). $\mathcal{A}T_{1}$ -space $X$ is
countably paracompact and $\lambda$ -collectionwise normal if and only iffor every gener-
alized $c_{0}(\lambda)$ -space $Y$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}’(Y)$ with Card $\varphi(x)>1$ for
each $x\in X$ admits a continuous selection $f$ : $Xarrow Y$ such that $f(x)\in$ wci $(\varphi(x))$

for each $x\in X$ .

Note that the “only if” part of Theorem 2 implies that of Theorem 1. By
$w(Y)$ we denote the weight of a space $Y$ . Since generalized $c_{0}(\lambda)$-space is a
special Banach space with $w(Y)\leq\lambda$ , Gutev, Ohta and Yamazaki [5] posed the
following problem.

Problem 3 (Gutev, Ohta and Yamazaki [5, Problem 4.7]). Can the phrase
“every generalized $c_{0}(\lambda)$ -space $Y$ ” in Theorem 2 be replaced with ${}^{t}every$ Banach
space $Y$ with $w(Y)\leq\lambda$ ”?

It is proved in [15] that the answer of Problem 3 is affirmative.

Theorem 4 ([15]). A $T_{1}$ -space $X$ is countably paracompact and $\lambda$ -collectionwise
normal if and only if for every Banach space $Y$ with $w(Y)\leq\lambda$ , every $l.s.c$ .
mapping $\varphi$ : $Xarrow C_{c}^{l}(Y)$ with Card $\varphi(x)>1$ for each $x\in X$ admits a continuous
selection $f:Xarrow Y$ such that $f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .

In particular, we have the following.

Corollary 5. A $T_{1}$ -space $X$ is countably paracompact and normal if and only if
for every separable Banach space $Y$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}^{l}(Y)$ with
Card $\varphi(x)>1$ for $eachx\in X$ admits a continuous selection $f$ : $Xarrow Y$ such
that $f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .

Corollary 6. A $T_{1}$ -space $X$ is countably paracompact and collectionwise normal
if and only if for every Banach space $Y$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}(Y)$

with Card $\varphi(x)>1$ for each $x\in X$ admits a continuous selection $f$ : $Xarrow Y$

such that $f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .
A Hausdorff space $X$ is called $\lambda$ -paracompact if every open cover $\mathcal{U}$ of $X$ with

Card $\mathcal{U}\leq\lambda$ is refined by a locally finite open cover of $X$ . The set of all non-empty
closed convex subsets of a Banach space $Y$ is denoted by $\mathcal{F}_{c}(Y)$ . The following
theorem is a $\lambda$-paracompact analogue of Theorems 2 and 4.
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Theorem 7 ([15]). A $T_{1}$ -space $X$ is normal and $\lambda$ -paracompact if and only if
for every Banach space $Y$ with $w(Y)\leq\lambda$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow \mathcal{F}_{c}(Y)$

with Card $\varphi(x)>1$ for each $x\in X$ admits a continuous selection $f$ : $Xarrow Y$

such that $f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .

Thus we have the following variation of [11, Theorem $3.2”$].

Corollary 8. A $T_{1}$ -space $X$ is paracompact if and only if for every Banach space
$Y$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow \mathcal{F}_{c}(Y)$ such that Card $\varphi(x)>1$ for each $x\in X$

admits a continuous selection $f$ : $Xarrow Y$ such that $f(x)\in$ wci $(\varphi(x))$ for each
$x\in X$ .

2. THE ROLE OF COUNTABLE PARACOMPACTNESS FOR CONTINUOUS
SELECTIONS AVOIDING EXTREME POINTS

The following selection theorem is due to E. Michael [11] and S. Nedev [12].

Theorem 9 (E. Michael [11, Theorem 3.2‘], S. Nedev [12, Theorem 4.2]). $\mathcal{A}T_{1}-$

space $X$ is $\lambda$ -collectionwise normal if and only if for every Banach space $Y$ with
$w(Y)\leq\lambda_{f}$ every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}^{l}(Y)$ admits a continuous selection.

Although the existence itself of a continuous selection is guaranteed by Theo-
rem 9, the assumption in Theorem 4 that $X$ is countably paracompact can not
be dropped. Suggested by this fact, we are next concerned with the role of count-
able paracompactness to obtain a continuous selections avoiding extreme points.
Our study has two directions; one is to obtain an l.s. $c$ . set-valued selection avoid-
ing extreme points under a separation axiom of $X$ weaker than $\lambda$-collectionwise
normality, another is to drop countable paracompactness instead of imposing a
condition to set-valued mappings.

2.1. L.s. $c$ . set-valued selections avoiding extreme points. For a mapping
$\varphi$ : $Xarrow 2^{Y}$ , a mapping $\theta:Xarrow 2^{Y}$ is called a set-valued selection if $\theta(x)\subset\varphi(x)$

for each $x\in X$ . A topological space $X$ is called countably metacompact if every
countable open cover $\mathcal{U}$ of $X$ is refined by a point-finite open cover of $X$ . We
have the following characterization of countably metacompact spaces without
any separation axiom.

Theorem 10 ([16]). A topological space $X$ is countably metacompact if and
only if for every normed space $Y$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}(Y)$ with
Card $\varphi(x)>1$ for each $x\in X$ admits an $l.s.c$ . set-valued selection $\phi$ : $Xarrow C_{c}(Y)$

such that $\phi(x)\subset$ wci $(\varphi(x))$ for each $x\in X$ .

If the mappings $\varphi,$
$\phi$ : $Xarrow C_{c}(Y)$ can be replaced with mappings $\varphi,$

$\phi$ : $Xarrow$

$C_{c}’(Y)$ , then Theorem 4 follows from Theorem 9 and the replaced statement.
But the author does not know whether Theorem 10 remains valid even if the
mappings $\varphi,$ $\phi:Xarrow C_{c}(Y)$ are replaced with $\varphi,$ $\phi:Xarrow C_{c}^{l}(Y)$ .
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A topological space $X$ is almost $\lambda$-expandable ([9], [14]) if for every locally
finite collection $\{F_{\alpha}|\alpha\in A\}$ of closed subsets of $X$ with Card $A\leq\lambda$ , there
exists a point-finite collection $\{U_{\alpha}|\alpha\in A\}$ of open subsets of $X$ such that
$F_{\alpha}\subset U_{\alpha}$ for each $\alpha\in A$ . Note that every countably paracompact $\lambda$-collectionwise
normal space is almost $\lambda$-expandable ([8]), and every almost $\lambda$-expandable space
is countably metacompact ([9, Theorem 2.6]). For compact-valued l.s. $c$ . set-
valued selections of mappings $\varphi$ : $Xarrow C_{c}’(Y)$ , we have the following.

Theorem 11 ([16]). A normal space $X$ is almost $\lambda$ -expandable if and only if for
every Banach space $Y$ with $w(Y)\leq\lambda$ , every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}^{l}(Y)$ with
Card $\varphi(x)>1$ for each $x\in X$ admits an $l.s.c$ . set-valued selection $\phi:Xarrow C_{c}(Y)$

such that $\phi(x)\subset$ wci $(\varphi(x))$ for each $x\in X$ .

A $T_{1}$-space $X$ is $\lambda- PF$-normal if every point-finite open cover is normal. A
$T_{1}$ -space $X$ is PF-normal if $X$ is $\lambda- PF$-normal for each infinite cardinal $\lambda$ . PF-
normal spaces are first investigated by E. Michael [10], and the name “PF-
normal” is due to J. C. Smith [13]. Note that every $\lambda$-collectionwise normal
space is $\lambda- PF$-normal and $\omega- PF$-normality coincides with the normality, where
$\omega$ is the first infinite cardinal number. T. Kand\^o [6] and S. Nedev [12] proved
the following selection theorem for $\lambda- PF$-normal spaces (PF-normal spaces are
called pointwise-paracompact and normal in [6], while $\lambda- PF$-normal spaces are
called $\lambda- pointwise-\aleph_{0}$-paracompact and normal in [12] $)$ .

Theorem 12 (T. Kand\^o [6, Theorem IV], S. Nedev [12, Theorem 4.1]). A $T_{1^{-}}$

space $X$ is $\lambda- PF$-normal if and only if for every Banach space $Y$ with $w(Y)\leq\lambda$ ,
every $l.s.c$ . mapping $\varphi$ : $Xarrow C_{c}(Y)$ admits a continuous selection.

A space is countably paracompact and $\lambda$-collectionwise normal if and only
if it is almost $\lambda$-expandable and $\lambda- PF$-normal. Thus Theorem 4 follows from
Theorems 11 and Theorem 12. Also, by Theorems 10 and 12, we have the
following.

Theorem 13 ([16]). A $T_{1}$ -space $X$ is countably paracompact and $\lambda- PF$-normal
if and only if for every Banach space $Y$ with $w(Y)\leq\lambda$ , every $l.s.c$ . mapping
$\varphi$ : $Xarrow C_{c}(Y)$ with Card $\varphi(x)>1$ for each $x\in X$ admits a continuous selection
$f:Xarrow Y$ such that $f(x)\in$ wci $(\varphi(x))$ .

A topological space $X$ is called $\lambda$ -metacompact if every open cover $\mathcal{U}$ of $X$

with Card $\mathcal{U}\leq\lambda$ is refined by a point-finite open cover of $X$ . M. M. \v{C}oban
[1, Theorem 6.1] characterized $\lambda$-metacompactness in terms of l.s. $c$ . set-valued
selections. For $\lambda$-metacompact analogue of Theorem 11, we have the following.

Theorem 14 ([16]). A regular spaoe $X$ is $\lambda$ -metacompact if and only if for
every Banach space $Y$ with $w(Y)\leq\lambda_{f}$ every $l.s.c$ . mapping $\varphi:Xarrow \mathcal{F}_{c}(Y)$ with
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Card $\varphi(x)>1$ for each $x\in X$ admits an $l.s.c$ . set-valued selection $\phi$ : $Xarrow C_{c}(Y)$

such that $\phi(x)\subset$ wci $(\varphi(x))$ for each $x\in X$ .

2.2. Dropping countable paracompactness. Next, we drop countable para-
compactness of Theorem 4 instead of imposing a condition to set-valued map-
pings. In fact, the additional condition for set-valued mappings is that the values
of them has uniformly large diameters. For a subset $A$ of a metric space $(Y, d)$ ,
let diam $A= \sup\{d(y_{1}, y_{2})|y_{1}, y_{2}\in \mathcal{A}\}$ .
Theorem 15 ([16]). A $T_{1}$ -space $X$ is $\lambda$ -collectionwise normal if and only if for
every Banach space $Y$ with $w(Y)\leq\lambda$ , every $l.s.c$ . mapping $\varphi:Xarrow C_{c}(Y)$ with
$\inf\{diam\varphi(x)|x\in X\}>0$ admits a continuous selection $f:Xarrow Y$ such that
$f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .

We also have the following characterization of $\lambda- PF$-normal spaces.

Theorem 16 ([16]). A $T_{1}$ -space $X$ is $\lambda- PF$-normal if and only if for every
Banach space $Y$ with $w(Y)\leq\lambda$ , every l.s.c. mapping $\varphi$ : $Xarrow C_{c}(Y)$ with
$\inf\{diam\varphi(x)|x\in X\}>0$ admits a continuous selection $f:Xarrow Y$ such that
$f(x)\in$ wci $(\varphi(x))$ for each $x\in X$ .

Let $X$ be a topological space and $(Y, d)$ a metric space. A mapping $\varphi$ : $Xarrow 2^{Y}$

is said to be d-upper semicontinuous (d-u.s. $c$ . for short) if for each $x\in X$ and
$\epsilon>0$ , there exists a neighborhood $U$ of $x$ such that $\varphi(x’)\subset B(\varphi(x), \epsilon)$ for each
$x’\in U$ . A mapping $\varphi$ : $Xarrow 2^{Y}$ is called d-proximal continuous if $\varphi$ is l.s. $c$ . and
d-u.s. $c$ . If $\varphi$ : $Xarrow 2^{Y}$ is d-proximal continuous for some metric $d$ compatible
with the topology of $Y$ , then $\varphi$ is called proximal $\omega ntinuous$ . Note that all con-
tinuous mappings $f$ : $Xarrow(\mathcal{F}(Y), \tau_{V})$ and $f$ : $Xarrow(\mathcal{F}(Y), \tau_{H(d)})$ are proximal
continuous, where $\tau_{V}$ is the Vietoris topology on $\mathcal{F}(Y)$ and $\tau_{H(d)}$ is the topology
on $\mathcal{F}(Y)$ induced by the Hausdorff distance with respect to some compatible
metric $d$ of $Y$ (see [4, Section 2]). V. Gutev [4, Theorem 6.1] proved that for
every topological space $X$ and for every Banach space $Y$ , every proximal con-
tinuous mapping $\varphi$ : $Xarrow \mathcal{F}_{c}(Y)$ admits a continuous selection. For continuous
selections avoiding extreme points, we have the following.

Theorem 17 ([16]). Let $X$ be a topological space, $Y$ a Banach space and $\varphi$ :
$Xarrow \mathcal{F}_{c}(Y)$ a proximal continuous mapping. Then there exists a continuous
selection $f$ : $Xarrow Y$ of $\varphi$ such that $f(x)\in$ wci $(\varphi(x))$ whenever Card $\varphi(x)>1$ .

REFERENCES
[1] M. M. $\circ oban$ , Many-vdued mappings and Borel sets. II, Trans. Moscow Math. Soc. 23

(1970), 286-310.
[2] C. H. Dowker, On countably $para\omega mpact$ spaces, Canad. J. Math. 3 (1951), 219-224.
[3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

65



[4] V. Gutev, Weak factorization of continuous set-valued mappings, Topology Appl. 102
(2000), 33-51.

[5] V. Gutev, H. Ohta and K. Yamazaki, Selections and sandwich-like properties via semi-
$\omega ntinuous$ Banach-valued functions, J. Math. Soc. Japan 55 (2003), 499-521.

[6] T. Kand\^o, Characterization of topological spaces by some continuous functions, J. Math.
Soc. Japan 6 (1954), 45-54.

[7] M. Kat\v{e}tov, On real-valued functions in topological spaces, Itund. Math. 38 (1951), 85-91.
[8] M. Kat6tov, Extension of locally finite collections, Colloq. Math. 6 (1958), 145-151 (in

Russian).
$[9|$ L. L. Krajewski, On expanding locally finite collections, Canad. J. Math. 23 (1971), 58-68.

[10] E. Michael, Point-finite and locally finite coverings, Canad. J. Math. 7 (1955), 275-279.
[11] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[12] S. Nedev, Selection and factonzation theorems for set-valued mappings, Serdica 6 (1980),

291-317.
[13] J. C. Smith, Properties of expandable spaces, General topology and its relations to modem

analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971), Academia,
Prague, 1972, $405\triangleleft 10$

[14] J. C. Smith and L. L. Krajewski, Expandability and collectionwise normality, Ttans. Amer.
Math. Soc. 160 (1971), 437-451.

[15] T. Yamauchi, Continuous sdections avoiding extreme points, Topology Appl. (to appear).
[16] T. Yamauchi, The role of countable paracompactness for continuous selections avoiding

extreme points, preprint.

Department of Mathematics, Shimane University, Matsue, 690-8504, Japan
E-mail address: t-yamauchiOriko. shimane-u. ac. jp

66


