ON THE EXISTENCE OF CONTINUOUS SELECTIONS AVOIDING EXTREME POINTS

島根大学 総合理工学部 山内貴光 (Takamitsu Yamauchi) Interdisciplinary Faculty of Science and Engineering, Shimane University

Throughout this note, all spaces are assumed to be T_1 and λ stands for an infinite cardinal number. For undefined terminology, we refer to [3]. The purpose of this note is to introduce some results of [15] and [16].

Let X be a space and $(Y, \|\cdot\|)$ a Banach space. By 2^Y , we denote the set of all non-empty subsets of Y. For a mapping $\varphi : X \to 2^Y$, a mapping $f : X \to Y$ is called a *selection* if $f(x) \in \varphi(x)$ for each $x \in X$.

For $K \in \mathcal{F}_c(Y)$, a point $y \in K$ is called an *extreme point* if every open line segment containing y is not contained in K. For $K \in \mathcal{F}_c(Y)$, the *weak convex interior* wci(K) of K ([5]) is the set of all non-extreme points of K, that is,

wci(K) = { $y \in K \mid y = \delta y_1 + (1-\delta)y_2$ for some $y_1, y_2 \in K \setminus \{y\}$ and $0 < \delta < 1$ }.

Our concern of this note is to obtain theorems on continuous selections avoiding extreme points, which is motivated by Problem 3 below posed by V. Gutev, H. Ohta and K. Yamazaki [5].

1. A problem of Gutev, Ohta and Yamazaki

A Hausdorff space X is called *countably paracompact* if every countable open cover of X is refined by a locally finite open cover of X. Let **R** be the space of real numbers with the usual topology. The following insertion theorem due to C. H. Dowker [2] and M. Katětov [7] is fundamental in our study.

Theorem 1 (Dowker [2, Theorem 4], Katětov [7, Theorem 2]). A T_1 -space X is normal and countably paracompact if and only if for every upper semicontinuous function $g: X \to \mathbf{R}$ and every lower semicontinuous function $h: X \to \mathbf{R}$ with g(x) < h(x) for each $x \in X$, there exists a continuous function $f: X \to \mathbf{R}$ such that g(x) < f(x) < h(x) for each $x \in X$.

The cardinality of a set S is denoted by Card S. A T_1 -space X is called λ collectionwise normal if for every discrete collection $\{F_{\alpha} \mid \alpha \in A\}$ of closed subsets of X with Card $A \leq \lambda$, there exists a disjoint collection $\{G_{\alpha} \mid \alpha \in A\}$ of open subsets of X such that $F_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$. The space $c_0(\lambda)$ is the Banach space consisting of functions $s: D(\lambda) \to \mathbf{R}$, where $D(\lambda)$ is a set with Card $D(\lambda) = \lambda$, such that for each $\varepsilon > 0$ the set $\{\alpha \in D(\lambda) \mid |s(\alpha)| \geq \varepsilon\}$ is finite, where the linear operations are defined pointwise and $||s|| = \sup\{|s(\alpha)| \mid \alpha \in D(\lambda)\}$ for each $s \in c_0(\lambda)$. In order to connect insertion theorems with selection theorems, V. Gutev, H. Ohta and K. Yamazaki [5] introduced lower and upper semicontinuity of a mapping to the Banach space $c_0(\lambda)$ and, with the aid of these concepts, they proved sandwich-like characterizations of paracompactlike properties. Moreover, they introduced generalized $c_0(\lambda)$ -spaces for Banach spaces and established the following theorem. A mapping $\varphi : X \to 2^Y$ is called *lower semicontinuous* (*l.s.c.* for short) if for every open subset V of Y, the set $\varphi^{-1}[V] = \{x \in X \mid \varphi(x) \cap V \neq \emptyset\}$ is open in X. By $\mathcal{C}_c(Y)$ we denote the set of all non-empty compact convex subsets of Y and let $\mathcal{C}'_c(Y) = \mathcal{C}_c(Y) \cup \{Y\}$.

Theorem 2 (Gutev, Ohta and Yamazaki [5, Theorem 4.5]). A T_1 -space X is countably paracompact and λ -collectionwise normal if and only if for every generalized $c_0(\lambda)$ -space Y, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

Note that the "only if" part of Theorem 2 implies that of Theorem 1. By w(Y) we denote the weight of a space Y. Since generalized $c_0(\lambda)$ -space is a special Banach space with $w(Y) \leq \lambda$, Gutev, Ohta and Yamazaki [5] posed the following problem.

Problem 3 (Gutev, Ohta and Yamazaki [5, Problem 4.7]). Can the phrase "every generalized $c_0(\lambda)$ -space Y" in Theorem 2 be replaced with "every Banach space Y with $w(Y) \leq \lambda$ "?

It is proved in [15] that the answer of Problem 3 is affirmative.

Theorem 4 ([15]). A T_1 -space X is countably paracompact and λ -collectionwise normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

In particular, we have the following.

Corollary 5. A T_1 -space X is countably paracompact and normal if and only if for every separable Banach space Y, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

Corollary 6. A T_1 -space X is countably paracompact and collectionwise normal if and only if for every Banach space Y, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

A Hausdorff space X is called λ -paracompact if every open cover \mathcal{U} of X with $\operatorname{Card} \mathcal{U} \leq \lambda$ is refined by a locally finite open cover of X. The set of all non-empty closed convex subsets of a Banach space Y is denoted by $\mathcal{F}_c(Y)$. The following theorem is a λ -paracompact analogue of Theorems 2 and 4.

Theorem 7 ([15]). A T_1 -space X is normal and λ -paracompact if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to \mathcal{F}_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

Thus we have the following variation of [11, Theorem 3.2''].

Corollary 8. A T_1 -space X is paracompact if and only if for every Banach space Y, every l.s.c. mapping $\varphi : X \to \mathcal{F}_c(Y)$ such that $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

2. The role of countable paracompactness for continuous selections avoiding extreme points

The following selection theorem is due to E. Michael [11] and S. Nedev [12].

Theorem 9 (E. Michael [11, Theorem 3.2'], S. Nedev [12, Theorem 4.2]). A T_1 -space X is λ -collectionwise normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ admits a continuous selection.

Although the existence itself of a continuous selection is guaranteed by Theorem 9, the assumption in Theorem 4 that X is countably paracompact can not be dropped. Suggested by this fact, we are next concerned with the role of countable paracompactness to obtain a continuous selections avoiding extreme points. Our study has two directions; one is to obtain an l.s.c. set-valued selection avoiding extreme points under a separation axiom of X weaker than λ -collectionwise normality, another is to drop countable paracompactness instead of imposing a condition to set-valued mappings.

2.1. L.s.c. set-valued selections avoiding extreme points. For a mapping $\varphi: X \to 2^Y$, a mapping $\theta: X \to 2^Y$ is called a set-valued selection if $\theta(x) \subset \varphi(x)$ for each $x \in X$. A topological space X is called *countably metacompact* if every countable open cover \mathcal{U} of X is refined by a point-finite open cover of X. We have the following characterization of countably metacompact spaces without any separation axiom.

Theorem 10 ([16]). A topological space X is countably metacompact if and only if for every normed space Y, every l.s.c. mapping $\varphi : X \to C_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits an l.s.c. set-valued selection $\phi : X \to C_c(Y)$ such that $\phi(x) \subset \operatorname{wci}(\varphi(x))$ for each $x \in X$.

If the mappings $\varphi, \phi: X \to \mathcal{C}_c(Y)$ can be replaced with mappings $\varphi, \phi: X \to \mathcal{C}'_c(Y)$, then Theorem 4 follows from Theorem 9 and the replaced statement. But the author does not know whether Theorem 10 remains valid even if the mappings $\varphi, \phi: X \to \mathcal{C}_c(Y)$ are replaced with $\varphi, \phi: X \to \mathcal{C}'_c(Y)$. A topological space X is almost λ -expandable ([9], [14]) if for every locally finite collection $\{F_{\alpha} \mid \alpha \in A\}$ of closed subsets of X with Card $A \leq \lambda$, there exists a point-finite collection $\{U_{\alpha} \mid \alpha \in A\}$ of open subsets of X such that $F_{\alpha} \subset U_{\alpha}$ for each $\alpha \in A$. Note that every countably paracompact λ -collectionwise normal space is almost λ -expandable ([8]), and every almost λ -expandable space is countably metacompact ([9, Theorem 2.6]). For compact-valued l.s.c. setvalued selections of mappings $\varphi: X \to C'_c(Y)$, we have the following.

Theorem 11 ([16]). A normal space X is almost λ -expandable if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits an l.s.c. set-valued selection $\phi : X \to C_c(Y)$ such that $\phi(x) \subset \operatorname{wci}(\varphi(x))$ for each $x \in X$.

A T_1 -space X is λ -PF-normal if every point-finite open cover is normal. A T_1 -space X is PF-normal if X is λ -PF-normal for each infinite cardinal λ . PF-normal spaces are first investigated by E. Michael [10], and the name "PF-normal" is due to J. C. Smith [13]. Note that every λ -collectionwise normal space is λ -PF-normal and ω -PF-normality coincides with the normality, where ω is the first infinite cardinal number. T. Kandô [6] and S. Nedev [12] proved the following selection theorem for λ -PF-normal spaces (PF-normal spaces are called pointwise-paracompact and normal in [6], while λ -PF-normal spaces are called λ -pointwise- \aleph_0 -paracompact and normal in [12]).

Theorem 12 (T. Kandô [6, Theorem IV], S. Nedev [12, Theorem 4.1]). A T_1 -space X is λ -PF-normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C_c(Y)$ admits a continuous selection.

A space is countably paracompact and λ -collectionwise normal if and only if it is almost λ -expandable and λ -PF-normal. Thus Theorem 4 follows from Theorems 11 and Theorem 12. Also, by Theorems 10 and 12, we have the following.

Theorem 13 ([16]). A T_1 -space X is countably paracompact and λ -PF-normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi: X \to C_c(Y)$ with $\operatorname{Card} \varphi(x) > 1$ for each $x \in X$ admits a continuous selection $f: X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$.

A topological space X is called λ -metacompact if every open cover \mathcal{U} of X with $\operatorname{Card} \mathcal{U} \leq \lambda$ is refined by a point-finite open cover of X. M. M. Čoban [1, Theorem 6.1] characterized λ -metacompactness in terms of l.s.c. set-valued selections. For λ -metacompact analogue of Theorem 11, we have the following.

Theorem 14 ([16]). A regular space X is λ -metacompact if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to \mathcal{F}_c(Y)$ with Card $\varphi(x) > 1$ for each $x \in X$ admits an l.s.c. set-valued selection $\phi: X \to C_c(Y)$ such that $\phi(x) \subset \operatorname{wci}(\varphi(x))$ for each $x \in X$.

2.2. Dropping countable paracompactness. Next, we drop countable paracompactness of Theorem 4 instead of imposing a condition to set-valued mappings. In fact, the additional condition for set-valued mappings is that the values of them has uniformly large diameters. For a subset A of a metric space (Y, d), let diam $A = \sup\{d(y_1, y_2) \mid y_1, y_2 \in A\}$.

Theorem 15 ([16]). A T_1 -space X is λ -collectionwise normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C'_c(Y)$ with $\inf\{\operatorname{diam} \varphi(x) \mid x \in X\} > 0$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

We also have the following characterization of λ -PF-normal spaces.

Theorem 16 ([16]). A T_1 -space X is λ -PF-normal if and only if for every Banach space Y with $w(Y) \leq \lambda$, every l.s.c. mapping $\varphi : X \to C_c(Y)$ with $\inf\{\operatorname{diam} \varphi(x) \mid x \in X\} > 0$ admits a continuous selection $f : X \to Y$ such that $f(x) \in \operatorname{wci}(\varphi(x))$ for each $x \in X$.

Let X be a topological space and (Y, d) a metric space. A mapping $\varphi : X \to 2^Y$ is said to be *d-upper semicontinuous* (d-u.s.c. for short) if for each $x \in X$ and $\varepsilon > 0$, there exists a neighborhood U of x such that $\varphi(x') \subset B(\varphi(x), \varepsilon)$ for each $x' \in U$. A mapping $\varphi : X \to 2^Y$ is called *d-proximal continuous* if φ is l.s.c. and *d*-u.s.c. If $\varphi : X \to 2^Y$ is *d*-proximal continuous for some metric *d* compatible with the topology of Y, then φ is called *proximal continuous*. Note that all continuous mappings $f : X \to (\mathcal{F}(Y), \tau_V)$ and $f : X \to (\mathcal{F}(Y), \tau_{H(d)})$ are proximal continuous, where τ_V is the Vietoris topology on $\mathcal{F}(Y)$ and $\tau_{H(d)}$ is the topology on $\mathcal{F}(Y)$ induced by the Hausdorff distance with respect to some compatible metric *d* of *Y* (see [4, Section 2]). V. Gutev [4, Theorem 6.1] proved that for every topological space X and for every Banach space Y, every proximal continuous mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection. For continuous selections avoiding extreme points, we have the following.

Theorem 17 ([16]). Let X be a topological space, Y a Banach space and φ : $X \to \mathcal{F}_c(Y)$ a proximal continuous mapping. Then there exists a continuous selection $f: X \to Y$ of φ such that $f(x) \in wci(\varphi(x))$ whenever $Card \varphi(x) > 1$.

REFERENCES

- M. M. Čoban, Many-valued mappings and Borel sets. II, Trans. Moscow Math. Soc. 23 (1970), 286-310.
- [2] C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

- [4] V. Gutev, Weak factorization of continuous set-valued mappings, Topology Appl. 102 (2000), 33-51.
- [5] V. Gutev, H. Ohta and K. Yamazaki, Selections and sandwich-like properties via semicontinuous Banach-valued functions, J. Math. Soc. Japan 55 (2003), 499-521.
- [6] T. Kandô, Characterization of topological spaces by some continuous functions, J. Math. Soc. Japan 6 (1954), 45-54.
- [7] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91.
- [8] M. Katětov, Extension of locally finite collections, Colloq. Math. 6 (1958), 145-151 (in Russian).
- [9] L. L. Krajewski, On expanding locally finite collections, Canad. J. Math. 23 (1971), 58-68.
- [10] E. Michael, Point-finite and locally finite coverings, Canad. J. Math. 7 (1955), 275-279.
- [11] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
- [12] S. Nedev, Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291-317.
- [13] J. C. Smith, Properties of expandable spaces, General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971), Academia, Prague, 1972, 405-410
- [14] J. C. Smith and L. L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc. 160 (1971), 437–451.
- [15] T. Yamauchi, Continuous selections avoiding extreme points, Topology Appl. (to appear).
- [16] T. Yamauchi, The role of countable paracompactness for continuous selections avoiding extreme points, preprint.

Department of Mathematics, Shimane University, Matsue, 690-8504, Japan E-mail address: t_yamauchi@riko.shimane-u.ac.jp