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ON THE EXISTENCE OF CONTINUOUS SELECTIONS
AVOIDING EXTREME POINTS
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Shimane University

Throughout this note, all spaces are assumed to be 7} and X stands for an
infinite cardinal number. For undefined terminology, we refer to [3]. The purpose
of this note is to introduce some results of [15] and [16].

Let X be a space and (Y, || - ||) a Banach space. By 2, we denote the set of
all non-empty subsets of Y. For a mapping ¢ : X — 2¥, a mapping f: X - Y
is called a selection if f(x) € ¢(z) for each z € X.

For K € F.(Y), a point y € K is called an extreme point if every open line
segment containing y is not contained in K. For K € F.(Y), the weak conver
interior wci(K) of K ([5]) is the set of all non-extreme points of K, that is,

wei(K) = {y € K | y = éy;+(1—6)y, for some y1,y, € K \ {y} and 0 < 6 < 1}.

Our concern of this note is to obtain theorems on continuous selections avoiding
extreme points, which is motivated by Problem 3 below posed by V. Gutev, H.
Ohta and K. Yamazaki [5].

1. A PROBLEM OF GUTEV, OHTA AND YAMAZAKI

A Hausdorff space X is called countably paracompact if every countable open
cover of X is refined by a locally finite open cover of X. Let R be the space of
real numbers with the usual topology. The following insertion theorem due to
C. H. Dowker [2] and M. Katétov [7] is fundamental in our study.

Theorem 1 (Dowker [2, Theorem 4], Katétov [7, Theorem 2]). A T;-space X is
normal and countably paracompact if and only if for every upper semicontinuous
function g : X — R and every lower semicontinuous function h : X = R with
g(x) < h(z) for each z € X, there ezists a continuous function f : X — R such
that g(x) < f(z) < h(z) for each z € X.

The cardinality of a set S is denoted by CardS. A Ti-space X is called A-
collectionwise normal if for every discrete collection {F, | & € A} of closed
subsets of X with Card A < A, there exists a disjoint collection {G, | o € A} of
open subsets of X such that F, C G, for each o € A. The space cy()) is the
Banach space consisting of functions s : D(A) — R, where D()) is a set with
Card D(A) = A, such that for each € > 0 the set {a& € D()) | |s(a)| > €} is
finite, where the linear operations are defined pointwise and ||s|| = sup{|s(e)| |
a € D(A)} for each s € ¢y(A). In order to connect insertion theorems with
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selection theorems, V. Gutev, H. Ohta and K. Yamazaki [5] introduced lower and
upper semicontinuity of a mapping to the Banach space ¢o()) and, with the aid
of these concepts, they proved sandwich-like characterizations of paracompact-
like properties. Moreover, they introduced generalized cy())-spaces for Banach
spaces and established the following theorem. A mapping ¢ : X — 2Y is called
lower semicontinuous (l.s.c. for short) if for every open subset V of Y, the set
e V] ={r € X | ¢(z)NV # 0} is open in X. By C.(Y) we denote the set of
all non-empty compact convex subsets of Y and let C(Y) = C.(Y) U {Y'}.

Theorem 2 (Gutev, Ohta and Yamazaki [5, Theorem 4.5]). A Ti-space X is
countably paracompact and X-collectionwise normal if and only if for every gener-
alized cy(N)-space Y, every l.s.c. mapping ¢ : X — CL(Y) with Cardp(z) > 1 for
each x € X admits a continuous selection f : X — Y such that f(z) € wci(p(z))
for eachz € X.

Note that the “only if” part of Theorem 2 implies that of Theorem 1. By
w(Y) we denote the weight of a space Y. Since generalized co(A)-space is a
special Banach space with w(Y) < A, Gutev, Ohta and Yamazaki [5] posed the
following problem.

Problem 3 (Gutev, Ohta and Yamazaki [5, Problem 4.7]). Can the phrase
“every generalized co(\)-space Y7 in Theorem 2 be replaced with “every Banach
space Y with w(Y) < A”?

It is proved in [15] that the answer of Problem 3 is affirmative.

Theorem 4 ([15]). A T1-space X is countably paracompact and A-collectionwise
normal if and only if for every Banach space Y with w(Y) < A, every ls.c.
mapping ¢ : X — C.(Y) with Cardp(z) > 1 for each x € X admits a continuous
selection f : X — Y such that f(z) € wci(p(x)) for each z € X.

In particular, we have the following.

Corollary 5. A T;-space X is countably paracompact and normal if and only if
for every separable Banach space Y, every l.s.c. mapping ¢ : X — CL(Y) with
Cardp(z) > 1 for each z € X admits a continuous selection f : X — Y such
that f(x) € wci(p(z)) for each z € X.

Corollary 6. A T)-space X is countably paracompact and collectionwise normal
if and only if for every Banach space Y, every l.s.c. mapping ¢ : X — C.(Y)
with Cardp(z) > 1 for each x € X admits a continuous selection f : X =Y
such that f(z) € wci(p(z)) for each x € X.

A Hausdorff space X is called A-paracompact if every open cover Y of X with
CardU < Misrefined by a locally finite open cover of X. The set of all non-empty
closed convex subsets of a Banach space Y is denoted by F.(Y). The following
theorem is a A-paracompact analogue of Theorems 2 and 4.



Theorem 7 ([15]). A Ti-space X is normal and A-paracompact if and only if
for every Banach space Y with w(Y') < A, every l.s.c. mapping ¢ : X — Fo(Y)
with Card(z) > 1 for each z € X admits a continuous selection f : X — Y
such that f(z) € wci(e(z)) for each z € X.

'Thus we have the following variation of [11, Theorem 3.2").

Corollary 8. A Ty-space X is paracompact if and only if for every Banach space
Y, every l.s.c. mapping ¢ : X — F.(Y) such that Cardp(x) > 1 for eachz € X
admits a continuous selection f : X — Y such that f(z) € wci(p(z)) for each
zeX.

2. THE ROLE OF COUNTABLE PARACOMPACTNESS FOR CONTINUOUS
SELECTIONS AVOIDING EXTREME POINTS

The following selection theorem is due to E. Michael [11] and S. Nedev [12].

Theorem 9 (E. Michael {11, Theorem 3.2'], S. Nedev [12, Theorem 4.2]). A T;-
space X is A-collectionwise normal if and only if for every Banach space Y with
w(Y) <A, every l.s.c. mapping ¢ : X — CL(Y) admits a continuous selection.

Although the existence itself of a continuous selection is guaranteed by Theo-
rem 9, the assumption in Theorem 4 that X is countably paracompact can not
be dropped. Suggested by this fact, we are next concerned with the role of count-
able paracompactness to obtain a continuous selections avoiding extreme points.
Our study has two directions; one is to obtain an l.s.c. set-valued selection avoid-
ing extreme points under a separation axiom of X weaker than A-collectionwise
normality, another is to drop countable paracompactness instead of imposing a
condition to set-valued mappings.

2.1. L.s.c. set-valued selections avoiding extreme points. For a mapping
¢ : X — 2Y, amapping 6 : X — 2Y is called a set-valued selection if 6(zx) C o(z)
for each z € X. A topological space X is called countably metacompact if every
countable open cover U of X is refined by a point-finite open cover of X. We
have the following characterization of countably metacompact spaces without
any separation axiom. '

Theorem 10 ([16]). A topological space X is countably metacompact if and
only if for every normed space Y, every l.s.c. mapping ¢ : X — C.(Y) with
Cardp(z) > 1 for each z € X admits an Ls.c. set-valued selection ¢ : X — C.(Y)
such that ¢(z) C wci(p(z)) for each z € X.

If the mappings ¢, ¢ : X — C.(Y) can be replaced with mappings ¢, ¢ : X —
C.(Y), then Theorem 4 follows from Theorem 9 and the replaced statement.
But the author does not know whether Theorem 10 remains valid even if the
mappings ¢, ¢ : X — C,(Y) are replaced with ¢, ¢ : X — C.(Y).
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A topological space X is almost A-expandable ([9], [14]) if for every locally
finite collection {F, | a € A} of closed subsets of X with Card A < A, there
exists a point-finite collection {U, | @ € A} of open subsets of X such that
F, c U, for each o € A. Note that every countably paracompact A-collectionwise
normal space is almost A-expandable ([8]), and every almost A-expandable space
is countably metacompact ([9, Theorem 2.6]). For compact-valued l.s.c. set-
valued selections of mappings ¢ : X — C.(Y'), we have the following.

Theorem 11 ([16]). A normal space X is almost A-expandable if and only if for
every Banach space Y with w(Y') < A, every l.s.c. mapping ¢ : X — CL(Y') with
Cardp(z) > 1 for each x € X admits an l.s.c. set-valued selection ¢ : X — C.(Y)
such that ¢(z) C wci(p(z)) for each z € X.

A Ti-space X is A-PF-normal if every point-finite open cover is normal. A
Ti-space X is PF-normal if X is A-PF-normal for each infinite cardinal A. PF-
normal spaces are first investigated by E. Michael [10], and the name “PF-
normal” is due to J. C. Smith [13]. Note that every A-collectionwise normal
space is A-PF-normal and w-PF-normality coincides with the normality, where
w is the first infinite cardinal number. T. Kandd [6] and S. Nedev [12] proved
the following selection theorem for A-PF-normal spaces (PF-normal spaces are
called pointwise-paracompact and normal in [6], while A-PF-normal spaces are
called A-pointwise-Ro-paracompact and normal in [12]).

Theorem 12 (T. Kandd [6, Theorem IV], S. Nedev [12, Theorem 4.1]). A T;-
space X is A-PF-normal if and only if for every Banach space Y with w(Y) < A,
every l.s.c. mapping ¢ : X — C.(Y') admits a continuous selection.

A space is countably paracompact and A-collectionwise normal if and only
if it is almost A-expandable and A-PF-normal. Thus Theorem 4 follows from
Theorems 11 and Theorem 12. Also, by Theorems 10 and 12, we have the
following.

Theorem 13 ([16]). A Ti-space X is countably paracompact and A-PF-normal
if and only if for every Banach space Y with w(Y) < A, every l.s.c. mapping
¢ : X — C(Y) with Cardp(z) > 1 for each x € X admits a continuous selection
f: X =Y such that f(z) € wci(p(z)).

A topological space X is called A-metacompact if every open cover U of X
with CardY{ < ) is refined by a point-finite open cover of X. M. M. Coban
[1, Theorem 6.1] characterized A-metacompactness in terms of l.s.c. set-valued
selections. For A-metacompact analogue of Theorem 11, we have the following.

Theorem 14 ([16]). A regular space X is A-metacompact if and only if for
every Banach space Y with w(Y) < A, every l.s.c. mapping ¢ : X — F(Y) with



Card p(z) > 1 for each x € X admits an l.s.c. set-valued selection ¢ : X — Co(Y)
such that ¢(z) C wei(p(z)) for each z € X.

2.2. Dropping countable paracompactness. Next, we drop countable para-
compactness of Theorem 4 instead of imposing a condition to set-valued map-
pings. In fact, the additional condition for set-valued mappings is that the values
of them has uniformly large diameters. For a subset A of a metric space (Y, d),
let diam A = sup{d(y1,y2) | y1, %2 € A}.

Theorem 15 ([16]). A Ti-space X is A-collectionwise normal if and only if for
every Banach space Y with w(Y) < A, every l.s.c. mapping ¢ : X — CL(Y) with
inf{diam¢(z) | z € X} > 0 admits a continuous selection f : X — Y such that
f(z) € wei(p(z)) for each z € X.

We also have the following characterization of A-PF-normal spaces.

Theorem 16 ([16]). A Ti-space X is A-PF-normal if and only if for every
Banach space Y with w(Y) < A, every lLs.c. mapping ¢ : X — C.(Y) with
inf{diam(z) | z € X} > 0 admits a continuous selection f : X — Y such that
f(z) € wei(p(z)) for each z € X.

Let X be a topological space and (Y, d) a metric space. A mapping ¢ : X — 2Y
is said to be d-upper semicontinuous (d-u.s.c. for short) if for each z € X and
€ > 0, there exists a neighborhood U of z such that ¢(z') C B(p(z),¢) for each
z' € U. A mapping ¢ : X — 2Y is called d-prozimal continuous if ¢ is l.s.c. and
d-us.c. If ¢ : X — 2Y is d-proximal continuous for some metric d compatible
with the topology of Y, then ¢ is called prozimal continuous. Note that all con-
tinuous mappings f : X — (F(Y),7v) and f : X — (F(Y), 7h()) are proximal
continuous, where 7y is the Vietoris topology on F(Y') and 7g(q) is the topology
on F(Y) induced by the Hausdorff distance with respect to some compatible
metric d of Y (see [4, Section 2]). V. Gutev [4, Theorem 6.1] proved that for
every topological space X and for every Banach space Y, every proximal con-
tinuous mapping ¢ : X = F,(Y') admits a continuous selection. For continuous
selections avoiding extreme points, we have the following.

Theorem 17 ([16]). Let X be a topological space, Y a Banach space and ¢ :
X — F.(Y) a prozimal continuous mapping. Then there erists a continuous
selection f : X =Y of ¢ such that f(z) € wci(p(x)) whenever Cardp(z) > 1.
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