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1. INTRODUCTION
Let $H$ be a Hilbert space and let $\{C_{i}\}$ be a family of closed convex subsets of $H$

such that $F= \bigcap_{:\in r}C_{i}$ is nonempty. Then the convex feasibility problem is to flnd
an element of $F$ by using the metric projections $P_{*}$. from $H$ onto $C_{\}\cdot$ . Each $P_{*}$. is a
nonexpansive mapping, that is,

$\Vert P_{i}x-P_{2}y\Vert\leqq||x-y\Vert$

for all $x,y\in H$ . We also know that $C_{i}=F(P_{t})$ , where $F(P:)$ denotes the set of fixed
points of $P_{*}\cdot$ . Thus, the convex feasibility problem in the setting of Hilbert spaces is
reduced the problem of finding a common fixed point of a given finite family of non-
expansive mappings. Matsushita and Takahashi [12, 13, 14] introduced the notion of
relatively nonexpansive mapping (see [6]). They also obtained weak and strong con-
vergence theorems to approximate a fixed point of a relatively nonexpansive mapping.

In this paper, we introduce an iterative process of finding a common fixed point of
a finite family of relatively nonexpansive mappings in a Banach space by the hybrid
method which is used in the mathematical programming and then prove a strong
convergence theorem for the family in a Banach space (see [13, 16]). Further, we also
prove weak convergence theorems for the family by an iterative process. Using the
obtained results, we study the convex feasibility problem.

2. PRELIMINARIES AND LEMMAS

Throughout this paper, $E$ is a real Banach space and $E^{*}$ is the dual space of $E$ . We
denote by $\langle y,$ $x^{*})$ the value of $x^{*}\in E^{*}$ at $y\in E$ . We write $x_{n}arrow x$ $( or w-\lim_{narrow\infty}x_{n}=x)$

to indicate that the sequence $\{x_{n}\}$ of vectors converges weakly to $x$ . Similarly, $x$. $arrow x$

$( or \lim_{narrow\infty}x_{n}=x)$ will symbolize strong convergence. In addition, we denote by $\mathbb{R}$ and
$\mathbb{N}$ the sets of real numbers and all nonnegative integers, respectively.

A Banach space $E$ is said to be strictly convex if $\frac{||x+y\Vert}{2}<1$ for $x,y\in E$ with $\Vert x||=$

$\Vert y\Vert=1$ and $x\neq y$ . In a strictly convex Banach space, we have that if $||x\Vert=\Vert y\Vert=$
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$\Vert(1-\lambda)x+\lambda y\Vert$ for $x,$ $y\in E$ and $\lambda\in(0,1)$ , then $x=y$ . For every real number $\epsilon$ with
$0\leq\epsilon\leq 2$ , we define the modulus $\delta(\epsilon)$ of convexity of $E$ by

$\delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}$ : $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $\Vert x-y\Vert\geq\epsilon\}$ .

A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$ . It is
well-known that a uniformly convex Banach space is reflexive and strictly convex. A
closed convex subset $C$ of a Banach space $E$ is said to have normal structure if for
each bounded closed convex subset $K$ of $C$ which contains at least two points, there
exists an element of $K$ which is not a diametral point of $K$ . It is well-known that a
closed convex subset of a uniformly convex Banach space has normal structure and a
compact convex subset of a Banach space has normal structure. The following result
was proved in [7].

Theorem 2.1. Let $E$ be a reflexive Banach space and let $C$ be a nonempty bounded
closed convex subset of $E$ which has normal structure. Let $T$ be a nonexpansive
mapping of $C$ into itself. Then, $F(T)$ is nonempty.

The multi-valued mapping $J$ from $E$ into $E^{\cdot}$ defined by

$J(x)=\{x\in E^{*} : \langle x,x^{s}\rangle=\Vert x||^{2}=||x^{*}||^{2}\}$ for every $x\in E$

is called the duality mapping of $E$ . From the Hahn-Banach theorem, we see that
$J(x)\neq\emptyset$ for all $x\in E$ . A Banach space $E$ is said to be smooth if

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$

exists for each $x$ and $y$ in $S_{1}$ , where $S_{1}=\{u\in E : ||u\Vert=1\}$ . The norm of $E$ is
said to be uniformly G\^ateaux differentiable if for each $y$ in $S_{1}$ , the limit is attained
uniformly for $x$ in $S_{1}$ . We know that if $E$ is smooth, then the duality mapping is
single-valued and norm to weak star continuous and that if the norm of $E$ is uniformly
G\^ateaux differentiable, then the duality mapping is single-valued and norm to weak
star, uniformly continuous on each bounded subset of $E$ .

Let $E$ be a smooth, strictly convex and reflexive Banach space, let $J$ be the duality
mapping from $E$ into $E^{\cdot}$ , and let $C$ be a nonempty closed convex subset of $E$ . Define
the real valued function $\phi$ by

$\phi(y, x)=\Vert y||^{2}-2\langle y,$ $Jx\rangle+\Vert x\Vert^{2}$

for all $x,y\in E$ . Following Alber $[1|$ , the generalized projection $P_{C}$ from $E$ onto $C$ is
defined by

$P_{C}x= \arg\min_{y\in C}\phi(y,x)$

for all $x\in E$ . If $E$ is a Hilbert space, we have that $\phi(y, x)=\Vert y-x\Vert^{2}$ for all $y,x\in E$

and hence $P_{C}$ is reduced to the metric projection. We know the following lemma
concerning generalized projections.

68



Lemma 2.2 ([1, $8|)$ . Let $E$ be a smooth, strictly convex and reflexive Banach space and
let $C$ be a nonempty closed convex subset of $E$ . Let $P_{C}$ be the generalized projection
from $E$ onto $C$ . Then,

$\phi(x, P_{C}y)+\phi(P_{C}y,y)\leq\phi(x,y)$

for all $x\in C$ and $y\in E$ .
Lemma 2.3 ([1, $8|)$ . Let $E$ be a smooth, strictly convex and reflexive Banach space
and let $C$ be a nonempty closed convex subset of $E$ . Let $P_{C}$ be a generalized projection
from $E$ onto $C$ . Let $x\in E$ , and let $z\in C$ . Then, $z=P_{C}x$ is equivalent to

$\langle y-z,$ $Jx-Jz\rangle\leq 0$

for all $y\in C$ .
We also know the following four lemmas.

Lemma 2.4 ([8]). Let $E$ be a smooth and uniformly convex Banach space and let $\{x_{n}\}$

and $\{y_{n}\}$ be sequences in $E$ such that either $\{x_{n}\}$ or $\{y_{n}\}$ is bounded. If $\phi(x_{n}, y_{n})=0$ ,
then $\lim_{narrow\infty}\Vert x_{n}-y_{n}\Vert=0$ .

Lemma 2.5 ([8]). Let $E$ be a smooth and uniformly convex Banach space and let $r>0$ .
Then, there exists a strictly increasing, continuous and convex function $g$ : $[0,2r|arrow \mathbb{R}$

such that $g(O)=0$ and $g(||x-y||)\leq\phi(x,y)$ for all $x,$ $y\in B_{f}=\{z\in E:\Vert z\Vert\leq r\}$ .
Lemma 2.6 ([22, 23, 24]). Let $E$ be a uniformly convex Banach space and let $r>0$ .
Then, there exists a strictly increasing, continuous and convex function $g$ : $[0,2r|arrow \mathbb{R}$

such that $g(O)=0$ and
$||tx+(1-t)y\Vert^{2}\leq t\Vert x\Vert^{2}+(1-t)\Vert y||^{2}-t(1-t)g(\Vert x-y\Vert)$

for all $x,y\in B_{f}$ and $t\in[0,1|$ .
Lemma 2.7 ([9]). Let $E$ be a smooth, strictly convex and reflexive Banach space, let
$z\in E$ and let $\{t_{i}\}\subset(0,1)$ with $\sum_{=1}^{m}t_{i}=1$ . If $\{x_{i}\}_{=1}^{m}$ is a finite set in $E$ such that

$\phi(z,$ $J^{-1}( \sum_{j=1}^{m}t_{j}Jx_{j}))=\phi(z, x_{i})$

for all $i\in\{1,2, \ldots,m\}$ , then $x_{1}=x_{2}=\ldots=x_{m}$ .
Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be a

nonempty closed convex subset of $E$ . Let $T$ be a mapping from $C$ into itself and let
$F(T)$ be the set of all fixed points of $T$ . Then, a point $z\in C$ is said to be an asymptotic
fixed point of $T$ (see [17]) if there exists a sequence $\{z_{n}\}$ in $C$ such that $z_{n}arrow z$ and
$\lim_{\mathfrak{n}arrow\infty}\Vert z_{n}-Tz_{n}\Vert=0$ . We denote the set of all asymptotic fixed points of $T$ by $\hat{F}(T)$ .
Following Matsushita and Takahashi [12, 13, 14], we say that $T:Carrow C$ is relatively
nonexpansive if the following conditions are satisfied:

(i) $F(T)$ is nonempty;
(ii) $\phi(u,Tx)\leq\phi(u,x)$ for each $u\in F(T)$ and $x\in C$ ;
(iii) $\hat{F}(T)=F(T)$ .
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A mapping $T$ : $Carrow C$ is called strongly relatively nonexpansive if $T$ is relatively
nonexpansive and $\phi(Tx_{n}, x_{n})arrow 0$ whenever $\{x_{n}\}$ is a bounded sequence in $C$ such
that $\phi(p, x_{n})-\phi(p, Tx_{n})arrow 0$ for some $p\in F(T)$ .

The following lemma was proved by Matsushita and Takahashi [14].

Lemma 2.8 ([14]). Let $E$ be a smooth, strictly convex and reflexive Banach space and
let $C$ be a nonempty closed convex subset of $E$ . Let $T$ be a relatively nonexpansive
mapping of $C$ into itself. Then, $F(T)$ is closed and convex.

We also know the following two lemmas.

Lemma 2.9 ([9, $10|)$ . Let $E$ be a uniformly convex Banach space whose norm is
uniformly G\^ateaux differentiable. Let $C$ be a nonempty closed convex subset of $E$

and let $S:Carrow C$ and $T:Carrow C$ be relatively nonexpansive mappings such that
$F(S)\cap F(T)\neq\emptyset$ . Suppose that $S$ or $T$ is strongly relatively nonexpansive. Then
$\hat{F}(ST)=F(ST)=F(S)\cap F(T)$ and $ST:Carrow C$ is relatively nonexpansive. Moreover,
if both $S$ and $T$ are strongly relatively nonexpansive, then $ST:Carrow C$ is also strongly
relatively nonexpansive.

Lemma 2.10 ([9, $10|)$ . Let $E$ be a uniformly convex and uniformly smooth Banach
space and let $C$ be a nonempty closed convex subset of $E$ . Let $P_{C}$ be the generalized
projection from $E$ onto $C$ . Let $S:Carrow C$ be a strongly relatively nonexpansive
mapping, let $T:Carrow C$ be a relatively nonexpansive mapping and let $U$ : $Carrow C$

be a mapping defined by $U=P_{C}J^{-1}(\lambda JS+(1-\lambda)JT)$ , where $\lambda\in(0,1)$ . Suppose
$F(S)\cap F(T)\neq\emptyset$ . Then $\hat{F}(U)=F(U)$ and $U$ is strongly relatively nonexpansive.

Let $C$ be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space $E$ . Let $T_{1},T_{2},$ $\ldots,T_{f}$ be mappings of $C$ into itself and let $\alpha_{1},\alpha_{2},$

$\ldots,$
$\alpha,$ ,

be a real numbers such that $0\leq\alpha_{i}\leq 1$ for every $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be the
generalized projection from $E$ onto $C$ . Then, Takahashi [20] defined a mapping $W$ of
$C$ into itself as follows:

$U_{1}=P_{C}J^{-1}(\alpha_{1}JT_{1}+(1-\alpha_{1})J)$ ,
$U_{2}=P_{C}J^{-1}(\alpha_{2}JT_{2}U_{1}+(1-\alpha_{2})J)$ ,

: (1)
$U_{r-1}=P_{C}J^{-1}(\alpha_{t-1}JT_{r-1}U_{r-2}+(1-\alpha_{r-1})J)$ ,

$W=U_{f}=P_{C}J^{-1}(\alpha_{f}JT_{f}U_{r-1}+(1-\alpha,.)J)$ .

Such a mapping $W$ is called the W-mapping generated by $P_{C},$ $T_{n},T_{n-1},$ $\ldots,T_{1}$ and
$\alpha_{n},$ $\alpha_{n-1},$ $\ldots,\alpha_{1}$ . Using Lemmas 2.9 and 2.10, we obtain the following three lemmas.

Lemma 2.11. Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed convex subset of $E$ . Let $T_{1},T_{2},$ $\ldots,T_{f}$ be relatively nonexpansive
mappings of $C$ into itself such that $\bigcap_{*=1}^{f}F(T_{l})\neq\emptyset$ and let $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha$. be a real

numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be the generalized
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projection from $E$ onto $C$ . Let $U_{1},$ $U_{2},$ $U_{3},$
$\ldots$ , $U_{r-1}$ and $W$ be the mappings defined by

(1). Let $k\in\{1,2, \ldots,r\}$ . Then,

$\phi(u, Wx)\leq\phi(u,x)$ and $\phi(u, U_{k}x)\leq\phi(u,x)$

for all $u \in\bigcap_{i=1}^{r}F(T_{1})$ and $x\in C$ .
Lemma 2.12. Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed convex subset of $E$ . Let $T_{1},T_{2},$ $\ldots,T_{f}$ be relatively nonexpansive
mappings of $C$ into itself such that $\bigcap_{i=1}^{t}F(T_{1})\neq\emptyset$ and let $\alpha_{1},\alpha_{2},$ $\ldots,\alpha$, be real
numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be the generalized
projection from $E$ onto $C$ . Let $W$ be the W-mapping of $C$ into itself generated by
$P_{C},T_{1},T_{2},$ $\ldots,T_{r}$ and $\alpha_{1},$ $\alpha_{2},$ $\ldots,a,$ . Then, $F(W)= \bigcap_{i=1}^{r}F(T_{i})$ .
Lemma 2.13. Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed convex subset of $E$ . Let $T_{1},T_{2},$ $\ldots,T$, be relatively nonexpansive
mappings of $C$ into itself such that $F= \bigcap_{i=1}^{r}F(T_{*}\cdot)\neq\emptyset$ and let $\alpha_{1},$ $\alpha_{2},$ $\ldots,\alpha_{r}$ be real
numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be the generalized
projection from $E$ onto $C$ . Let $U_{1},$ $U_{2},$ $U_{3},$

$\ldots,$
$U_{r-1}$ and $W$ be the the mapping defined

by (1). Then, for each $k\in\{1,2, \ldots, r\},$ $T_{k}U_{k-1}$ and $U_{k}$ are relatively nonexpansive
mapping, where $U_{0}=I$ .

3. STRONG CONVERGENCE THEOREMS
In this section, we study an iterative process of finding common fixed points of a

family of relatively nonexpansive mappings by the hybrid method in the mathematical
programming (see also [15, 16, 18, 19]). Let $C$ be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space $E$ . Let $T_{1},$ $T_{2},$

$\ldots,$
$T_{r}$ be relatively

nonexpansive mappings of $C$ into itself such that $\bigcap_{=1}^{r}F(T_{i})\neq\emptyset$ and let $P_{C}$ be the
generalized projection from $E$ onto $C$ . Let $\alpha_{1},$ $\alpha_{2},$ $\ldots,\alpha_{r}$ be a real numbers such that
$0\leq\alpha_{i}\leq 1$ for every $i\in\{1,2, \ldots,r\}$ . Let $W$ be the W-mapping of $C$ into itself
generated by $P_{C},T_{1},T_{2},$ $\ldots,T_{f}$ and $\alpha_{1},\alpha_{2},$ $\ldots,\alpha_{f}$ . Consider the following iteration
scheme (see also [13]):

$x_{0}=x\in C$,
$C_{n}=\{z\in C:\phi(z, Wx_{n})\leq\phi(z,x_{n})\}$ ,
$Q_{n}=\{z\in C:\langle x_{n}-z, Jx-Jx_{n})\geq 0\}$ ,
$x_{n+1}=P_{C_{\hslash}\cap Q_{n}^{X}}$

for each $n\in \mathbb{N}$ , where $P_{C.\cap Q}$. is the generalized projection from $E$ onto $C_{n}\cap Q_{n}$ . Now,
we can prove a strong convergence theorem for a family of relatively nonexpansive
mappings.

Theorem 3.1 ([5]). Let $E$ be a uniformly smooth and uniformly convex Banach space
and let $C$ be a nonempty closed convex subset of $E$ . Let $T_{1},$ $T_{2},$ $\ldots,T_{f}$ be relatively non-
expansive mappings of $C$ into itself such that $F= \bigcap_{1=1}^{r}F(T_{i})\neq\emptyset$ and let $\alpha_{1},\alpha_{2},$ $\ldots,\alpha_{f}$

be real numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be the gener-
alized projection from $E$ onto $C$ . Let $W$ be the W-mapping of $C$ into itself generated
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by $P_{C},$ $T_{1},T_{2},$
$\ldots,$

$T_{f}$ and $\alpha_{1},$ $\alpha_{2},$
$\ldots,$

$\alpha_{f}$ . Suppose that $\{x_{n}\}$ is given by
$x_{0}=x\in C$ ,
$C_{n}=\{z\in C:\phi(z, Wx_{n})\leq\phi(z,x_{n})\}$ ,
$Q_{n}=\{z\in C:\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}$ ,
$x_{n+1}=P_{C_{\hslash}\cap Q_{\hslash}}(x)$

for each $n\in \mathbb{N}$ , where $P_{C_{n}\cap Q_{\hslash}}$ is the generalized projection from $E$ onto $C_{n}\cap Q_{n}$ . Then,
$\{x_{n}\}$ converges strongly to the element $P_{F}x$ , where $P_{F}$ is the generalized projection
from $E$ onto $F$ .

As a direct consequence of Theorem 3.1, we have the following.

Theorem 3.2 ([5]). Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex
subset of $H$ . Let $T_{1},T_{2},$ $\ldots,T_{f}$ be nonexpansive mappings of $C$ into itself such that
$F= \bigcap_{i=1}^{r}F(T_{i})\neq\emptyset$ and let $\alpha_{1},\alpha_{2},$

$\ldots,$
$\alpha_{f}$ be real numbers such that $0<\alpha_{i}<1$

for each $i\in\{1,2, \ldots,r\}$ . Let $W$ be the W-mapping of $C$ into itself generated by
$T_{1},T_{2},$

$\ldots,$
$T_{f}$ and $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{r}$ . Consider the following iteration scheme:

$x_{0}=x\in C$,
$C_{n}=\{z\in C:\phi(z, Wx_{n})\leq\phi(z,x_{n})\}$ ,
$Q_{n}=\{z\in C:\langle x_{n}-z,x-x_{n}\rangle\geq 0\}$ ,
$x_{n+1}=P_{C_{n}\cap Q_{\hslash}}x$

for each $n\in \mathbb{N}$ , where $P_{C_{R}\cap Q_{n}}$ is the metric projection of $E$ onto $C_{n}\cap Q_{n}$ . Then, $\{x_{n}\}$

converges strongly to the element $P_{F}x$ , where $P_{F}$ is the metric projection from $E$ onto
$F$ .
Theorem 3.3 ([5]). Let $E$ be a uniformly smooth and uniformly convex Banach space
and let $\{C_{i}\}$ be a countable family of nonempty closed convex subsets of $E$ such that
$C= \bigcap_{1=1}^{f}C_{i}\neq\emptyset$ . Let $P_{C_{1}},$ $P_{C},,$

$\ldots,$
$P_{C,}$ be the generalized projection from $E$ onto

$C_{1}$ for each $i\in \mathbb{N}$ . Let $\alpha_{1},\alpha_{2},$ $\ldots,\alpha_{f}$ be real numbers such that $0<\alpha_{i}<1$ for each
$i\in 1,2,$ $\ldots,r$ . Let $W$ be the W-mapping of $C$ into itself generated by $P_{C_{1}},$ $P_{C_{2}},$

$,$ $\ldots,$
$P_{C,}$

and $\alpha_{1},$ $\alpha_{2},$ $\ldots,\alpha_{r}$ . Suppose that $\{x_{n}\}$ is given by
$x_{0}=x\in C$,
$D_{n}=\{z\in C:\phi(z, Wx_{n})\leq\phi(z,x_{n})\}$ ,
$Q_{n}=\{z\in C:\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}$ ,
$x_{n+1}=P_{D.\cap Q_{\hslash}^{X}}$

for each $n\in \mathbb{N}$ , where $P_{D.\cap Q}$. is the generalized projection from $E$ onto $D_{n}\cap Q_{n}$ .
Then, $\{x_{n}\}$ converges strongly to the element $P_{\cap^{r}{}_{=1}C}.x$ , where $P_{\cap^{r}{}_{=1}C}$. is the generalized
projection from $E$ onto $\bigcap_{1=1}^{f}C_{1}$ .

4. WEAK CONVERGENCE THEOREMS

In this section, we prove weak convergence theorems for finite family of relatively
nonexpansive mappings in Banach spaces. For the sake of simplicity, we write $F=$
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$\bigcap_{i=1}^{r}F(T_{i})$ . Throughout this paper, $P_{C}$ is the generalized projection from $E$ onto $C$ .
We can prove the following result by using the idea of [9, 12].

Theorem 4.1 ([4]). Let $E$ be a smooth and uniformly convex Banach space and let $C$

be a nonempty closed convex subset of $E$ . Let $T_{1},$ $T_{2},$
$\ldots$ , $T_{f}$ be relatively nonexpansive

$numberssuchthat0\leq\alpha_{1}\leq lforevery\overline{\overline{\{}}1,$
$2,.r \}.LetP_{C}bethegeneralizedmappingsofCintoitse1fsuchthatF=\bigcap_{i\in^{i1}}rF(T_{i}.).,\neq\emptyset.Let\alpha_{1},\alpha_{2},\ldots,\alpha_{f}bereal$

projection from $E$ onto $C$ . Let $W$ be the W-mapping of $C$ into itself generated by
$P_{C},$ $T_{1},$ $T_{2},$

$\ldots,$
$T_{r}$ and and $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{f}$ . Suppose that $\{x_{n}\}$ is given by $x_{0}=x\in C$

and $x_{n+1}=Wx_{n}$ for every $n=0,1,2,$ $\ldots$ . Then, $\{P_{F}x.\}$ converges strongly to the
unique element $z$ of $F$ such that

$\lim_{narrow\infty}\phi(z,x_{n})=\min\{\lim_{narrow\infty}\phi(y,x_{n})$ : $y\in F\}$ ,

where $P_{F}$ is the generalized projection from $E$ onto $F$ .
The following result is essential in the proof of Theorem 4.3.

Theorem 4.2 ([4]). Let $E$ be a uniformly smooth and uniformly convex Banach space
and let $C$ be a nonempty closed convex subset of $E$ . Let $T_{1},$ $T_{2},$ $\ldots,T_{f}$ be relatively
nonexpansive mappings of $C$ into itself such that $F= \bigcap_{*=1}^{r}F(T_{*}\cdot)\neq\emptyset$ . Let $\alpha_{1},\alpha_{2},$ $\ldots,\alpha_{r}$

be real numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots, r\}$ . Let $P_{C}$ be the
generalized projection from $E$ onto $C$ . Let $W$ be the W-mapping of $C$ into itself
generated by $P_{C},$ $T_{1},$ $T_{2},$

$\ldots$ , $T_{f}$ and $\alpha_{1},\alpha_{2},$ $\ldots,$
$\alpha_{r}$ . Let $\{z_{n}\}$ be a bounded sequence in

$C$ such that $\phi(u, z_{n})-\phi(u, Wz_{n})arrow 0$ for some $u\in F$ and $z_{n_{k}}arrow z$ . Then, $z\in F$ .
Using theorems 4.1 and 4.2, we can prove the following weak convergence theorem.

Theorem 4.3 ([4]). Let $E$ be a smooth and uniformly convex Banach space and let $C$

be a nonempty closed convex subset of $E$ . Let $T_{1},T_{2},$
$\ldots$ , $T_{f}$ be relatively nonexpansive

mappings of $C$ into itself such that $F= \bigcap_{*=1}^{r}F(T_{1})\neq\emptyset$ and let $\alpha_{1},\alpha_{2},$
$\ldots,$

$\alpha_{f}$ be real
numbers such that $0<\alpha_{i}<1$ for every $i\in\{1,2, \ldots, r\}$ . Let $P_{C}$ be the generalized
projection from $E$ onto $C$ . Let $W$ be the W-mapping of $C$ into itself generated by
$P_{C},$ $T_{1},$ $T_{2},$

$\ldots,$
$T_{f}$ and $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{r}$ . Suppose that $\{x_{n}\}$ is given by $x_{0}=x\in C$ and

$x_{n+1}=Wx_{n}$ for every $n=0,1,2,$ $\ldots$ . Then, following hold:
(a) The sequence $\{x_{n}\}$ is bounded and each weak subsequentially limit of $\{x_{n}\}$ belongs

to $\bigcap_{*=1}^{r}F(T_{1})$ ;
(b) if the duality mapping $J$ from $E$ into $E^{*}$ is weakly sequentially continuous, then

$\{x_{n}\}$ converges weakly to the element $z$ of $\bigcap_{1=\iota}^{r}F(T_{\dot{\iota}})$ , where $z= \lim_{narrow\infty}P_{\bigcap_{=1}^{r}F(T_{1})}x_{n}$ .
As a direct consequence of Theorem 4.3, we have the following.

Theorem 4.4. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex
subset of $H$ . Let $T_{1},T_{2},$ $\ldots,T_{r}$ be nonexpansive mappings of $C$ into itself such that
$F= \bigcap_{i=1}^{r}F(T_{1})\neq\emptyset$ and let $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha$. be real numbers such that $0<\alpha_{i}<1$ for

each $i\in\{1,2, \ldots,r\}$ . Let $P_{C}$ be a metric projection from $E$ onto $C$ . Let $W$ be the
W-mapping of $C$ into itself generated by $T_{1},T_{2},$ $\ldots,T_{f}$ and $\alpha_{1},\alpha_{2},$ $\ldots,\alpha_{r}$ . Suppose
that $\{x_{n}\}$ is given by $x_{0}=x\in C$ and $x_{n+1}=Wx_{n}$ for every $n=0,1,2,$ $\ldots$ . Then,
$\{x_{n}\}$ converges weakly to the element $z$ of $\bigcap_{i=1}^{r}F(T_{*})$ , where $z= \lim_{narrow\infty^{P}\bigcap_{j}^{r}=1F(T.)^{X_{\hslash}}}$ .
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Using Theorem 4.3, we also obtain the following theorems (see [12]).

Theorem 4.5. Let $E$ be a uniformly smooth and uniformly convex Banach space
and let $C$ be a nonempty closed convex subset of a Banach space $E$ . Let $T$ be a
relatively nonexpansive mapping of $C$ into itself such that $F(T)\neq\emptyset$ and let $\alpha$ be a
real number such that $0<\alpha<1$ . Suppose that $\{x_{n}\}$ is given by $x_{0}=x\in C$ and
$x_{n+1}=P_{C}J^{-1}(\alpha JTx_{n}+(1-\alpha)Jx_{\mathfrak{n}})$ for every $n=0,12\rangle’\ldots$ . Then, the following hold:
(a) The sequence $\{x_{n}\}$ is bounded and each weak subsequentially limit of $\{x_{n}\}$ belongs

to $F(T)$ .
(b) If the duality mapping $J$ from $E$ into $E^{*}$ is weakly sequentially continuous, then

$\{x_{n}\}$ converges weakly to the element $z$ of $F(T)$ , where $z= \lim_{narrow\infty}P_{F(T)}x_{n}$ .

Theorem 4.6. Let $E$ be a uniformly smooth and uniformly convex Banach space
and let $\{C_{i}\}$ be a finite family of nonempty closed convex subsets of $E$ such that
$C=\cap^{t}{}_{=1}C_{i}\neq\emptyset$ . Let $P_{C_{1}},$ $P_{C_{2}},$

$\ldots,$
$P_{C_{r}}$ be the generalized projections from $E$ onto $C_{1}$

for $i\in\{1,2, \ldots\}$ . Let $\alpha_{1},$ $\alpha_{2},$
$\ldots,$

$\alpha$. be real numbers such that $0<\alpha_{i}<1$ for each
$i\in 1,2,$

$\ldots,$
$r$ . Let $W$ be the W-mapping of $C$ into itself generated by $P_{C_{1}},$ $P_{C_{2}},$

$,$ $\ldots,$
$P_{C,}$

and $\alpha_{1},$ $\alpha_{2},$ $\ldots,\alpha_{r}$ . Suppose that $\{x_{n}\}$ is given by $x_{0}=x\in E$ and $x_{n+1}=Wx_{n}$ for
every $n=0,1,2,$ $\ldots$ . Then, the followingG hold:
(a) The sequence $\{x_{\mathfrak{n}}\}$ is bounded and each weak subsequentially limit of $\{x_{n}\}$ belongs

to $\bigcap_{1=1}^{r}C_{i}$ .
(b) If the duality mapping $J$ from $E$ into $E^{\cdot}$ is weakly sequentially continuous, then

$\{x_{n}\}$ converges weakly to the element $z$ of $\bigcap_{1=1}^{f}C_{i}$ , where $z= \lim_{narrow\infty}P_{\cap^{r}{}_{=1}C:}x_{n}$ .
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