Weak and Strong convergence Theorems for Approximating common fixed Points of Three Nonexpansive Mappings

P. Glubudom and S. Suantai

Abstract: In this paper, a new three-step iterative scheme for three nonexpansives mappings is introduced and studied. Weak and strong convergence theorems of such iterations to a common fixed point of the nonexpansive mappings are established. The results obtained in this paper extend and improve the results due to [W. Takahashi, T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex anal. 5(1995) 45-58], [K.K.Tan, H.K.Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal.Appl. 178(1993) 301-308], [H.F.Senter W.G.Dotson, Approximating fixed points of nonexpansive mappings, Proc.Amer.Math.Soc.44(1974) 375-380] and [G.Liu, D.Lei, S.Li, Approximating fixed points of nonexpansive mappings, Inernet.J.Math.Sci. 24(2000)173-177].

Keywords: Nonexpansive mapping, Common fixed point, Three-step iterative scheme, Opial property, weak and strong convergence.

2000 Mathematics Subject Classification: 47H09, 47J25.

1 Introduction

Let C be a nonempty convex subset of a real Banach space X, and let T_1, T_2 and $T_3: C \to C$ be given mappings. Then for a given $x_1 \in C$, compute the sequence $\{x_n\}, \{y_n\}$ and $\{z_n\}$ by the iterative scheme

$$z_{n} = a_{n}T_{1}x_{n} + (1 - a_{n})x_{n},$$

$$y_{n} = b_{n}T_{2}z_{n} + c_{n}T_{1}x_{n} + (1 - b_{n} - c_{n})x_{n},$$

$$x_{n+1} = \alpha_{n}T_{3}y_{n} + \beta_{n}T_{2}z_{n} + \gamma_{n}T_{1}x_{n} + (1 - \alpha_{n} - \beta_{n} - \gamma_{n})x_{n},$$

$$(1.1)$$

where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are appropriate sequences in [0, 1].

If $c_n = \beta_n = \gamma_n \equiv 0$ and $T_1 = T_2 = T_3$, then (1.1) reduces to the Noor iterations:

$$z_{n} = a_{n}T_{1}x_{n} + (1 - a_{n})x_{n},$$

$$y_{n} = b_{n}T_{1}z_{n} + (1 - b_{n})x_{n},$$

$$x_{n+1} = \alpha_{n}T_{1}y_{n} + (1 - \alpha_{n})x_{n}, \quad n \ge 1,$$
(1.2)

where $\{a_n\}, \{b_n\}, \{\alpha_n\}$ are appropriate sequences in [0, 1].

If $a_n = b_n = \beta_n = \gamma_n \equiv 0$ and $T_1 = T_2 = T_3$, then (1.1) reduces to the usual Ishikawa iterative scheme

$$y_n = c_n T_1 x_n + (1 - c_n) x_n,$$

 $x_{n+1} = \alpha_n T_1 y_n + (1 - \alpha_n) x_n, \quad n \ge 1,$

where $\{c_n\}, \{\alpha_n\}$ are appropriate sequences in [0, 1].

If $T_1 = I$, the identity operator on C, and $\beta_n = 0$, then (1.1) reduces to the iterative scheme defined by Das and Debata [1] and Takahashi and Tomura [9]

$$y_n = b_n T_2 x_n + (1 - b_n) x_n, x_{n+1} = \alpha_n T_3 y_n + (1 - \alpha_n) x_n, \quad n \ge 1,$$
 (1.3)

where $\{b_n\}$, $\{\alpha_n\}$ are sequences in [0,1]. Das and Debata [1] used the scheme (1.3) to approximate common fixed points of the maps when X is strictly convex. Takahashi and Tamura [9] prove weak convergence of the iterates $\{x_n\}$ defined by (1.3) in a uniformly convex Banach space X which satisfies the Opial property or whose norm is Fre'chet differentiable.

If $T_1 = I$, the identity operator on C, $\beta_n = 0$ and $T := T_2 = T_3$, then (1.1) reduces to the usual Ishikawa iterative scheme:

$$y_n = b_n T x_n + (1 - b_n) x_n,$$

$$x_{n+1} = \alpha_n T y_n + (1 - \alpha_n) x_n, \quad n \ge 1.$$

If $T_1 = T_2 = I$ the identity operator on C and $T := T_3$, then (1.1) reduces to the usual Mann iterative scheme:

$$x_{n+1} = \alpha_n T x_n + (1 - \alpha_n) x_n, \quad n \ge 1.$$

If $a_n = b_n = c_n \equiv 0$, then (1.1) reduces to the iterative scheme

$$x_1 \in C,$$

$$x_{n+1} = S_n x_n \quad n \ge 1,$$

$$(1.4)$$

where $S_n = \alpha_n T_3 + \beta_n T_2 + \gamma_n T_1 + (1 - \alpha_n - \beta_n - \gamma_n)I$.

If $\alpha_n = a, \beta_n = b$ and $\gamma_n = c$ for all $n \in \mathbb{N}$, then (1.4) reduces to the iterative scheme defined by Liu, Lei and Li [3]

$$x_1 \in C,$$

$$x_{n+1} = Sx_n \quad n \ge 1,$$

$$(1.5)$$

where $S = aT_3 + bT_2 + cT_1 + (1 - a - b - c)I$. Liu et al. [3] showed that $\{x_n\}$ defined by (1.5) converges to a common fixed point of T_1, T_2 and T_3 in Banach space, provided that T_i (i = 1, 2, 3) satisfy condition A.

The purpose of this paper is to establish weak and strong convergence of the iterative scheme (1.1) to a common fixed point of three nonexpansive mappings in a uniformly convex Banach space.

Now, we recall the well-known concepts and results.

Let X be a normed space and C a nonempty subset of X. A mapping $T: C \to C$ is said to be *nonexpansive* on C if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$.

A Banach space X is said to satisfy Opial's condition if $x_n \to x$ weakly as $n \to \infty$ and $x \neq y$ imply that

$$limsup_{n\to\infty}||x_n-x|| < limsup_{n\to\infty}||x_n-y||.$$

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 ([5],Lemma 4) Let X be a uniformly convex Banach space and $B_r = \{x \in X : ||x|| \le r\}, r > 0$. Then there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \to [0, \infty), g(0) = 0$ such that

$$\begin{split} \|\alpha x + \beta y + \gamma z + \lambda w\|^2 & \leq & \alpha \|x\|^2 + \beta \|y\|^2 + \gamma \|z\|^2 + \lambda \|w\|^2 \\ & - \frac{1}{3} \lambda (\alpha g(\|x - w\| + \beta g(\|y - w\| + \gamma g(\|z - q\|)), \end{split}$$

for all $x, y, z, w \in B_r$ and all $\alpha, \beta, \gamma, \lambda \in [0, 1]$ with $\alpha + \beta + \gamma + \lambda = 1$.

Lemma 1.2 ([4],Lemma 1.6) Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X, and $T: C \to C$ be a nonexpansive mapping. Then I-T is demiclosed at 0, i.e., if $x_n \to x$ weakly and $x_n - Tx_n \to 0$ strongly, then $x \in F(T)$, where F(T) is the set of fixed point of T.

Lemma 1.3 ([7],Lemma 2.7) Let X be a Banach space which satisfies Opial's condition and let $\{x_n\}$ be a sequence in X. Let $u, v \in X$ be such that $\lim_{n\to\infty} ||x_n-u||$ and $\lim_{n\to\infty} ||x_n-v||$ exist. If $\{x_{n_k}\}$ and $\{x_{m_k}\}$ are subsequences of $\{x_n\}$ which converge weakly to u and v, respectively, then u=v.

2 Main results

In this section, we prove weak and strong convergence theorems of the iterative scheme (1.1) to a common fixed point of nonexpansive mappings T_1, T_2 and T_3 . Let $F(t_i), i = 1, 2, 3$ denote the set of all fixed points of T_i , and let $F = \bigcap_{i=1}^3 F(T_i)$. We first prove the following lammas.

Lemma 2.1 Let X be a Banach space and C a nonempty closed and convex subset of X. Let T_1, T_2 and $T_3: C \to C$ be nonexpansive self-maps and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0,1] such that $b_n + c_n$ and $\alpha_n + \beta_n + \gamma_n$ are in [0,1] for all $n \geq 1$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be sequences defined as in (1.1). If $F \neq \emptyset$ then $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F$.

Proof. Let $p \in F$. Then

$$||z_{n} - p|| = ||a_{n}T_{1}x_{n} + (1 - a_{n})x_{n} - p||$$

$$\leq a_{n}||T_{1}x_{n} - p|| + (1 - a_{n})||x_{n} - p||$$

$$\leq a_{n}||x_{n} - p|| + (1 - a_{n})||x_{n} - p||$$

$$\leq ||x_{n} - p||$$
(2.1)

and

$$||y_{n}-p|| = ||b_{n}T_{2}z_{n}+c_{n}T_{1}x_{n}+(1-b_{n}-c_{n})x_{n}-p||$$

$$\leq b_{n}||T_{2}z_{n}-p||+c_{n}||T_{1}x_{n}-p||+(1-b_{n}-c_{n})||x_{n}-p||$$

$$\leq b_{n}||z_{n}-p||+c_{n}||x_{n}-p||+(1-b_{n}-c_{n})||x_{n}-p||$$

$$\leq ||x_{n}-p||.$$
(2.2)

From (2.1) and (2.2), we have

$$||x_{n+1} - p|| = ||\alpha_n T_3 y_n + \beta_n T_2 z_n + \gamma_n T_1 x_n + (1 - \alpha_n - \beta_n - \gamma_n) x_n - p||$$

$$\leq \alpha_n ||T_3 y_n - p|| + \beta_n ||T_2 z_n - p|| + \gamma_n ||T_1 x_n - p||$$

$$+ (1 - \alpha_n - \beta_n - \gamma_n) ||x_n - p||$$

$$\leq \alpha_n ||y_n - p|| + \beta_n ||z_n - p|| + \gamma_n ||x_n - p||$$

$$+ (1 - \alpha_n - \beta_n - \gamma_n) ||x_n - p||$$

$$\leq ||x_n - p||.$$
(2.3)

Thus the sequence $\{||x_n - p||\}$ is bounded and decreasing which implies that $\lim_{n\to\infty} ||x_n - p||$ exists.

The next lemma is crucial for proving the main theorems.

Lemma 2.2 Let X be a uniformly convex Banach space, and C a nonempty closed and convex subset of X. Let T_1, T_2 and $T_3 : C \to C$ be nonexpansive self-maps with $F \neq \emptyset$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0,1] such that $b_n + c_n$ and $\alpha_n + \beta_n + \gamma_n$ are in [0,1] for all $n \geq 1$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be sequences defined as in (1.1).

- (i) If $0 < \lim \inf_{n \to \infty} \alpha_n$, $0 < \lim \inf_{n \to \infty} b_n$ and $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$, then $\lim_{n \to \infty} ||T_1 x_n x_n|| = 0$.
- (ii) If $0 < \lim \inf_{n \to \infty} c_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1$ and $0 < \lim \inf_{n \to \infty} \alpha_n$, then $\lim_{n \to \infty} ||T_1x_n x_n|| = 0$.
- (iii) If $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$ and $0 < \lim \inf_{n \to \infty} \beta_n$, then $\lim_{n \to \infty} ||T_1 x_n x_n|| = 0$.
- (iv) If $0 < \lim \inf_{n \to \infty} \gamma_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, then $\lim_{n \to \infty} ||T_1 x_n x_n|| = 0$.

- (v) If $0 < \lim \inf_{n \to \infty} b_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1$ and $0 < \lim \inf_{n \to \infty} \alpha_n$, then $\lim_{n \to \infty} ||T_2 z_n x_n|| = 0$.
- (vi) If $0 < \lim \inf_{n \to \infty} \beta_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, then $\lim_{n \to \infty} ||T_2 z_n x_n|| = 0$.
- (vii) If $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, then $\lim_{n \to \infty} ||T_3y_n x_n|| = 0$.

Proof. Let $p \in F$. By Lemma 2.1, $\sup_{n\geq 1} ||x_n - p||$ exists. Choose a number r > 0 and $r > \sup_{n\geq 1} ||x_n - p||$, then by (2.1),(2.2),(2.3) we have that all sequences $\{z_n - p\}, \{y_n - p\}, \{x_n - p\}, \{T_1x_n - p\}, \{T_2z_n - p\}, \{T_3y_n - p\}$ belong to B_r and by Lemma 1.1 there is a continuous strictly increasing convex function $g:[0,\infty) \to [0,\infty), g(0)=0$, such that

$$\|\alpha x + \beta y + \gamma z + \lambda w\|^{2} \leq \alpha \|x\|^{2} + \beta \|y\|^{2} + \gamma \|z\|^{2} + \lambda \|w\|^{2} - \frac{1}{3}\alpha \lambda g(\|x - w\|) - \frac{1}{3}\beta \lambda g(\|y - w\|) - \frac{1}{3}\gamma \lambda g(\|z - w\|)$$
(2.4)

for all $x, y, z, w \in B_r$ and all $\alpha, \beta, \gamma, \lambda \in [0, 1]$ with $\alpha + \beta + \gamma + \lambda = 1$. From (1.1) and (2.4) we have

$$||z_{n} - p||^{2} = ||a_{n}(T_{1}x_{n} - p) + 0(0) + 0(0) + (1 - a_{n})(x_{n} - p)||^{2}$$

$$\leq a_{n}||T_{1}x_{n} - p||^{2} + (1 - a_{n})||x_{n} - p||^{2}$$

$$-\frac{1}{3}a_{n}(1 - a_{n})g(||T_{1}x_{n} - x_{n}||)$$

$$\leq a_{n}||x_{n} - p||^{2} + (1 - a_{n})||x_{n} - p||^{2}$$

$$-\frac{1}{3}a_{n}(1 - a_{n})g(||T_{1}x_{n} - x_{n}||)$$

$$= ||x_{n} - p||^{2} - \frac{1}{3}a_{n}(1 - a_{n})g(||T_{1}x_{n} - x_{n}||), \qquad (2.5)$$

and

$$||y_{n}-p||^{2} = ||b_{n}(T_{2}z_{n}-p)+c_{n}(T_{1}x_{n}-p)+0(0)+(1-b_{n}-c_{n})(x_{n}-p)||^{2}$$

$$\leq b_{n}||T_{2}z_{n}-p||^{2}+c_{n}||T_{1}x_{n}-p||^{2}+(1-b_{n}-c_{n})||x_{n}-p||^{2}$$

$$-\frac{1}{3}(1-b_{n}-c_{n})[b_{n}g(||T_{2}z_{n}-x_{n}||)+c_{n}g(||T_{1}x_{n}-x_{n}||)]$$

$$\leq b_{n}||z_{n}-p||^{2}+c_{n}||x_{n}-p||^{2}+(1-b_{n}-c_{n})||x_{n}-p||^{2}$$

$$-\frac{1}{3}(1-b_{n}-c_{n})[b_{n}g(||T_{2}z_{n}-x_{n}||)+c_{n}g(||T_{1}x_{n}-x_{n}||)]$$

$$\leq b_{n}||x_{n}-p||^{2}-\frac{1}{3}b_{n}a_{n}(1-a_{n})g(||T_{1}x_{n}-x_{n}||)$$

$$+c_{n}||x_{n}-p||^{2}+(1-b_{n}-c_{n})||x_{n}-p||^{2}$$

$$-\frac{1}{3}(1-b_{n}-c_{n})[b_{n}g(||T_{2}z_{n}-x_{n}||)+c_{n}g(||T_{1}x_{n}-x_{n}||)]$$

$$= \|x_{n} - p\|^{2} - \frac{1}{3}b_{n}a_{n}(1 - a_{n})g(\|T_{1}x_{n} - x_{n}\|) - \frac{1}{3}(1 - b_{n} - c_{n})[b_{n}g(\|T_{2}z_{n} - x_{n}\|) + c_{n}g(\|T_{1}x_{n} - x_{n}\|)].$$
 (2.6)

By (1.1), (2.4), (2.5) and (2.6), we also have

$$\begin{split} \|x_{n+1} - p\|^2 &= \|\alpha_n(T_3y_n - p) + \beta_n(T_2z_n - p) + \gamma_n(T_1x_n - p) + \\ &\quad (1 - \alpha_n - \beta_n - \gamma_n)(x_n - p)\|^2 \\ &\leq \alpha_n \|T_3y_n - p\|^2 + \beta_n \|T_2z_n - p\|^2 + \gamma_n \|T_1x_n - p\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n)\|(x_n - p)\|^2 \\ &\quad - \frac{1}{3}(1 - \alpha_n - \beta_n - \gamma_n)[\alpha_n g(\|T_3y_n - x_n\|) + \beta_n g(\|T_2z_n - x_n\|) \\ &\quad + \gamma_n g(\|T_1x_n - x_n\|)] \\ &\leq \alpha_n \|y_n - p\|^2 + \beta_n \|z_n - p\|^2 + \gamma_n \|x_n - p\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n)\|(x_n - p)\|^2 \\ &\quad - \frac{1}{3}(1 - \alpha_n - \beta_n - \gamma_n)[\alpha_n g(\|T_3y_n - x_n\|) + \beta_n g(\|T_2z_n - x_n\|) \\ &\quad + \gamma_n g(\|T_1x_n - x_n\|)] \\ &\leq \alpha_n \|x_n - p\|^2 - \frac{1}{3}\alpha_n b_n a_n (1 - a_n) g(\|T_1x_n - x_n\|) \\ &\quad - \frac{1}{3}\alpha_n (1 - b_n - c_n)[b_n g(\|T_2z_n - x_n\|) + c_n g(\|T_1x_n - x_n\|)] \\ &\quad + \beta_n \|x_n - p\|^2 - \frac{1}{3}\beta_n a_n (1 - a_n) g(\|T_1x_n - x_n\|) + \gamma_n \|x_n - p\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n)\|(x_n - p)\|^2 \\ &\quad - \frac{1}{3}(1 - \alpha_n - \beta_n - \gamma_n)[\alpha_n g(\|T_3y_n - x_n\|) + \beta_n g(\|T_2z_n - x_n\|) \\ &\quad + \gamma_n g(\|T_1x_n - x_n\|)] \\ &= \|x_n - p\|^2 - \frac{1}{3}\alpha_n b_n a_n (1 - a_n) g(\|T_1x_n - x_n\|) \\ &\quad - \frac{1}{3}\beta_n a_n (1 - a_n) g(\|T_1x_n - x_n\|) + c_n g(\|T_1x_n - x_n\|)] \\ &\quad - \frac{1}{3}\beta_n a_n (1 - a_n) g(\|T_1x_n - x_n\|) + \beta_n g(\|T_2z_n - x_n\|) \\ &\quad + \gamma_n g(\|T_1x_n - x_n\|)]. \end{aligned}$$

Thus

$$\alpha_n b_n a_n (1 - a_n) g(\|T_1 x_n - x_n\|) \le 3[\|x_n - p\|^2 - \|x_{n+1} - p\|^2].$$
 (2.8)

(i) If $0 < \lim \inf_{n \to \infty} \alpha_n$, $0 < \lim \inf_{n \to \infty} b_n$ and $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$, then there exist positive integer n_0 and reals $\eta_1, \eta_2, \eta_3, \eta_4 \in (0,1)$ such that $0 < \eta_1 \le \alpha_n$, $0 < \eta_2 \le b_n$, $0 < \eta_3 \le a_n < \eta_4 < 1$ for all $n \ge n_0$. It follows from (2.8) that

$$|\eta_1\eta_2\eta_3(1-\eta_4)g(\|T_1x_n-x_n\|) \leq |3[|x_n-p\|^2-\|x_{n+1}-p\|^2] \quad \text{for all } n\geq n_0.$$

This implies by Lemma 2.1 that $\lim_{n\to\infty} g(\|T_1x_n - x_n\|) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n\to\infty} \|T_1x_n - x_n\| = 0$.

By using (2.7) and Lemma 2.1 with the same method as in (i), then (ii)-(vii) are directly obtained, respectively.

Lemma 2.3 Let X be a uniformly convex Banach space, and C a nonempty closed and convex subset of X. Let T_1, T_2 and $T_3: C \to C$ be nonexpansive self-maps of C with $F \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0,1] such that $b_n + c_n$ and $\alpha_n + \beta_n + \gamma_n$ are in [0,1] for all $n \geq 1$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be the sequences defined by the iterative scheme (1.1) if

- (i) $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, $0 < \lim \inf_{n \to \infty} b_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1$ and $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$, or
- (ii) $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1,$ $0 < \min \{\lim \inf_{n \to \infty} b_n, \lim \inf_{n \to \infty} c_n\} \le \lim \sup_{n \to \infty} (b_n + c_n) < 1, \text{ or }$
- (iii) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1,$ $0 < \lim \inf_{n \to \infty} b_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1 \text{ and}$ $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ or}$
- (iv) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \gamma_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} b_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1 \text{ or}$
- (v) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ and } 0 < \lim \inf_{n \to \infty} b_n, \text{ or }$
- (vi) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} c_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1, \text{ or }$
- (vii) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ or }$

(viii)
$$0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n, \lim \inf_{n \to \infty} \gamma_n\}$$

 $\leq \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1,$

then
$$\lim_{n\to\infty} ||T_1x_n - x_n|| = \lim_{n\to\infty} ||T_2x_n - x_n|| = \lim_{n\to\infty} ||T_3x_n - x_n|| = 0.$$

Proof. (i) By Lemma 2.2, we have

$$\lim_{n\to\infty} \|T_1x_n - x_n\| = 0, \lim_{n\to\infty} \|T_2z_n - x_n\| = 0, \lim_{n\to\infty} \|T_3y_n - x_n\| = 0.$$

It follows that

$$||T_{2}x_{n} - x_{n}|| \leq ||T_{2}x_{n} - T_{2}z_{n}|| + ||T_{2}z_{n} - x_{n}||$$

$$\leq ||z_{n} - x_{n}|| + ||T_{2}z_{n} - x_{n}||$$

$$= ||a_{n}T_{1}x_{n} + (1 - a_{n})x_{n} - x_{n}|| + ||T_{2}z_{n} - x_{n}||$$

$$\leq a_{n}||T_{1}x_{n} - x_{n}|| + ||T_{2}z_{n} - x_{n}||$$

$$\leq ||T_{1}x_{n} - x_{n}|| + ||T_{2}z_{n} - x_{n}|| \to 0 \quad as \ n \to \infty, and$$

$$\begin{aligned} \|T_3x_n - x_n\| & \leq \|T_3x_n - T_3y_n\| + \|T_3y_n - x_n\| \\ & \leq \|x_n - y_n\| + \|T_3y_n - x_n\| \\ & = \|b_nT_2z_n + c_nT_1x_n + (1 - b_n - c_n)x_n - x_n\| + \|T_3y_n - x_n\| \\ & \leq b_n\|T_2z_n - x_n\| + c_n\|T_1x_n - x_n\| + \|T_3y_n - x_n\| \\ & \leq \|T_2z_n - x_n\| + \|T_1x_n - x_n\| + \|T_3y_n - x_n\| \to 0 \quad as \ n \to \infty. \end{aligned}$$

By using the same proof as in (i), (ii)- (viii) are obtained.

Theorem 2.4 Let X be a uniformly convex Banach space, and C a nonempty closed and convex subset of X. Let T_1, T_2 and $T_3: C \to C$ be nonexpansive selfmaps of C with $F \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0,1] such that $b_n + c_n$ and $\alpha_n + \beta_n + \gamma_n$ are in [0,1] for all $n \geq 1$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be the sequences defined by the iterative scheme (1.1) if

- (i) $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, $0 < \lim \inf_{n \to \infty} b_n \le \lim \inf_{n \to \infty} (b_n + c_n) < 1$ and $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$, or
- (ii) $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, $0 < \min \{\lim \inf_{n \to \infty} b_n, \lim \inf_{n \to \infty} c_n\} \le \lim \inf_{n \to \infty} (b_n + c_n) < 1$, or
- (iii) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} b_n \le \lim \inf_{n \to \infty} (b_n + c_n) < 1 \text{ and } 0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ or }$

- (iv) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \gamma_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} b_n \le \lim \inf_{n \to \infty} (b_n + c_n) < 1 \text{ or }$
- (v) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ and } 0 < \lim \inf_{n \to \infty} b_n, \text{ or }$
- (vi) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \inf_{n \to \infty} c_n \le \lim \inf_{n \to \infty} (b_n + c_n) < 1, \text{ or }$
- (vii) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1, 0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1, \text{ or }$
- (viii) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n, \lim \inf_{n \to \infty} \gamma_n\}$ $\leq \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1,$

and one of T_1, T_2 and T_3 is completely continuous, then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge strongly to a common fixed point of T_1, T_2 and T_3 .

Proof. (i) By lemma 2.3, we have

$$\lim_{n \to \infty} ||T_1 x_n - x_n|| = \lim_{n \to \infty} ||T_2 x_n - x_n|| = \lim_{n \to \infty} ||T_3 x_n - x_n|| = 0.$$
 (2.9)

Suppose without loss of generality that T_1 is completely continuous. Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{T_1x_{n_k}\}$ converges. Therefore from (2.9), $\{x_{n_k}\}$ converges. Let $\lim_{n\to\infty} x_{n_k} = q$. By continuity of T_1 and (2.9) we have that $T_1q = q$, so q is a fixed point of T_1 . Since T_2, T_3 are continuous and $\lim_{n\to\infty} ||T_2x_n - x_n|| = \lim_{n\to\infty} ||T_3x_n - x_n|| = 0$, we obtain that $q \in F(T_2), q \in F(T_3)$, so $q \in F$. By Lemma 2.1, $\lim_{n\to\infty} ||x_n - q||$ exists. But $\lim_{n\to\infty} x_{n_k} = q$, so $\lim_{n\to\infty} x_n = q$.

Since
$$||y_n - x_n|| \le b_n ||T_2 z_n - x_n|| + c_n ||T_1 x_n - x_n|| \to 0$$
 and $||z_n - x_n|| = a_n ||T_1 x_n - x_n|| \to 0$ as $n \to \infty$,

it follows that $\lim_{n\to\infty} y_n = q$ and $\lim_{n\to\infty} z_n = q$ The proof of (ii)-(viii) is similar to that of (i).

For $c_n = \beta_n = \gamma_n = 0$ for all $n \in \mathbb{N}$, the following result are obtained directly from Theorem 2.4.

Corollary 2.5 Let X be a uniformly convex Banach space, and C a nonempty closed and convex subset of X. Let T_1, T_2 and $T_3: C \to C$ be nonexpansive selfmaps of C with $F \neq \emptyset$. Let $\{a_n\}, \{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1]. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}$, and $\{z_n\}$ be the sequences defined by the iterative scheme (1.2).

$$\begin{array}{lll} If & 0 & < & \lim inf_{n\to\infty}a_n \leq \lim sup_{n\to\infty}a_n < 1, \\ & 0 & < & \lim inf_{n\to\infty}b_n \leq \lim sup_{n\to\infty}b_n < 1, \\ & 0 & < & \lim inf_{n\to\infty}\alpha_n \leq \lim sup_{n\to\infty}\alpha_n < 1 \end{array}$$

one of T_1, T_2 and T_3 is completely continuous, then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge strongly to a common fixed point of T_1, T_2 and T_3 .

In the next result, we prove weak convergence for the iterative scheme (1.1) for three nonexpansive mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 2.6 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed and convex subset of X. Let T_1, T_2 and T_3 : $C \to C$ be nonexpansive self-maps of C with $F \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0,1] such that $b_n + c_n$ and $\alpha_n + \beta_n + \gamma_n$ are in [0,1] for all $n \geq 1$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be sequences defined by the iterative scheme (1.1)

- (i) If $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, $0 < \lim \inf_{n \to \infty} \beta_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, and $0 < \lim \inf_{n \to \infty} \gamma_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge weakly to a common fixed point of T_1, T_2 and T_3 .
- (ii) If $0 < \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n < 1$, $0 < \lim \inf_{n \to \infty} b_n \le \lim \sup_{n \to \infty} (b_n + c_n) < 1$, and $0 < \lim \inf_{n \to \infty} \alpha_n \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \gamma_n) < 1$, then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge weakly to a common fixed point of T_1, T_2 and T_3 .

Proof. (i) If follows from Lemma 2.3 that

$$\lim_{n\to\infty} ||T_1x_n - x_n|| = \lim_{n\to\infty} ||T_2x_n - x_n|| = \lim_{n\to\infty} ||T_3x_n - x_n|| = 0.$$

Since X is uniformly convex and $\{x_n\}$ is bounded, we may assume that $x_n \to u$ weakly as $n \to \infty$, without loss of generality. By Lemma 1.4, we have $u \in F$. Suppose that subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ converge weakly to u and v, respectively. From Lemma 1.2, $u, v \in F$. By Lemma 2.1, $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exist. It follows from Lemma 1.3 that u = v. Therefor $\{x_n\}$ converge weakly to a common fixed point of T_1, T_2 and T_3 .

(ii) The proof of (ii) is similar to that of (i).

References

- [1] G.Das and J.P.Debata, Fixed points of quasi-nonexpansive mappings, *Indian J.Pure Appl.Math.* 17(1986),1263-1269.
- [2] H.Fukhar-ud-din and A.R.Khan, Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces, Computers and mathematics with Applications (2007), doi:10.1016j.camwa.2007.01.008.
- [3] G. Liu, D. Lei, S. Li, Approximating fixed points of nonexpansie mappings, Internet. J. Math. Math. Sci., 24 (2000), 173-177.
- [4] K. Nammanee, M.A. Noor, S. Suantai, Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings *J.Math.Anal.Appl.* 314(2006) 320 334.
- [5] W.Nilsrakoo and S.Saejung, A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, J. Appl. Math. comput. 181(2006) 1026 - 1034.
- [6] H.F.Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, *Proc. Amer. Math. Soc.*, 44(1974),375-380.
- [7] S. Suantai, Weak and Strong convergence criteria of Noor for asymptotically nonexpansive mappings, *J.Math.Anal.Appl.*, in press.
- [8] K.K.Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, *J.Math.Anal.Appl.*, 178(1993), 301-308.
- [9] W.Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, *J. Convex anal.*, 5(1995), 301-308.
- [10] H. Zegeye, N. Shahzad, Viscosity Approximation methods for a common fixed Point of finite family of Nonexpansive mappings, Appl. Math.Comput.(2007), doi: 10.1016/j.amc.2007.02.072