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Weak and Strong convergence Theorems
for Approximating common fixed Points
of Three Nonexpansive Mappings

P. Glubudom and S. Suantai

Abstract : In this paper, a new three-step iterative scheme for three nonexpan-
sives mappings is introduced and studied. Weak and strong convergence theorems
of such iterations to a common fixed point of the nonexpansive mappings are
established. The results obtained in this paper extend and improve the results
due to [W. Takahashi, T. Tamura, Convergence theorems for a pair of nonexpan-
sive mappings, J. Convex anal. 5(1995) 45-58], [K.K.Tan, H.K.Xu, Approximat-
ing fixed points of nonexpansive mappings by the Ishikawa iteration process, J.
Math. Anal.Appl. 178(1993) 301-308], [H.F.Senter W.G.Dotson, Approximating
fixed points of nonexpansive mappings, Proc.Amer.Math.Soc.44(1974) 375-380]
and [G.Liu, D.Lei, S.Li, Approximating fixed points of nonexpansive mappings,
Inernet.J.Math.Sci. 24(2000)173-177].
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1 Introduction

Let C be a nonenipty convex subset of a real Banach space X, and let 71,75 and
T3 : C — C be given mappings. Then for a given z; € C, compute the sequence
{zn},{yn} and {z,} by the iterative scheme

Zn = 6y T1%Tn + (1 = an)Tn,
Yn = bpToz, +cyTiT, + (1 —bp — Cn)wm
Tnt1 = oapT3yn + ,BnT2zn + ")'nTl-'En + (1 — Cp — .Bn - ’Yn)m'm (1-1)

where {an}, {bn}, {cn}, {an}, {Bn}, {n} are appropriate sequences in {0, 1].
Ifc, = 8, =79, = 0and T} = To = T3, then (1.1) reduces to the Noor
iterations :

Tpntr = opNyn+(Q —op)zn, n2=1, (1.2)

where {a,}, {brn}, {an} are appropriate sequences in [0, 1].
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If ap = by, = Bn = 7o = 0 and T3 = T, = T3, then (1.1) reduces to the usual
Ishikawa iterative scheme

Yn = chlmn + (1 - Cn).’L'n,
Zony1 = opTiyn+(l—an)zn, n2=1,

where {c,}, {an} are appropriate sequences in [0, 1].
If T} = I, the identity operator on C, and 3, = 0, then (1.1) reduces to the
iterative scheme defined by Das and Debata [1] and Takahashi and Tomura, [9]

Yn = bpToz, + (1 - bn)mn’
Tp41 = onL3yn+ (1 - an)xn’ n>1, (1-3)

where {b,},{a.} are sequences in [0,1]. Das and Debata [1] used the scheme
(1.3) to approximate common fixed points of the maps when X is stricty convex.
Takahashi and Tamura [9] prove weak convergence of the iterates {x,} defined by
(1.3) in a uniformly convex Banach space X which satisfies the Opial property or
whose norm is Fre'chet differentiable.

If Ty = I, the identity operator on C, B, = 0 and T := T, = T3, then (1.1)
reduces to the usual Ishikawa iterative scheme:

Yn = bpTxn + (1 - bn)mna
Tpt1 = anTyn+ (1 —oan)zn, n2=>1

If Ty = T» = I the identity operator on C and T := T3, then (1.1) reduces to
the usual Mann iterative scheme:

Tptr = apTzy,+(1—an)zn, n2>1
If a, = b, = ¢, =0, then (1.1) reduces to the iterative scheme

z; € C,
Tpy1 = SpTn n =1, (1.4)

where Sp, = anT3 + BnT2 + T + (1 — an — Brn — 1)l
If ap = a,B, = b and v, = c for all n € N, then (1.4) reduces to the iterative
scheme defined by Liu, Lei and Li (3]

1 € C,
Tnyi = Szpn n2=21, (1.5)

where S = aT3 + bT + ¢T3 + (1 —a — b —c)I. Lid et al. [3] showed that {z,}
defined by (1.5) converges to a common fixed point of 71,72 and T3 in Banach
space, provided that T;(i = 1,2, 3) satisfy condition A.

The purpose of this paper is to establish weak and strong convergence of the
iterative scheme (1.1) to a common fixed point of three nonexpansive mappings in
a uniformly convex Banach space.
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Now, we recall the well-known concepts and results.

Let X be a normed space and C a nonempty subset of X. A mappingT : C — C
is said to be nonezpansive on C if |Tz — Ty|| < ||z — y|| for all z,y € C.

A Banach space X is said to satisfy Opial’s condition if x, — z weakly as
n — oo and = # y imply that

limsupnoo|[Tn — 7| < limsupncollzn — -

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 (/5/Lemma 4) Let X be a uniformly convex Banach space and B, =
{z € X :||z|| <7}, r > 0. Then there exists a continuous, strictly increasing, and
convez function g : [0,00) — [0, 00), g(0) = 0 such that

low+ By + 32+ dwll? < allell® + Bllyl® + =l + Mo
3 Mag(llz — wll + Bg(lly - wll +9(l= — al)),

forall z,y,z,w € B, and all o, 8,7, A\ € [0,1] witha+ B +v+ A =1.

Lemma 1.2 ([{/Lemma 1.6) Let X be a uniformly convex Banach space, C a
nonempty closed conver subset of X, and T : C — C be a nonexpansive mapping.
Then I — T is demiclosed at 0, i.e., if T, — = weakly and xy, — Tz, — 0 strongly,
then ¢ € F(T), where F(T) is the set of fizred point of T.

Lemma 1.3 ([7/,Lemma 2.7) Let X be a Banach space which satisfies Opial’s
condition and let {x,} be a sequence in X. Let u,v € X be such that limy oo ||Trn—
ul| and limy—ool|Tn —v|| exist. If {zn,} and {zm,} are subsequences of {xn} which
converge weakly to u and v, respectively, then u = v.

2 Main results

In this section, we prove weak and strong convergence theorems of the iterative
scheme (1.1) to a common fixed point of nonexpansive mappings 74,72 and T3.
Let F(t;),i = 1,2, 3 denote the set of all fixed points of T3, and let F = N_, F(T3).
We first prove the following lammas.

Lemma 2.1 Let X be a Banach space and C a nonempty closed and convex subset
of X. Let Ty, Tp and Ts : C — C be nonexpansive self-maps and {an},{Bn}, {Mm};
{an},{bn} and {c,} be real sequences in [0, 1] such that b, + ¢y and an + Bn +Tn
are in [0,1] for all n > 1. For a given z, € C, let {xn},{yn}, {2n} be sequences
defined as in (1.1). If F # O then limp—.oo||zn — p|| exists for alip € F.
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Proof. Let p € F. Then

lanTizn + (1 — an)zn — p|

i

llzn — pll

< an||Thzn - pll + (1 ~ an)||lzn — Pl
< anllzn —pll + (1-an)llzn — pl|
< |lzn - pll (2.1)
and
lyn =2l = |bnT2zn + cnTiz, + (1=bn —ca)zn —p|

bul|T2zn — p|| + cnl|Thzn — pll + (1 =bn —cn)llzn — pl
bnll2n — pll + enllzn — p|| + (1 - by, — cn)llzn — pl|
lzn — pl|. (2.2)

From (2.1) and (2.2), we have

IN A IA

“wn+1 _p” = ”anTSyn + BnTozy + ynTizyn + (1 —ap — fBn — 'Yn)a’n —p”
< anlT3yn — pll + BnllT22n — p|| + Wl T12n — p|
+(1 = an = Bn = )llzn — pil
< onllyn = pll + Brllzn — pll + Wmilzn — Pl
+(1 = an — Bn — W)llzn — 2|
< Jon -l (2.3)

Thus the sequence {||z, — p||} is bounded and decreasing which implies that
limy, o ||lTn — p|| exists. |

The next lemma is crucial for proving the main theorems.

Lemma 2.2 Let X be a uniformly convex Banach space, and C a nonempty closed
and convex subset of X. Let Ty,T> and T3 : C — C be nonezxpansive self-maps

with F # 0 and {an}, {Bn}, {7n}; {an}, {bn} and {c,} be real sequences in [0,1]
such that b, + ¢, and ay, + B+ Y are in [0,1] for all n > 1. For a given x, € C,
let {zn}, {yn}, {2n} be sequences defined as in (1.1).

(1) If 0<liminfpooon, 0 <lim infnoobn and
0 < lim infpnaooan < lim supp—ooan < 1, then limp—oo||T12n — z,|| = 0.

(1) If 0 <lim infpoooln < lim supp—oo(bn +cn) <1 and

(iii) If 0 <lim infrnoooln < lim suppneoan <1 and
0 < lim infn—o0oBn, then limp—ool|ThZn — zyul|| = 0.

(iv) If 0 <lim infnoootn < lim supp—oo(Qn + Bn + ) < 1,
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(V) If 0 <lim infan—oobn < lim SUpp—oo(bn +cn) < 1 and
0 < lim infnoootn, then lim, ,oo||Toz, — zn|| = 0.

(vi) If 0 <lim infpooofn < lim supp—oo(an + Bn +7n) < 1,
then limy, oo ||T22n — zn|| = 0.

(vii) If 0 <lim infpooQn < lim suppoo(0n + Bn +m) < 1,
then limp ool T3yn — zn|| = 0.

Proof. Let p € F. By Lemma 2.1, supn>1|/zn — p|| exists. Choose a number
> 0 and r > sup,>1]|zn —p||, then by (2.1),(2.2),(2.3) we have that all sequences

{zn—p}, {yn —2}; {xn — P}, {T1%n — p}, {T22n — p}, {T5yn — p} belong to B, and by

Lemma 1.1 there is a continuous strictly increasing convex function g : [0, 00) —

[0, 00), g(0) = 0, such that

1

3
1 1

—3P29(lly — wi) — 37A9(llz — wl)) (2.4)

for all z,y,2,w € B, and all , 8,7, € [0,1] witha+B8+v+2A=1.
From (1.1) and (2.4) we have

loz + By + vz +2w|? < alz)? + Blyl? + 712l + AMlw|® - zedg(lz — w]) -

lzn =Pl = llan(Tazn — p) + 0(0) +0(0) + (1 — an)(zn — PII*
< anllTizn — ol + (1 = an)lizn — I
~zan(1 — an)g(ITizn — zal)
< anllan =l + (1~ an)lzn = 5l
= 3an(1 = an)g(ITsn = 2l
= Jlan — 2l - gan(1 — en)g(ITin — zall), (25)
and
lgn = plI2 = [bn(T22n — P) + ca(Tizn — p) +0(0) + (1 — bp — cn)(zn — P)||°
< balTazn —pl? + enllTizn = pI*+ (1 = b = cn) 5 — oI
21~ bn — en)lbng(ITazn — 2al) + eng(ITin — o)
< ballen = pI? + enllzn = oI + (1~ b0 = cn)llzn — |
31— bn — en)lbng (T3 = Zall) + cng(ITin = 2al)
< ballan = ol = gbnan(1 = an)o(|Tizn = zal)

+eall@n = pI? + (1 = by — en)llzn — Pl
-31;(1 = b — cn)[bag ([ T22n — @nll) + cng (|1 T22n — za )]
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1
= “mn —p”2 - gbnan(l - an)g(”len - xn”)

~ 31 = by = ca)lbng(IT22n = 2al) + eng(ITizn — al)].  (2:6)

By (1.1), (2.4), (2.5) and (2.6), we also have

lZny1 — P"2 =
<
<
<
Thus

lan(Tsyn — D) + Bn(Tozn — p) + Wn(Tizn — p) +

(1 — Oy — B — 'Yn)(mn ~p)||2

o || Tayn — plI? + Bl T22n — pII? + || Thzn — pII?

+(1 — an — Brn — m)ll(zn — p)"2

~5(1 = an — fn = W)leng(ITstm = al) + Bag (I Tazn - zal)
+Yng(|T1xn — Znl])]

anllyn — plI? + Ballzn — Pl + Wmlizn — p|I?

+(1 —ap — O — 'Yn)"(‘vn - p)”2

2 (1= an = n ~ M)lang(ITstn ~ znl) + Bg(ITo2n — 2
+1m9(|T1zn — 2nl))]

1
anllz, — p||2 - ganbnan(l — an)g(|Thzn — znl))

1

=3n(1 = bn ~ en)[bng(| T22n — znll) + cng(|IT12n — 2al))]

+Ballzn = DI = 58a0n(1 = an)g(I T — Zall) +nllzn ~ I
+(1 = an = Bn — W)ll(zn — P)|?

3 (1= an ~ i~ m)lang(|Totn = Zall) + Bag (I Tr2n ~ zn)
+ng(ITan = o)

lzn — plI* - %anbnan(l — an)9(|Tizn — zal)
1

—gan(l — b — €n)[bng([| T22n — ) + cng(|Thizn — z4l))]

~ 58atn(1 = an)g(ITsn = 2al)

~ 31 = an = B = W)lang(ITotm — znl) + Bag(IT22n = o)
+7n9(“T1xn - a’n")] (2'7)

anbnan(l — an)g(|Tizn = zal) < 3llzn — Pl — llznts —pl%).  (2.8)
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(1) If 0 < lim infpaooln, 0 < lim inf,_oobn and 0 < lim infp_ooln <
lim sup,—.o06n < 1, then there exist positive integer ng and reals 11, 72,173,174 €
(0,1) such that 0 <1y < ap, 0 <72 < by, 0 <73 < @y <1y < 1 for all n > nyg.

It follows from (2.8) that

mn2n3(1 = n4)g(|T1zn — za|l) < 3[|zn — plI* = |Tnt1 — pl|?]  for all n > ne.

This implies by Lemma 2.1 that lim g(||Tiz, — x,||) = 0. Since g is strictly in-
n—ro0
creasing and continuous at 0 with ¢(0) = 0, it follows that nlirgo \Tizn — zn]] = 0.

By using (2.7) and Lemma 2.1 with the same method as in (i), then (ii)-(vii)
are directly obtained, respectively. |

Lemma 2.3 .Let X be a uniformly convex Banach space, and C a nonempty closed
and convex subset of X. Let T1,T3 and T3 : C — C be nonezpansive self-maps of
Cwith F # 0. Let {an}, {Bn}; {7} {an}, {bn} and {cn} be real sequences in [0, 1]
such that b, + ¢, and a, + B + 7n are in [0,1] for alln > 1. For a given z; € C,
let {zn}, {un}, {2n} be the sequences defined by the iterative scheme (1.1) if

(1) 0 <lim infpaootn < lim supp—oo(@n + Bn +7n) < 1,
0 < lim infpaoobn < lim supn—oo(bn +cn) <1 and
0 < lim infpootn < lim supn—ootn < 1, or

(i) 0 < lim infrsoon < lim supp—oo(an + Pn +7m) <1,
0 < min{lim infn—oobn, lim infncocn} < lim supp_oo(bn +cn) < 1, or

(iii) 0 < min{lim infr—oon, lim infrnooofn} < lim supp_oo(An+0On+7n) < 1,
0 < lim infp—oobn < lim sUPn—oo(bn + cn) < 1 and
0 <liminfpctn < lim suppcoon < 1, or

(iv) 0 < min{lim infr—ooQn, lim infpooYn} < lim supp_oo(Qn+Bn+vn) < 1,
0 < lim infn—oobn < lim supp—oo(bn +cn) <1 or

(v) 0 < min{lim infr—ooOn, lim infrnocofn} < lim suppn_oo(@n+Pn+1n) <1,
0 < lim infrnoon < lim supp—ooan < 1, and
0 < lim infr—oobn, or

(vi) 0 < min{lim inf,—coQn, lim infrcoBn} < lim sUPp—oo(@nt+On+Tn) <1,
0 < lim infr—ooCn < lim SUPn—oo(bn +¢n) <1, or

(Vii) 0< mzn{lzm z'nfn_,ooan, lim ann—-rooﬁn} S lim SUPnR— 00 (an+ﬂn+’7n) < 1:
0 < lim infp—otn < lim Supp—cctn <1, or



102

Suantai, Glubudom

(viii) 0 < min{lim infrnoooQn, lim infrn—cofn, lim infrnooorn}

then lim ||Tix, — zn|| = lim |Tox, ~ za|| = lim || T3z, — za|| = 0.
n—o0 n—oeo n—oo
Proof. (i) By Lemma 2.2, we have |
lim HTl:c,, —_ :cnll =0, lim “T2zn — Zn ” =0, lim "T3y'n - mn" =0.
7—00 n—o0 n—+00

It follows that

ITozn — znll £ T2Zn — Tozall + | T22n — zal|
< |lzn — znll + | T220 — 4|
= |lanTiZn + (1 = an)Tn — Tull + [|[T22n — Zn||
< an||Tizn — znll + | T22n — 2n||
< |Tizn — znll + | T22n — 20| = O as n — oo,and
|T32n — znll < 1T3%n = Taynll + | Tsyn — zal|
< Nlzn = ynll + 1 T3Yn — za||
= |bnT2zn + cnT1Zn + (1 — bp — cn)@n — Tnll + | Tayn — @]
< balTezn = Znll + enllTa1%n — Zall + | T3yn — @n||
< |Tezn = 2| + |1T1Z0 — zull + | T3yn —2n|| = 0 as n— oo.
By using the same proof as in (i), (ii)- (viii) are obtained. ]

Theorem 2.4 Let X be a uniformly convez Banach space, and C a nonempty
closed and convex subset of X. Let Ty,T> and T3 : C — C be nonexpansive self-
maps of C with F # 0. Let {an}, {Bn}; {n}: {an}, {bn} and {cn} be real sequences
in [0,1] such that b, + cn and an + Bn + Yn are in [0,1] for alln > 1. For a given
z1 € C, let {zp}, {yn}, {2n} be the sequences defined by the iterative scheme (1.1)
if
(i) 0 < lim infrsoeln < lim supn—.oo(an + Bn+Tm) <1,
0 < lim infpooobn < lim infroo(bn +cn) <1 and
0 < lim infrnooln < lim supp,_.c0an <1, or

(ii) 0 < lim infpoco0n < lim SUPn_o(@n + Bn +1m) <1,
0 < min{lim infrncobn,lim infooocn} < lim infrnooo(bn +cn) <1, or

(iii) 0 < min{lim infn—ocoOn,lim infoccfn} < lim SUPp—oo(Cnt+Bntn) <1,
0 < lim infnooobn < lim infnoo(bn +cn) <1 and
0 < lim infrnaooln < lim sUpp—oon < 1, or



103

Weak and Strong convergence Theorem ...

(iv) 0 < min{lim infn_coCn, lim infrn_coVn} < lim sUuPp—oo(0n+Bn+1n) < 1,
0 <lim infnoobn < lim infp—oo(bn +¢cn) <1 or

(v) 0 < min{lim infnoon, lim infrcofn} < lim supn oo (Cn+Bn+vn) < 1,
0 <liminf,octn < lim sup,_ootn < 1, and
0 < lim infn—oobn, or

(vi) 0 < min{lim infroooOn, lim infa—ooBn} < lim sUPp—oo(Cn+Bn+Tn) < 1,
0 <infrnococn < lim infpooo(bn +cn) <1, or

(vii) 0 < min{lim infrn—ooQn, lim infn—0oBn} < lim sUPp—oo(Cn+LBn+1n) < 1,
0 <liminfpoetn < lim supp—ootn <1, or

(viil) 0 < min{lim infn—oon,lim infn—oofn, lim infnooTn}
< lim supn——foo(an + Bn +7m) <1,

and one of Ty, Ty and T3 is completely continuous, then {xn}, {yn} and {z,} con-
verge strongly to a common fized point of Ty, T2 and T3.

Proof. (i) By lemma 2.3, we have
lim ||Thz, — z,|l = lim |[|[Tox, — zp|| = lim || T3z, — z,]| = 0. (2.9)
n—oo _ n—>00 n—oo

Suppose without loss of generality that 7} is completely continuous. Since {z,} is
tbounded, there exists a subsequence {z,, } of {z,} such that {T1z,, } converges.
Therefore from (2.9), {zn, } converges. Let nlinéo Ty, = ¢. By continuity of 73 and

(2.9) we have that T1q = g, so ¢ is a fixed point of T;. Since 15,735 are continuous

and nlim | T2zn — 2n]| = lim ||T3x, — zn|| = 0, we obtain that g € F(T2),q9 €
—00 . n~»00
F(T3), so ¢ € F. By Lemma 2.1, nhm lzn — gl| exists. But nlingoxnk = ¢, 8O
~+00 —
lim z, =gq.
n—00

Since  |lyn — ol < bul|Tezn — zall + cnl|Tizn — Znl — 0 and
l2n —znll = anlTizn -z —0 as n — oo,
it follows that lim y, =g and lim 2z, =¢
n—o0 n—0o0
The proof of (ii)-(viii) is similar to that of (i). -

For ¢, = Bn = vn = 0 for all n € N, the following result are obtained directly
from Theorem 2.4.
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Corollary 2.5 Let X be a uniformly convex Banach space, and C a nonempty
closed and convez subset of X. Let Th, T and T3 : C — C be nonexpansive self-
maps of C with F # @. Let {a,},{an} and {Br} be real sequences in [0,1]. For
a given zy € C, let {z,},{yn}, and {2.} be the sequences defined by the iterative
scheme (1.2).

If 0 < liminfrpocan < lim suppootn <1,
0 < lim infrnocobn < lim supp—oobn <1,
0 < liminfrnocln < lim sup,_,cc0n <1 and

one of T1, T2 and T3 is completely continuous, then {xn},{yn} and {2} converge
strongly to a common fized point of Ty, T2 and T;.

In the next result, we prove weak convergence for the iterative scheme (1.1)
for three nonexpansive mappings in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 2.6 Let X be a uniformly convex Banach space which satisfies Opial’s
condition, and C a nonempty closed and convez subset of X. Let T1,T> and T3 :

C — C be nonexpansive self-maps of Cwith F # 0. Let {an}, {Bn}, {7} {an}, {bn}
and {cn} be real sequences in [0, 1] such that by + cp and an + fn +7n are in [0, 1]

for allm > 1. For a given z1 € C, let {zn}, {yn}, {2n} be sequences defined by the

iterative scheme (1.1)

G) If 0<lim infrooco@n < lim supp—co(@n + PBn+1m) <1,
0 < lim infrcofn < liMm SUPn— o (an + Bn + ™) <1, and
0 < lim infpcovn < lim SUPp—oo(Cn + Bn + ™) <1,
then {zn}, {yn} and {2n} converge weakly to a common fized point of T1,T>
and T3.

() If O0<lim infnoocln < lim sSupnocan <1,
0 < lim infnooobn < lim suPn—oo(bn +cn) <1, and
0 < limn infrooon < liM sUPn—oo(Qn + Bn +7n) <1,
then {z,}, {yn} and {zn} converge weakly to a common fized point of Ty, T2

and T3.
Proof. (i) If follows from Lemma 2.3 that
lim [ThZn — Zo)| = lim ||T2zn — %ol = lim [[Tszn — z,ll = 0.
n—o0 n-—0o0 n—0o0

Since X is uniformly convex and {z.} is bounded, we may assume that z, — u
weakly as n — oo, without loss of generality. By Lemma 1.4, we have u € F.
Suppose that subsequences {5, } and {Zm,} of {zn} converge weakly to u and v,
respectively. From Lemma 1.2, u,v € F. By Lemma 2.1, lim, oolln — u| and
liMin—oo||@n — v|| exist. It follows from Lemma 1.3 that u = v. Therefor {z,}
converge weakly to a common fixed point of T\, T, and T3.

(ii) The proof of (ii) is similar to that of (). [ ]
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