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1. INTRODUCTION

The Gauss map $G:[0,1)arrow[0,1)$ is defined by

$G(x)=\{$ $\frac{1}{x}-[\frac{1}{x}1o$

otherwise
if $x=0$

where $[\cdot]$ denotes the integer part. In [4] D. Barrow has shown that the Mixmas-
ter universe model exhibits chaotic behavior as time goes to $0$ near the initial
singularity state of the universe by connecting the Einstein equations with the
dynamical system $\{x, Gx, G^{2}x, \ldots, G^{n}x, \ldots\}$ , which has positive entropies.

For a sequence of partial quotients in the continued fractions of an irrational
number $\alpha=[a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots]$ the Gauss map $G$ is a shift map for this squence:

$G\alpha=[a_{1}, a_{2}, \ldots]$ , ..., $G^{n}\alpha=[a_{n}, a_{n+1}, \ldots]$ .
Khintchine’s conjecture is as follows: the sequence of partial quotients in the
continued fraction expansions of an algebraic real number of degree $\geq 3$ is un-
bounded and random”( aperiodic), but almost nothing has been proved yet.
Our main purpose is to investigate chaotic behaviors of the partial quotients
of these irrational numbers. In this paper we give some partial results by esti-
mating recurrent dimensions and topological entropy of these continued fraction
sequences.

First, introducing symbolic dynamical systems, we give inequality relations
between recurrent dimensions and entropy of an alphabets sequence. The re-
current dimensions have been introduced in our previous paper [9] as the pa-
rameters, which evaluate recurrent properties, defined by using $\epsilon$-neighborhood
recurrent times. For a sequence $u=\{a_{i}\}_{i\geq 1}$ of the partial quotients of $\alpha$ and
a shift map $\sigma$ , defined by $(\sigma u)_{n}=u_{n+1}=a_{n+1}$ , we consider a discrete orbit
$\Sigma=\{u, \sigma u, \sigma^{2}u, \ldots, \sigma^{n}u, \ldots\}$ , which corresponds to the discrete dynamical system
$\{G^{n}\alpha : n=1,2, \ldots\}$ . We define the lower recurrent dimension by the following
limit infimum value as $\epsilonarrow 0$ , using the infimum of the first $\epsilon$-neighborhood
recurrent times in the orbit $\Sigma$ , which is denoted by $\underline{M}_{\Sigma}(\epsilon)$ :

$\underline{D}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

and we also define the upper recurrent dimension by using their supremum values:

$\overline{D}(\Sigma)=\lim_{\epsilonarrow}\sup_{0}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$ .
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We give tlie following inequality relations between these recurrent dimensions of
$\Sigma$ and the topological entropy $\mathcal{H}_{p}(u)$ , which is defined by using the complexity
function of the sequence $u$ .

$\underline{D}(\Sigma)\leq \mathcal{H}_{p}(u)\leq\overline{D}(\Sigma)$ .
Recently, in [1] B.Adamczewski and Y. Bugeaud gave a class of transcendental

numbers, the partial quotients sequences of which have some recurrent properties.
For this class numbers we call them $\tau_{0}$-transcendental numbers or $\tau_{0}$-recurrent
numbers with the recurrent order value $\tau_{0}>0$ . The complement of the set of
$\tau_{0}$-transcendental numbers in the set of irrational numbers contains algebraic
numbers of degree $\geq 3$ and 0-recurrent or non-recurrent transcedental numbers.

For the sequence $u$ of partial quotients of an irrational number $\alpha$ we can show
that

$\underline{D}(\Sigma)=\overline{D}(\Sigma)=0$

if $\alpha$ is a $\tau_{0}$-transcendental number for $\tau_{0}>0$ with some unifomly recurrent
conditions.

In our previous papers [10], [12], [13] we introduce the gap value $\mathcal{G}(\Sigma)$ of
recurrent dimensions by

$\mathcal{G}(\Sigma)=\overline{D}(\Sigma)-\underline{D}(\Sigma)$

as the parameter which specifies the levels of unpredictability of a sequence $u$

or a discrete orbit. Thus, if we could prove the converse statement: $\overline{D}(\Sigma)=0$

yields that $\alpha$ is a transcendental number (or a quadratic irrational), we could
show that the sequence $u$ of partial quotients of an algebraic number, which has
its degree $\geq 3$ , satisfies

$0=\underline{D}(\Sigma)<\overline{D}(\Sigma)$ or $0<\underline{D}(\Sigma)\leq \mathcal{H}_{p}(u)$ ,

that is, the sequence $u$ is unpredictable, since its gap value $\mathcal{G}(\Sigma)$ of recurrent
dimensions is positive, or chaotic, since its topological entropy $\mathcal{H}_{p}(u)$ is positive.
Nothing has yet been proved for the converse statement, but here we give an
example of continued fractions which has positive gaps of recurrent dimensions.

This paper is an anouncement of our recent results and so their complete
proves will be given in the forthcoming paper.

2. SYMBOLIC DYNAMICAL SYSTEMS

In this section, introducing notations of symbolic dynamical systems, we show
some inequality relations between the recurrent dimensions and the topological
entropy of an alphabet sequence.

Let $A=\{a_{1}, a_{2}, \ldots, a_{d}\}$ be a finite set of symbols and a word $V=v_{1}v_{2}..v_{r}$ be
a finite string of elements of $A$ with its length $r$ , denoted by $|V|=r$ . The set of
nonnegative integers is denoted by $N_{0}=N\cup\{0\}=\{0,1,2, \ldots\}$ and we consider a
$(onearrow sided)$ sequence of elements of $A,$ $u=(u_{n})_{n\in N_{0}}=u_{0}u_{1}u_{2}\ldots\in A^{N_{0}}$ . A word
$W=w_{1}w_{2}\ldots w_{r}$ is called a factor of $u$ if $u_{m}=w1,$ $u_{m+1}=w_{2},$ $\ldots,$ $u_{m+r-}1=w_{r}$

for some $m\in N_{0}$ . $\mathcal{L}(u)$ denotes the set of all factors of $u$ , which is called the
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language of the sequence $u$ and $\mathcal{L}_{n}(u)$ denotes the set of all factors with its length
$n$ .

We denote the complexity function of $u$ by $P_{u}(n)=\neq \mathcal{L}_{n}(u)$ , which is the
number of different words of length $n$ occurring in $u$ . We consider the following
metric on $\mathcal{A}^{N_{0}}$ :

$d(u,v)=2^{-\min\{n\in N_{0}:u_{n}\neq v_{n}\}}$

for $u,$
$v\in \mathcal{A}^{N_{0}}$ : $u\neq v$ . The one-sided shift $\sigma$ : $A^{N_{0}}arrow \mathcal{A}^{N_{0}}$ is defined by

$(\sigma u)_{n}=u_{n+1},$ $n\in N_{0}$

and its discrete orbit is denoted by
$\Sigma:=\Sigma_{u}=\{u,\sigma u,\sigma^{2}u, \ldots,\sigma^{n}u, \ldots\}$ .

Denote the recurrency function of $u$ by $R_{u}(n)$ , which is the least integer $m(:=$

$R_{u}(n))$ such that each m-factor of $u$ contains every n-factor of $u$ .
We define the first $\epsilon$-recurrent times by

$\underline{M}_{\Sigma}(\epsilon)=\inf_{l\in N_{0}}\min\{m\in N:d(\sigma^{m+l}u, \sigma^{\iota}u)<\epsilon\}$ ,

$\overline{M}_{\Sigma}(\epsilon)=\sup_{l\in N_{0}}\min\{m\in N : d(\sigma^{m+l}u, \sigma^{I}u)<\epsilon\}$ .

Then we can obtain the following relations

Lemma 2.1. For $\epsilon_{n}=2^{-n},$ $n=1,2,$ $\ldots$ , we have
(2.1) Mx $(\epsilon_{n})\leq P_{u}(n)$ ,
(2.2) $\overline{M}_{\Sigma}(\epsilon_{n})=R_{u}(n)-n+1$ .

In [6] Morse and Hedlund have given the following inequality

(2.3) $P_{u}(n)+n\leq R_{u}(n)$ .
Now we have the following sequence of inequalities:

$\underline{M}_{\Sigma}(\epsilon_{n})\leq P_{u}(n)$ , $P_{u}(n)+n\leq R_{u}(n),$ $R_{u}(n)-n+1=\overline{M}_{\Sigma}(\epsilon_{n})$ .
It follows that
(2.4) $\underline{M}_{\Sigma}(\epsilon_{n})\leq P_{u}(n)\leq\overline{M}_{\Sigma}(\epsilon_{n})$ .

The topological entropy $\mathcal{H}_{P}(u)$ is given by the complexity function:

$\mathcal{H}_{P}(u)=\lim_{narrow\infty}\frac{\log_{d}P_{u}(n)}{n}$ .

Here we also put

$\mathcal{H}_{R}(u)=\lim_{narrow\infty}\frac{\log_{d}R_{u}(n)}{n}$

and we define the recurrent dimensions

$\overline{D}_{r}(\Sigma)=\lim_{earrow}\sup_{0}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$ ,

$\underline{D}_{r}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$.
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In [10] we have shown that these recurrent dimensions are given by

$\overline{D}_{r}(\Sigma)=\lim\sup_{\epsilon_{n+}narrow\infty 1}\sup_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$,

$\underline{D}_{r}(\Sigma)=\lim_{narrow}\inf_{\infty\epsilon_{n+}1}\inf_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

for any sequence $\{\epsilon_{n}\}$ : $\epsilon_{n}\downarrow 0$ as $narrow\infty$ .
Then we have the following inequality relations.

Theorem 2.2. For a sequence $u\in A^{N_{0}}$ and $\Sigma=\{\sigma^{n}u:n\in N_{0}\}$ we have

$\frac{\log 2}{\log d}\cdot\underline{D}_{r}(\Sigma)\leq \mathcal{H}_{P}(u)\leq \mathcal{H}_{R}(u)=\frac{\log 2}{\log d}\cdot\overline{D}_{r}(\Sigma)$ .

Proof. The first (left side) inequality can be estimated by the definitions and
Eq.(2.1) in Lemma 2.1.

$\underline{D}_{r}(\Sigma)$ $= \lim_{narrow}\inf_{\infty\epsilon_{n+}1}\inf_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\underline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\leq\lim_{narrow}\inf_{\infty}\frac{\log\underline{M}_{Z}(\epsilon_{n})}{-\log\epsilon_{n}}$

$\leq$ $\frac{\log d}{\log 2}\lim_{narrow\infty}\frac{\log P_{u}(n)}{n\log d}=\frac{\log d}{\log 2}\cdot \mathcal{H}_{P}(u)$.

The second inequality is obvious from the definitions and Eq.(2.3). The right
hand side equality is also obtained by the following estimates, using Eq.(2.2),

$\overline{D}_{r}(\Sigma)$ $= \lim\sup_{\epsilon_{n}narrow\infty+1}\sup_{\leq\epsilon\leq\epsilon_{n}}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\leq\lim_{narrow}\sup_{\infty}\frac{\log\overline{M}_{\Sigma}(\epsilon_{n+1})}{-\log\epsilon_{n}}$

$= \lim_{narrow}\sup_{\infty}\frac{\log(R_{u}(n+1)-(n+1)+1)}{n\log 2}$

$\leq$ $\frac{\log d}{\log 2}\lim_{narrow\infty}\frac{\log R_{u}(n+1)}{(n+1)\log d}\cdot\frac{n+1}{n}=\frac{\log d}{\log 2}\cdot \mathcal{H}_{R}(u)$

and

$\overline{D}_{r}(\Sigma)$ $= \lim\sup_{e_{n}narrow\infty+1}\sup_{\leq\epsilon\leq e_{n}}\frac{\log\overline{M}_{\Sigma}(\epsilon)}{-\log\epsilon}$

$\geq\lim_{narrow}\sup_{\infty}\frac{\log\overline{M}_{\Sigma}(\epsilon_{n})}{-\log\epsilon_{n}}$

$= \lim_{narrow\infty}\frac{\log(R_{u}(n)-n+1)}{n\log 2}$

$\geq$ $\frac{\log d}{\log 2}\lim_{narrow\infty}\frac{\log_{\tilde{2}}^{1}R_{u}(n)}{n\log d}=\frac{\log d}{\log 2}\cdot \mathcal{H}_{R}(u)$ .
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3. $\tau_{0}$ -TRANSCENDENTAL NUMBERS

In this section we investigate the recurrent properties and the entropy of dis-
crete orbits given by partial quotients sequences of continued fraction expansions.

For an irrational positive number $\alpha$ : $0<\alpha<1$ we consider the sequence
$u=\{a_{i}\}_{i\geq 1}$ of its partial quotients: $\alpha=[0 : a_{1}, a_{2}, \ldots]$ . Let $U_{j},$ $V_{j}$ be words of $u$ :
$U_{j}=a_{1}a_{2}\cdots a_{n_{j}}$ and $V_{j}=a_{1}a_{2}\cdots a_{m_{j}}$ . We denote the concatenation of the two
words $U_{j}$ and $V_{j}$ by $U_{j}V_{j}$ .

We say that $a$ real number $\alpha$ has a linearly recurrent continued fraction se-
quence (abr. c.f. $s.$ ) if there exists an infinite sequence of prefix words $U_{j}V_{J’}$ in
the c.f. $su$ of $\alpha$ which satisfy the following conditions for a positive constant $\tau_{0}$ :

(i) $|U_{j}|$ is increasing,

(ii) $\frac{|V_{j}|}{|U_{j}|}\geq\tau_{0}$ for all $j$ .
Hereafter we also consider the case where the sequence of the partial quotients

are unbounded, but, for simplicity, we assume the following condition on the
denominators of convergents $\{p_{n}/q_{n}\}$ :

$\lim_{larrow\infty}(q\iota)^{\tau}1=e\frac{\pi^{2}}{121_{\circ l}2}$ $:=K_{L}$ ($Khinchin$-L\’evy Constant)

It is well known that almost all numbers satisfy this condition.
In $[1|$ Adamczewski and Bugeaud proved that, if an irrational number $\alpha$ has

a linearly recurrent c.f. $s.$ , then $\alpha$ is transcendental. So we also call a real num-
ber, which has the linearly recurrent c.f. $s$ with the conditions (i) and (ii), a
$\tau_{0}$-transcendental number.

We need the further definitions on recurrent dimensions. For an element $\sigma^{\iota}u\in$

$\Sigma,$ $l\in N_{0}$ , define the first $\epsilon$-recurrent time by
$M_{\sigma^{l}u}( \epsilon)=\min\{m\in N:d_{2}(\sigma^{m+}\prime u,\sigma^{\iota}u)<\epsilon\}$ ,

and the upper and the lower recurrent dimensions of $\sigma^{l}u\in\Sigma$ by

$\overline{D}_{r}(\sigma^{l}u)=\lim_{\epsilonarrow}\sup_{0}\frac{\log M_{\sigma^{l}u}(\epsilon)}{-\log\epsilon}$,

$\underline{D}_{r}(\sigma^{l}u)=\lim_{\epsilonarrow}\inf_{0}\frac{\log M_{\sigma^{l}u}(\epsilon)}{-\log\epsilon}$.

It follows from the definitions that we have

(3.1) $\underline{D}_{r}(\Sigma)\leq\underline{D}_{r}(\sigma’ u)\leq\overline{D}_{r}(\sigma^{\iota}u)\leq\overline{D}_{r}(\Sigma)$

for every $l\in N_{0}$ .
We can obtain the following relation between the recurrent dimensions and

the $\tau_{0}$-transcendental numbers.

Theorem 3.1. We assume that $\alpha$ is a $\tau_{0}$ -transcendental number for some $\tau_{0}>0$ ,
which satisfies the $\omega nditions(i),$ $(ii)$ and the following condition (iii) in addition:

(iii) $\lim_{jarrow\infty}\frac{\log|V_{j+1}|}{|V_{j}|}=0$.

Then $\overline{D}_{r}(\sigma^{n}u)=\underline{D}_{f}(\sigma^{n}u)=0$ holds for all $n\in N_{0}$ .

176



We can prove Theoreni 3.1 by using the following Lemmas.
Lemma 3.2. If $\alpha$ is a $\tau_{0}$ -transcendental number for some $\tau_{0}>0$ with satisfying
the condition (iii), $D_{r}(u)=\underline{D}_{r}(u)=0$ holds.

Lemma 3.3. If $\alpha$ is a $\tau_{0}$ -transcendental number for $\tau_{0}>0$ with (iii), $G^{n}\alpha,$ $\forall n\in$

$N$ , is a $\tau_{0}$ -transcendental number for $\tau_{0}>0$ with (iii).

Lemma 3.4. For $n\in N$ , assume that $G^{n}\alpha$ is a $\tau_{0}$ -transcendental number for
some $\tau_{0}>0$ with (iii). Then $\overline{D}_{r}(\sigma^{n}u)=\underline{D}_{r}(\sigma^{n}u)=0$ holds.

Adamczewski and Bugeaud have also given the following transcendental crite-
rion in [1].

Let $\alpha$ : $0<\alpha<1$ , an irrational number and consider the sequence $u=\{a_{i}\}_{i>1}$ ,
the sequence of the partial quotients of $\alpha=[0 : a_{1}, a_{2}, \ldots]$ . $\Sigma=\{\sigma^{n}u$ ; $n\in N_{0}\overline{\}}$ .

Here we say that $\alpha$ is a weakly $\tau_{0}$-transcendental number if there exists a
sequence $\{W_{j}U_{j}V_{j}\}$ of prefixes of $u$ , which satisfies the following conditions:

$(i’)$ each $V_{j}$ is a prefix of $U_{j}V_{j}$ and $|W_{j}|$ is increasing,
(ii’) there exists $a$ constant $\tau_{0}>0$ : $\frac{|V_{j}|}{|U_{j}|}\geq\tau_{0}$ for all $j$ ,

(iii’) there exists a constant $\tau_{1}>0$ : $\tau_{0}>\tau_{1},$ $\frac{|W_{j}|}{|U_{j}|}\leq\tau_{1}$ for all $j$ .

Theorem 3.5. Assume that $\alpha$ is a weakly $\tau_{0}$ -transcendental number. Then we
have

$\underline{D}_{r}(\Sigma)=0$ .

By using the same argument as in the proof of Theorem 3.5 we obtain the
following corollary.

Corollary 3.6. Assume that $\alpha$ is a $\tau_{0}$ -transcendental number. Then we have
$\underline{D}_{r}(\Sigma)=0$ .

To obtain the estimate
$\overline{D}_{r}(\Sigma)=\underline{D}_{r}(\Sigma)=0$

we need the following uniform assumption on the recurrent property.
We say that $\alpha$ has a uniformly recurrent c.f. $s$ . if there exist two increasing

sequences of integers $\{l_{j}\},$ $\{m_{j}\}$ such that for every $l\in N$ the c.f. $s$ . of a real
number $G^{l}\alpha$ has a sequence of prefix words $\{U_{j}’V_{j}’\}$ , which satisfies

$|V_{j}’|\geq l_{j}$ , $|U_{j}’|\leq m_{j}$ .
Theorem 3.7. Assume that $\alpha$ has a uniforrnly recurrent $c.f.s$ . for the sequences
$\{l_{j}\},$ $\{m_{j}\}$ and assume that

(3.2) $\lim_{jarrow\infty}\frac{\log m_{j+1}}{l_{j}}=0$.

Then $\overline{D}_{r}(\Sigma)=\underline{D}_{r}(\Sigma)=0$ holds.
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If the sequence $\{G^{l}\alpha\}$ is almost periodic, then $\alpha$ has a uniformly recurrent
c.f. $s.$ . The definition of almost periodicity in this case is as follows.

For every small $\epsilon>0$ , there exists $l_{\epsilon}>0$ ( $\epsilon$-inclusion length) such that for
each integer $m$ , there exists a integer $p\in[m, m+l_{e}]$ ( $\epsilon$-almost period), which
satisfies

$\sup_{l\in N}d(G^{\iota}\alpha, G^{l+p}\alpha)\leq\epsilon$ .

Putting $\epsilon_{j}=2^{-l_{j}}$ , $l_{e_{j}}=m_{j}$ , we can take an $\epsilon_{j}$-almost period $p_{j}\in[1, l_{\epsilon_{j}}]$ ,
which satisfies

$sud(G^{l}\alpha, G^{l+p_{j}}\alpha)\leq\epsilon_{j}l\in N^{\cdot}$

Thus we can admit the c.f. $s$ . of $G^{\iota}\alpha$ , which has prefixes $\{U_{j}’V_{j}’\}$ such that
$|U_{j}’|=p_{j}\leq l_{\epsilon_{j}}=m_{j}$ , $|V_{j}’|\geq l_{j}$ .

4. CONTINUED FRACTIONS OF STURMIAN SEQUENCES

Let $\mathcal{A}=\{1,2\}$ and $u=u_{0}u_{1}u_{2}\ldots$ be a l-type sturmian sequence, which does
not contain a word 22. Then it is well known that the complexity function
$P_{u}(n)=n+1$ and the frequency value of the letter 1 is given by

$\tau=\lim_{narrow\infty}\frac{|u_{0}u_{1}\ldots u_{n-1}|_{1}}{n}$

where $|U|_{1}$ is the number of occurrences of the letter 1 in a word $U$ .
For the discrete orbit

$\Sigma;=\Sigma_{u}=\{u, \sigma u, \sigma^{2}u, \ldots, \sigma^{n}u, \ldots\}$

it follows from Theorem 3.5 that the lower recurrent dimension $\underline{D}_{r}(\Sigma)=0$ , since
the irrational number $\alpha=[u_{0},u_{1}, \cdots]$ , which has a Sturmian c.f. sequence, is
$\tau_{0}$-tarascendental (cf. [2], [3]). Since the complexity function $P_{u}(n)=n+1$ for
Sturmian sequences, we can also show that $\underline{D}_{r}(\Sigma)=0$ by using the definition of
the topological entropy $\mathcal{H}_{p}(u)$ and the inequality relation in Theorem 2.2.

Here we estimate its upper recurrent dimensions $\overline{D}_{r}(\Sigma)$ according to the al-
gebraic properties, parametrized Diophantine conditions, of the frequency value
$\tau$ . In our previous papers [10],[11] we introduce $d_{0^{-}}(D)$ condition, which specifies
the (good or bad) levels of approximation by rational numbers.

If an irrational number $\tau$ satisfies $d_{0^{-}}(D)$ condition for $0\leq d_{0}<\infty$ , then $\tau$ is a
Roth number with its order $d_{0}+\epsilon$ for every $\epsilon>0$ and also $\tau$ is a weak Liouville
number with its order $d_{\eta}-\epsilon$ for every $\epsilon>0$ . In case where an irrational number
$\tau$ does not satisfy the Diophantine condition for a finite value $d_{0}$ , we say that $\tau$

is a Liouville number or $d_{0}=\infty$ .
Theorem 4.1. For a discrete orbit $\Sigma$ given by a Sturmian sequence, assume that
the frequency $\tau$ satisfies $d_{0^{-}}(D)\omega ndition$ for $0\leq d_{0}<\infty$ . Then we have

(4.1) $\overline{D}_{f}(\Sigma)=0$ .
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Theorem 4.2. For a discrete orbit $\Sigma$ given by a Sturmian sequence, let $\{r_{n}/s_{n}\}$

be the convergents of the frequency $\tau$ and assume that $\tau$ is a Liouville number
such that there exists a subsequenoe $\{s_{n_{j}}\}\subset\{s_{n}\}$ , which satisfies
(4.2) $s_{n+1}j\geq L^{s_{n_{j}}}$

for a $\omega nstantL>1$ . Then we have

(4.3) $\overline{D}_{r}(\Sigma)\geq\frac{\log L}{\log 2}$ .
Consequently, the gap value of the recurrent dimensions is positive:

$\mathcal{G}(\Sigma)\geq\frac{\log L}{\log 2}$ .
Remark 4.3. It follows from(4.2) that

$| \tau-\frac{r_{n_{j}}}{s_{n_{j}}}|\leq\frac{1}{s_{n_{j}}L^{s_{n_{j}}}}$ ,

which gives the extremely good approximation property $(d_{0}=\infty)$ by rational
numbers.
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