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ABSTRACT

Improving the result of last year’s workshop at RIMS, we prove that the Kervaire
spheres $\Sigma_{K}^{4k+1}$ where $k+1$ is not a power of 2, do not admit any free $S^{1}$ -actions if $k$ is
not divisible by 16.

1 Introduction
We have been trying to prove the following conjecture:

Conjecture: The Kervaire sphere $\Sigma_{K}^{4k+1}$ , where $k+1$ is not a power of two, does not admit
any smooth free $S^{1}$ -action.

This problem goes back to the work of Brumfiel $[1|$ where he proved that the conjecture
is true for $k=2$ . Later Igarashi ([4]) verified the conjecture for $k\leq 32$ . In last year’s
workshop, we proved the conjecture for the case where the 2-order of $k\nu_{2}(k)\leq 2$ . The
purpose of this note is to give the proof for the case $\nu_{2}(k)=3$ and at the same time we obtain
some directions to get to the complete solution.

Let’s fix some notations that will be used in this note. Let $p$ be a prime. For a nonzero
integer $n$ , the exponent of $p$ in the prime factorization of $n$ is called the p-order of $n$ and is
denoted by $\nu_{p}(n)$ . We state our main theorem which is a one-step improvement of the last
year’s result $[6\rceil$ .

Theorem. Let $k$ be an integer such that $k+1$ is not a power of two. Then the Kervaire
sphere $\Sigma_{K}^{4k+1}$ does not admit any smooth free $S^{1}$ -action if $\nu_{2}(k)\leq 3$ .

In the following description, sections 2 and 4 are completely new. Other sections 3 and 5
are essentially the same, but are included to make this note self-contained.
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2 Elementary number theory and formal power series
Let $p$ be a prime. The notion of p-order can be extended to nonzero rational numbers by

defining $\nu_{p}(n/d)=\nu_{p}(n)-\nu_{p}(d)$ for a nonzero rational $n/d$.
Let a nonzero integer $n$ be expressed in an p-adic form $n= \sum_{i=0}^{r}t_{i}p^{i}$ , then the sum of all

digits $\sum_{i=0}^{r}t_{i}$ is denoted by $\kappa_{p}(n)$ .

Lemma 2.1. Let $n$ be a nonnegative integer. Then we have the folloing.
(a) $\nu_{p}(n!)=\frac{n-\kappa_{p}(n)}{p-1}$ .

(b) $\nu_{p}((\begin{array}{l}nk\end{array}))=\frac{\kappa_{p}(k)+\kappa_{p}(n-k)-\kappa_{p}(n)}{p-1}$ .

(c) Let $n= \sum_{i}n_{i}p^{i}$ and $k= \sum_{i}k_{i}p^{i}$ be p-adic expansions of nonneggative integers $n$ and
$k$ . Then the binomial coefficient $(\begin{array}{l}nk\end{array})$ is divisible by $p$ if and only if there exists an $i$ such

that $n_{i}<k_{i}$ .

Proof. It is not difficult to see that both $q_{n}=\nu_{p}(n!)$ and $q_{n}=(n-\kappa_{p}(n))/(p-1)$ satisfy
the same inductive formula

$q_{0}=0$ and $q_{n}=[n/p|+q[n/p]$ ,

where $[t]$ denotes the greatest integer not exceeding $t$ . This formula uniquely determines the
sequence $\{q_{n}\}$ and we get (a). (b) follows immediately from (a). To show (c), if such column
position $i$ exists, then in the addition process of $k$ and $n-k$ in p-adic forms, there is a column
where digit addition carries 1 to the next column. Then the total sum of digits decreases and
we have $\kappa_{p}(k)+\kappa_{p}(n-k)>\kappa_{p}(n)$ . $\blacksquare$

Lemma 2.2. Let $n$ be an odd natural number.

(a) If $m$ is odd, $\nu_{2}(n^{qm}+1)=\nu_{2}(n^{q}+1)$ and $\nu_{2}(n^{qm}-1)=\nu_{2}(n^{q}-1)$ .
(b) $\nu_{2}(n^{2i}-1)=\nu_{2}(n^{2}-1)+\nu_{2}(i)$ .

(c) $\nu_{2}(n^{i}-(-1)^{i})=\{\begin{array}{ll}\nu_{2}(n+1), if i is odd\nu_{2}(n^{2}-1)+\nu_{2}(i)-1, if i is even.\end{array}$

Proof. (a) follows immediately from the factorization

$n^{qm}-1=(n^{q}-1)(n^{(m-1)q}+n^{(m-2)q}+\cdots+n^{q}+1)$ .

To show (b), in view of (a), without loss of generality we may assume that $i=2^{e}$ . Then
from the factorization

$n^{2i}-1=(n^{2}-1)(n^{2}+1)(n^{2^{2}}+1)\cdots(n^{2^{e}}+1)$ ,

we have (b) since $\nu_{2}(n^{2^{r}}+1)=1$ . When $i$ is odd, (c) follows from (a). When $i$ is even, (c)

is included in (b). $\blacksquare$
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We shall consider formal power series with rational coefficients. The quotient field of
$\mathbb{Q}[[x]]$ is the ring of formal Laurent series with only a finite number of terms with negative
powers of $x$ . We shall only consider such Laurent series.

Given a power series or a Laurent series $F(x)$ we shall denote the coefficient of $x^{i}$ in $F(x)$

by $(F(x))_{i}$ . For a Laurent series $F(x)$ , the coefficient of $x^{-1}$ in $F(x)$ is called the residue of
$F(x)$ is denoted by ${\rm Res}_{x}(F(x))$ . Let $G(x)= \sum_{i\geq 0}\gamma_{i}x^{i}$ be a power series with $\gamma_{0}=0$ and
$\gamma_{1}\neq 0$ . Taking residues are subject to the following change of variables formula:

Proposition 2.3. ([5]) For a Laurent series $F(y)$ , we have

${\rm Res}_{y}(F(y))={\rm Res}_{x}(F(G(x))G’(x))$ ,

where $G’(x)= \sum i\gamma_{i}x^{i-1}$ is the formal derivative of $G(x)$ . $\blacksquare$

Bemoulli numbers $B_{i}$ are rational numbers characterized by

(1) $\frac{x}{e^{x}-1}=1-\frac{1}{2}x+\sum_{i\geq 1}\frac{(-1)^{k-1}B_{i}\backslash }{(2i)!}x^{2i}$ .

Let us consider the power series of Hirzebruch’s index formula:

(2) $h(x)= \frac{x}{\tanh x}=1+\sum_{i\geq 1}\frac{(-1)^{i+1}2^{2i}B_{i}}{(2i)!}x^{2i}$ .

To simplify our notation, we shall put $a_{i}=(h(x))_{2i}=(-1)^{i+1}2^{2i}B_{i}/(2i)!$ .
Let $\mathbb{Z}_{(2)}$ be the ring of integers localized at 2, that is, $\mathbb{Z}_{(2)}$ is the set of all rational numbers

with odd denominator.

Lemma 2.4. As to the 2-order of the coefficients of $h(x)$ , we have $\nu_{2}(a_{i})=\kappa_{2}(i)-1$ for
$i\geq 1$ . Therefore all the coefficients of $h(x)$ belong to $\mathbb{Z}_{(2)}$ .
Proof. From the theorem of von Staudt and Clausen $(|3|, 7.10),$ $\nu_{2}(B_{i})=-1$ . Thus we have,
$\nu_{2}(a_{i})=2i-1-\nu_{2}(2i)=2i-1-(2i-\kappa_{2}(2i))=\kappa_{2}(i)-1$ . $\blacksquare$

Later we shall consider the power series $1+g(x)=h(3x)/h(x)$ . Let us write $g(x)=$
$\sum_{i\geq 1}b_{i}x^{2i}$ . From the equality $h(x)g(x)=h(3x)-h(x)$ , we have

$\sum_{i\geq 1}b_{i}x^{2i}(1+\sum_{i\geq 1}a_{i}x^{2i})=\sum_{i\geq 1}(3^{2i}-1)a_{i}x^{2i}$.

And by comparing the coefficients, we have

(3) $b_{n}+ \sum_{i=1}^{n-1}a_{i}b_{n-i}=(3^{2n}-1)a_{n}$ .

Lemma 2.5. $\nu_{2}(b_{n})\geq 3$ and $\nu_{2}(b_{n})=3$ holds if and only if $n$ is a power of 2.
Proof. The assertion is true for $b_{1}=8/3$ . We assume that our claim is true for all $b_{i}$ with
$i<n$ . If $n$ is not a power of two, $\nu_{2}((3^{2n}-1)a_{n})=\nu_{2}(3^{2}-1)+\nu_{2}(i)+\nu_{2}(a_{n})\geq 3+1=4$
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since $y_{2}(a_{n})\geq 1$ . From the inductive assumption $\nu_{2}(a_{i}b_{n-i})\geq 3$ and the equality holds if
and only if boh $i$ and $n-i$ are of the form $i=2^{\Gamma}$ and $n-i=2^{S}$ . However, $r\neq s$ since $n$

is not a power of 2. And if there is such term $a_{\dot{l}}b_{n-i}$ , then the term $a_{n-i}b_{i}$ also has 2-order
3. This shows that $\nu_{2}(a_{i}b_{r\iota-i}+a_{n-i}b_{i})\geq 4$ . And we have $\nu_{2}(b_{n})\geq 4$ . If $n$ is a power of
two, then only the term $a_{i}b_{n-i}$ with $i=n/2$ has 2-order 3, and since $\nu_{2}((3^{2n}-1)a_{n})=$

$\nu_{2}(3^{2n}-1)=3+\nu_{2}(n)\geq 4$ , we have $\nu_{2}(b_{n})=3$ .

3 Surgery Obstruction
This section contains nothing new compared to last year’s article. However this section is

included to make this article self-contained and thus give the readers the knowledge about
the geometric aspects of our subject.

We shall translate the statement conceming group actions to the one about surgery ob-
structions.

Lemma 3.1. The following two statements are equivalent.
(a) The Kervaire sphere $\Sigma_{K}^{4k+1}$ does not admit any free $S^{1}$ -action.
(b) If the normal map

$\nu_{M}$
$arrow^{b}$

$\xi$

(4) $\downarrow$ $\downarrow$

$M^{4k+2}arrow^{f}\mathbb{C}P(2k+1)$

has zero $4k$-dimensional surgery obstruction $s_{4k}=0$ for the surgery data

$f|f^{-1}(\mathbb{C}P(2k))$ : $f^{-1}(\mathbb{C}P(2k))arrow \mathbb{C}P(2k)$

obtained by restriction to the codimension 2 subspace, then the $(4k+2)$ -dimensional surgery
obstruction $s_{4k+2}$ of $f$ must also vanish.

Proof. Let us prove that (a) implies (b). Suppose there exists a normal map $f$ : $M^{4k+2}$ $arrow$

$\mathbb{C}P(2k+1)$ such that the surgery obstruction $s_{4k+2}$ of $f$ is nonzero and the restricted
surgery problem to $\mathbb{C}P(2k)$ has zero surgery obstruction $s_{4k}=0$ . Then we can per-
form surgery on $f^{-1}(\mathbb{C}P(2k))$ and within the normal cobordism class we may assume that
$X=f^{-1}(\mathbb{C}P(2k))arrow \mathbb{C}P(2k)$ is a homotopy equivalence. The tubular neighborhood $N$ of
$X$ is homotopy equivalent to $\mathbb{C}P(2k+1)_{0}=\mathbb{C}P(2k+1)-intD^{4k+2}$ and its boundary $\partial N$ is
homotopy equivalent to $S^{4k+1}$ . But the remaining part $W=M-$ int$(N)$ is a parallelizable
manifold and its surgery obstruction for the normal map $Warrow D^{4k+2}$ rel. $\partial W$ is nonzero.
Therefore $W$ has nonzero Kervaire obstruction and its boundary $\partial W=\partial N$ is the Kervaire
sphere. Since $\partial N$ is the total space of an $S^{1}$ -bundle, this implies that the Kervaire sphere
admits a free $S^{1}$ -action.

Conversely, suppose that (b) holds, but (a) does not hold. If the Kervaire sphere $\Sigma_{K}^{4k+1}$

admits a free $S^{1}$ -action, the quotient space of the $S^{1}$ -action $X^{4k}=\Sigma^{4k+1}/S^{1}$ is homotopy
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equivalent to the complex projective space $\mathbb{C}P(2k)$ and the associated $D^{2}$ -bundle $N^{1A\backslash +2}=$

$(\Sigma_{K}^{4k+1}\cross D^{2})/S^{1}$ is homotopy equivalent to $\mathbb{C}P(2k+1)_{0}=(S^{4k+1}\cross D^{2})/S^{1}$ where the $S^{1}\subset$

$\mathbb{C}$ acts on $S^{4k+1}\subset \mathbb{C}^{2k+1}$ and on $D^{2}\subset \mathbb{C}$ by complex number multiplication. Let $lf^{r4k+2}$ be
a smooth parallelizable manifold with $\partial Tf^{r}=\Sigma_{K}^{1l_{\grave{\iota}}+1}$ and Kervaire invariant $c(M^{\prime^{r}})=1$ . Then
by gluing $N$ and $M’$

’ along the common boundary $\Sigma_{K}$ , we obtain $a$ normal map $f$ : $\lrcorner\lambda I^{4k+2}=$

$N \bigcup_{\Sigma_{K}}lVarrow \mathbb{C}P(2k+1)$ with an appropriate vector bundle $\xi$ , and its surgery obstruction
$s_{4k+2}$ is equal to $c(W)=1$ . Hence we have a normal map $f$ with target space $\mathbb{C}P(2k+1)$

with nonzero Kervaire surgery obstructi on, but the codimension 2 surgery problem obtained
by restricting the target manifold to $\mathbb{C}P(2k)$ has zero surgery obstruction $s_{4k}=0$ , since
$f|X^{4k}$ : $X^{4k}arrow \mathbb{C}P(2k)$ is a homotopy equivalence. This contradicts the assumption (b).

This completes the proof of Lemma 3.1. $\blacksquare$

Our objective of this note is to show that the statement (b) in Lemma 3.1 is true. To do so,
we must deal with all possible vector bundles that appear in (4). We point out the following
four items that needs consideration:

Bundle data The stable bundle difference $\zeta=\nu_{\mathbb{C}P(2k+1)}-\xi$ is fiber homotopically trivial,
namely it belongs to the kernel of the J-homomorphism $J$ : $\overline{KO}(\mathbb{C}P(2k+1))arrow$

$\tilde{J}(\mathbb{C}P(2k+1))$ . The generators of the kemel can be expressed by Adams operations
in KO-theory. The solution of the Adams conjecture imply that 2-local generators are
given by the images of $\psi_{\mathbb{R}}^{3}-1$ ([10], Theorem 11.4.1).

The surgery obstruction $s_{4k}$ in dimension $4k$ In dimension $4k$ , the surgery obstruction is
given by the index obstruction, which can be computed using Hirzebruch’s $L$ classes.
However, the exact form of the obstruction gets complicated and requires simplified
treatment.

Surgery obstruction $s_{4k+2}$ in dimension $4k+2$ The surgery obstruction $s_{4k+2}$ in dimen-
sion $4k+2$ can be dealt with by the results of $[7|,[8],$ $[9]$ . In fact, the obstruction
$s_{4k+2}$ is equal to the two dimensional obstruction $s_{2}$ for the surgery data $s_{2}$ , which is
essentially the 2-dimensional Kervaire class $K_{2}$ .

Relation of $K_{2}$ and the first Pontrjagin class $p_{1}$ From the result originally due to Sullivan,
the blacksquare of $K_{2}$ for the bundle data $\zeta$ is equal to $p_{1}(\zeta)/8mod 2$ (see [11],
$14C)$ . This fact gives us a bridge connecting the integral index obstruction and the
$mod 2$ Kervaire obstruction.

4 Index obstruction in dimension $4k$

The kemel of the 2-local J-homomorphism $J$ : $\overline{KO}(\mathbb{C}P(2k+1))arrow\tilde{J}(\mathbb{C}P(2k+1))$ is
generated by Image $(\psi_{\mathbb{R}}^{q}-1)$ ( $q$ odd), $where\psi_{\mathbb{R}}^{q}\sim$ is the Adams operation in KO-theory and we
may take $q=3$ . The additive generators of $KO(\mathbb{C}P(2k+1))$ are given by $\omega^{j}(1\leq j\leq k+1)$
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where $\omega$ is the realification of the complex virtual vector bundle $\eta-1$ , where $\eta \mathbb{C}$ is complex
Hopf line bundle. The Adams operation $\acute{w}_{\mathbb{R}}^{j}$ on $\omega$ is given by the formula

(5) $\psi_{\mathbb{R}}^{j}(\omega)=T_{j}(\omega)$

where $T_{j}(z)$ is a polynomial of degree $j$ characterized by

(6) $T_{j}(t+t^{-1}-2)=t^{j}+t^{-j}-2$ .

Since the coefficient of $z^{j}$ in $T_{j}(z)$ is one, we may consider $T_{j}(\omega)$ $(1\leq j\leq k+1)$ as
generators of $\overline{KO}(\mathbb{C}P(2k+1))$ . However, when restricted on $\mathbb{C}P(2k)$ , we have $\omega^{k+1}=0$

and we may safely discard $\omega^{k+1}$ in the actual computation. In our argument, we do not
necessarily need to know the kemel of $J$ : $\overline{KO}(\mathbb{C}P(2k+1))arrow\tilde{J}(\mathbb{C}P(2k+1))$ . Later
computation shows that we can ignore odd multiples of elements and we have only to know
2-local generators of the kemel. The 2-local generators of the kemel of $J$ are

(7) $\zeta_{j}=(\psi_{\mathbb{R}}^{3}-1)\psi_{\mathbb{R}}^{j}(\omega)$ $(j=1,2, \ldots, k)$

and an element of the 2-local kemel of the J-homomorphism has the form

(8) $\zeta=\sum_{j=1}^{k}m_{j}\zeta_{j}$

where $m_{j}$ belong to $\mathbb{Z}_{(2)}$ , the ring of integers localized at 2.
The surgery obstruction $s_{4k}$ of the surgery data (4) when restricted on $\mathbb{C}P(2k)$ is given by

(9) $8s_{4k}=(Index(M)$ –Index $(\mathbb{C}P(2k)))=((\mathcal{L}(\zeta)-1)\mathcal{L}(\mathbb{C}P(2k)))[\mathbb{C}P(2k)]$

where $\mathcal{L}$ is the multiplicative class associated to the power series

(10) $h(x)= \frac{x}{\tanh x}=1+\sum_{i\geq 1}\frac{(-1)^{i+1}2^{2i}B_{i}}{(2i)!}x^{2i}$ .

If the total Pontrjagin class of a bundle $\xi$ is given by $p( \xi)=\prod_{i}(1+x_{i}^{2}),$ $\mathcal{L}(\xi)$ is given by
$\prod_{i}h(x_{i})$ and when $\Lambda l$ is a manifold, we define $\mathcal{L}(M)=\mathcal{L}(\tau_{M})$ . To calculate the Pontrjagi $n$

class of $\psi_{\mathbb{R}}^{j}(\omega)$ , we note that

$\psi_{\mathbb{R}}^{?}(\omega)\otimes \mathbb{C}=\psi_{\mathbb{C}}^{j}(\omega\otimes \mathbb{C})=\psi_{\mathbb{C}}^{j}(\eta\oplus-2_{\mathbb{C}})$

$=\psi_{\mathbb{C}}^{j}(\eta \mathbb{C})+\psi_{\mathbb{C}}^{\prime j}(\overline{\eta}_{\mathbb{C}})-2_{\mathbb{C}}=\eta_{\mathbb{C}}’+\overline{r\gamma}_{\mathbb{C}}^{j}-2_{\mathbb{C}}$ ,

whose total Chem class is $(1 +jx)(1-jx)=1-j^{2}x^{2}$ , where $x$ is the generator of
$H^{2}(\mathbb{C}P(2k+1))$ . Hence the total Pontrjagin class of $\psi_{\mathbb{R}}^{j}(\omega)$ is $1+j^{2}x^{2}$ . For the virtual
bundle $\zeta$ in (8), we have

(11) $\mathcal{L}(\zeta)=\prod_{j=1}^{k}(\frac{h(3jx)}{h(jx)})^{m_{j}}$
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Given a power series $f(x)$ in $x$ , let us express the the coefficient of $x^{71}$ in $f(x)$ by $(f(x)).$ .
The $4k$-dimensional obstruction $s_{4k}$ is given by

(12) $s_{4k}=((\mathcal{L}(\zeta)-1)h(x)^{2k+1})_{2k}/8$ .

We now calculate the $\mathcal{L}$ class:

$\mathcal{L}(\zeta)-1=\prod_{j}(1+g(jx))^{m_{j}}-1$

$= \prod_{j}(1+(\begin{array}{l}m_{j}1\end{array})g(jx)+(\begin{array}{l}m_{j}2\end{array})(g(jx))^{2}+\cdots)-1$

$= \sum_{i_{1}+i_{2}+\cdots+i_{k}\geq 1}(\begin{array}{l}m_{1}i_{1}\end{array})(\begin{array}{l}m_{2}i_{2}\end{array})\cdots(\begin{array}{l}m_{k}i_{k}\end{array})g(x)^{i_{1}}g(2x)^{i_{2}}\cdots g(kx)^{i_{k}}$

$\equiv\sum_{j}(\begin{array}{l}m_{j}1\end{array})g(jx)+\sum_{j}(\begin{array}{l}m_{j}2\end{array})g(jx)^{2}+\sum_{i<j}(\begin{array}{l}m_{i}1\end{array})(\begin{array}{l}m_{j}1\end{array})g(ix)g(jx)$ $mod 512$

Let us write

$A_{j}=(g(jx)h(x)^{2k+1})_{2k}$ , $B_{i,j}=(g(ix)g(jx)^{2}h(x)^{2k+1})_{2k}$ .

The $4k$-dimensional surgery obstruction $s_{4k}$ is calculated as

$8s_{4k}=((\mathcal{L}(\zeta)-1)h(x)^{2k+1})_{2k}$

(13)
$\equiv\sum_{j}m_{j}\mathcal{A}_{j}+\sum_{j}(\begin{array}{l}m_{j}2\end{array})B_{j,j}+\sum_{i<j}(\begin{array}{l}m_{i}1\end{array})(\begin{array}{l}m_{j}1\end{array})B_{i,j}$ mod512

Lemma 4.1.
(a) $A_{1}= \frac{2(3^{k}-(-1)^{k})}{3^{k}}$ , $\nu_{2}(A_{1})=\nu_{2}(k)+3$ .

(b) $B_{1,1}= \frac{4(3^{k}-(-1)^{k}+(-1)^{k}4k)}{3^{k}}$ , $\nu_{2}(B_{1,1})\geq\nu_{2}(k)+5$ .

Proof. We first prove (a) : From

$\tanh 3x=\frac{3\tanh x+\tanh^{3}x}{l+3\tanh^{2}x}$

and
$g(x)= \frac{h(3x)}{h(x)}-1=\frac{8\tanh^{2}x}{3+\tanh^{2}x}$ ,

we have

$A_{1}=( \frac{8\tanh^{2}x}{3+\tanh^{2}x}(\frac{x}{\tanh x})^{2k+1})_{2k}$

$={\rm Res}_{x}( \frac{8\tanh^{2}x}{(3+\tanh^{2}x)\tanh^{2k+1_{X}}})_{2k}$
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by change of variables $y=\tanh x$ ,

$={\rm Res}_{y}( \frac{8}{y^{2k-1}(3+y^{2})(1-y^{2})})$

$=( \frac{8}{(3+y^{2})(1-y^{2})})_{2k-2}$

$=( \frac{8}{(3+z)(1-z)})_{k-1}$

$=2( \frac{1}{3+z}+\frac{1}{1-z})_{k-1}$

$=2( \frac{1}{3}(-\frac{1}{3})^{k-1}+1)$

$= \frac{2(3^{k}-(-1)^{k})}{3^{k}}$ .

From Lemma 2.2 (c), we have $\nu_{2}(3^{k}-(-1)^{k})=\nu_{2}(k)+3$ . This proves (a).
(b): In a similar manner, we can calculate $B_{1,1}$ .

$B_{1,1}=(g(x)^{2}h(x)^{2k+1})_{2k}$

$=(( \frac{8\tanh^{2}x}{3+\tanh^{2}x})^{2}(\frac{x}{\tanh x})^{2k+1})_{2k}$

$=64{\rm Res}_{y}( \frac{1}{y^{2k-3}(3+y^{2})(1-y^{2})})$

$=64( \frac{1}{(3+y^{2})^{2}(1-y^{2})})_{2k-4}$

$=64( \frac{1}{(3+z)^{2}(1-z)})_{k-2}$

$=64( \frac{1}{48}\sum_{i\geq 0}((-\frac{1}{3})^{i}+\frac{1}{36}(-\frac{1}{3})^{i}(i+1)+\frac{1}{16}Iz^{i})_{k-2}$

$=64((- \frac{1}{3})^{k-2}(\frac{1}{48}+\frac{k-1}{36})+\frac{1}{16}I$

$= \frac{4(3^{k}-(-1)^{k}+(-1)^{k}4k)}{3^{k}}$ .

Since $\nu_{2}(4(3^{k}-(-1)^{k}))=\nu_{2}(k)+4$ and $\nu_{2}(16k)=\nu_{2}(k)+4$ , we see that their sum $B_{1,1}$

satisfies $\nu_{2}(B_{1,1})\geq\nu_{2}(k)+5$ . $\blacksquare$

Lemma 4.2. Suppose $m\leq k$ , then we have

(a) $(x^{2m}h(x)^{2k+1})_{2k}\equiv(\begin{array}{l}k+m2m\end{array})mod 2$,

(b) $(x^{2m}h(x)^{2k+1})_{2k} \equiv\frac{1}{2^{2m}}(1+(-1)^{k-m}\sum_{i=0}^{2m-1}(\begin{array}{ll}k-m +ii \end{array})2^{i})$ $mod 4$ .
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In particular, we have

(c) $(x^{2}h(x)^{2k+1})_{2k}\equiv(k +12)$ $mod 2$ .

(d) $(x^{2}h(x)^{2k+1})_{2k} \equiv\frac{(-1)^{k+1}(2k+1-(-1)^{k})}{4}mod 4$.

(e) $(x^{2^{r+1}}h(x)^{2k+1})_{2k}\equiv(\begin{array}{ll}k +2^{r}2^{r+1} \end{array})$ $mod 2$ .

(f) If $\nu_{2}(k)\geq r+2$ then $(x^{2^{r+1}}h(x)^{2k+1})_{2k}$ is even.

Proof. (a): We have

$(x^{2m}h(x)^{2k+1})_{2k}={\rm Res}_{x}( \frac{x^{2m}}{\tanh^{2k+1_{X}}})={\rm Res}_{y}(\frac{(\arctan y)^{2m}}{y^{2k+1}(l-y^{2})})$

$={\rm Res}_{y}( \frac{(y+y^{3}/3+y^{5}/5+\cdots)^{2m}}{y^{2k+1}(1-y^{2})})={\rm Res}_{y}(\frac{\backslash \prime\rho(y)^{2m}}{y^{2k+1-2m}(1-y^{2})})$

where $\varphi(y)=1+y^{2}/3+y^{4}/5+\cdots$ ,

$\equiv{\rm Res}_{y}(\frac{(1+y^{2}+y^{4}+y^{6}+\cdots)^{2m}}{y^{2k+1-2m}(1-y^{2})})$ $mod 2$

$={\rm Res}_{y}( \frac{1}{y^{2k+1-2m}(1-y^{2})^{2m+1}})=(\frac{1}{(1-y^{2})^{2m+1}})_{2k-2m}$

$=( \frac{1}{(1-\sim’)^{2m+1}})_{k-m}=(\sum_{i}(\begin{array}{ll}2m +ii \end{array})z^{i})_{k-m}$

$=(\begin{array}{l}k+mk-m\end{array})=(\begin{array}{l}k+m2m\end{array})$ .

(b): By similar calculation, we have

$(x^{2m}h(x))_{2k} \equiv{\rm Res}_{y}(\frac{(1-y^{2}+y^{4}-y^{6}+\cdots)^{2m}}{y^{2k+1-2m}(1-y^{2})})$ $mod 4$

$={\rm Res}_{y}( \frac{1}{y^{2k+1-2m}(1-y^{2})(1+y^{2})^{2m}})$

$=( \frac{1}{(1-y^{2})(1+y^{2})^{2m}})^{2k-2m}=(\frac{1}{(1-z)(1+z)^{2m}})_{k-m}$

On the other, we have the following expansion

(14) $\frac{1}{(1-z)(1+z)^{n}}=\frac{1}{2^{n}}(\frac{1}{1-z}+\frac{1}{2}\sum_{j=1}^{n}(\frac{2}{1+z})^{i})$

In view of this formular, we have

$(x^{2m}h(x))_{2k} \equiv\frac{1}{2^{2m}}(1+(-1)^{k-m}\sum_{i=0}^{2m-1}(\begin{array}{ll}k-m +ii \end{array})2^{i})$ $mod 4$ .
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(c) and (d) follow from (a) and (b) respectively. (e) is a special case of (a). Last, we prove
(f). If $k$ is divisible by $2^{r+2}$ , then note that the dyadic expansion of $k+2^{r}$ does not contain
$2^{r+2}$ , therefore by Lemma 2.1 (c), the binominal coefficient $(_{2^{r+1}}^{k+2^{r}})$ is even. $\blacksquare$

Lemma 4.3 (a) If $j$ is even then $\nu_{2}(A_{j})\geq 5$ . In addition if 2 $\leq\nu_{2}(k)\leq 3$ , then
$\nu_{2}(A_{j})\geq\nu_{2}(k)+4$ .

(b) If $j$ is odd, then $\nu_{2}(\mathcal{A}_{j}-A_{1})\geq 6$ and if in addition $\nu_{2}(k)\geq 2$ , then $\nu_{2}(A_{j}-A_{1})\geq 7$.
(c) If either $i$ or $j$ is even, then $\nu_{2}(B_{i,j})\geq 8$ .
(d) If both $i$ and $j$ are odd, then $\nu_{2}(B_{i_{1}j}-B_{1,1})\geq 9$ .
Proof. (a): In the expression $A_{j}= \sum_{i}b_{i}j^{2i}(x^{2i}h(x)^{2k+1})_{2k},$ $\nu_{2}(b_{i}j^{2i}(x^{2i}h(x)^{2k+1})_{2k}=$

$\nu_{2}(b_{i})+2i\nu_{2}(j)+\nu_{2}(x^{2i}h(x)^{2k+1})_{2k}\geq 3+2i+\nu_{2}(x^{2i}h(x)^{2k+1})_{2k}$ . If $i>1$ , then $\nu_{2}(b_{i}j^{2i})\geq 7$

holds. If $i=1$ , then by Lemma 4.2, if $\nu_{2}(k)=2$ then $(x^{2}h(x)^{2k+1})_{2k}$ is even. We also have
$\nu_{2}(b_{i}j^{2}(x^{2}h(x)^{2k+1}))_{2k}\geq 6=\nu_{2}(k)+4$. If $\nu_{2}(k)=3$ then from Lemma 4.2 (d) we see
that $(x^{2}h(x)^{2k+1})_{2k}\equiv-k/2mod 4$, which is congruent to $0mod 4$ . This shows that
$\nu_{2}((x^{2}h(x)^{2k+1})_{2k})\geq 2$ . This proves $\nu_{2}(\mathcal{A}_{j})\geq\nu_{2}(k)+4$.
(b): Let us tum to the case where $j$ is odd. In the expression, $A_{j}-A_{1}= \sum_{i\geq 1}b_{i}(j^{2i}-$

$1)(x^{2i}h(x)^{2k+1})_{2k}$ , let us consider

$N_{i}=\nu_{2}(b_{t}(j^{2}-1)(x^{2i}h(x)^{2k+1})_{2i})$

$=\nu_{2}(b_{i})+\nu_{2}(j^{2i}-1)+\nu_{2}(x^{2i}h(x)^{2k+1})_{2k}$

Here since $j$ is odd, we have $\nu_{2}(j^{2}-1)\geq 3$. Thus we have $\nu_{2}(N_{i})\geq 6$. If $i$ is even, then
$\nu_{2}(i)\geq 1$ and we have $N_{i}\geq 7$. If $i$ is odd then, $\nu_{2}(b_{i})\geq 4$ except for $i=1$ . However when
$i=1$ , if $\nu_{2}(k)\geq 2$ , we see that $(x^{2}h(x)^{2k+1})_{2k}$ is even by Lemma 4.2 (c). Therefore $N_{i}\geq 7$ .
(c) follows immediately from the fact that $\nu_{2}(b_{i})\geq 3$ . To show (d), in the expression

$g(ix)g(jx)-g(x)^{2}=g(ix)(g(jx)-g(x))+g(x)(g(ix)-g(x)$ ,

we note that all the coefficients of $g(ix)$ and $g(jx)$ are divisible by $2^{3}$ and that those of
$g(jx)-g(x)$ and $g(ix)-g(x)$ are divisible by $2^{6}$ . From these facts, we conclude that all the
coefficients of $(g(ix)g(jx)-g(x)^{2})h(x)^{2k+1}$ are divisible by $2^{9}$ . $\blacksquare$

Now we are ready to prove our key lemma:

Lemma 4.4. Suppose that $\nu_{2}(k)\leq 3$ . Then as to the surgery obstruction $s_{4k}$ , we have

$s_{4k} \equiv 2^{\nu_{2}(k)}\sum_{j:odd}m_{j}$

$mod 2^{\nu_{2}(k)+1}$

Proof. We shall examine the 2-orders of the terms on the right hand side of (13).

We first note that from Lemma 4. 1 that
$\nu_{2}(A_{1})=\nu_{2}(k)+3$ , and $\nu_{2}(B_{1,1})\geq\nu_{2}(k)+5$ .

When $j$ is odd and $\nu_{2}(k)\leq 2$ then we have $\nu_{2}(A_{j})=\nu_{2}(k)+3$ since by Lemma 4.3 (b),
$\nu_{2}(A_{j}-A_{1})\geq 6\geq\nu_{2}(k)+4$ . If $j$ is odd and $\nu_{2}(k)=3$ , then we also have $\nu_{2}(A_{j})=$
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$\nu_{2}(k)+3$ since $\nu_{2}(-4_{j}-A_{1})\geq 7$ . When $j$ is even then from Lemma 4.3 $(a)$ , we have
$\nu_{2}(A_{j})\geq\nu_{2}(k)+4$ . From Lemma 4.3 (c),(d) and from the fact that $\nu_{2}(B_{1,1})\geq\nu_{2}(k)+5$ ,

we see that for all $i$ and $j,$ $\nu_{2}(B_{i,j})\geq\nu_{2}(k)+4$. Combining these facts, we get the conclusion.
$\blacksquare$

Remark. This invariant $\sum_{j}m_{j}$ was called the $\mu$-invariant of the surgery data in $|2|$ .

5 The first Kervaire class and the first Pontrjagin class
In the normal map (4), let $\zeta=\nu_{\mathbb{C}P(2k+1)}-\xi$ , then it can be written (2-locally) $\zeta=$

$\sum_{j=1}^{k}m_{j}\zeta_{j}$ where $\zeta_{j}=(\psi_{\mathbb{R}}^{3}-1)\psi_{\mathbb{R}}^{j}(\omega)$ . The total Pontrjagin class of $\psi_{\mathbb{R}}^{m}(\omega)$ is given by

(15) $p(\psi_{\mathbb{R}}^{m}(\omega))=1+m^{2}x^{2}$

and we have

(16) $p( \zeta_{j})=\frac{1+9j^{2}x^{2}}{1+j^{2}x^{2}}$

(17) $p( \zeta)=\prod_{j}(\frac{1+9j^{2}x^{2}}{1+j^{2}x^{2}})^{m_{j}}$

For the first Pontrjagin class, we have

(18) $p_{1}( \zeta)/8=(\sum_{j}j^{2}m_{j})x^{2}$ .

We know that the 2-dimensional surgery obstructi on $s_{2}$ for $f|f^{-1}(\mathbb{C}P(1))$ is equal to $\sum_{j}j^{2}m_{j}$

$mod 2$ since in the complex projective space surgery theory, the $mod 2$ reduction of $p_{1}(\zeta)$

coincides with the square of the 2-dimensional Kervaire class for the given normal map
(see Wall’s book [11, Chap 13. $\rfloor)$ . And it is known that if $k+1$ is not a power of 2, then
$(4k+2)$ -dimensional surgery obstruction coincides with 2-dimensional surgery obstruction
$([9\rfloor,[7|,[8])$ . From these facts we get the following Proposition.
Proposition 5.1. If $\sum_{j}$ odd $m_{j}$ is even, then the surgery obstruction $s_{4k+2}$ vanishes.

Proof of Theorem:
Let $k$ is an integer such that $k+1$ is not $a$ power of two and assume that $k$ is not divisible

by 8. Then for the surgery problem of $\mathbb{C}P(2k+1)$ with bundle data $\zeta=\sum_{j}m_{j}\zeta_{j}$ , if the 4k-
dimensional surgery obstruction $s_{4k}$ vanishes then $\sum_{j}m_{j}$ must be even from Lemma 4.4.
Then by Proposition 5.1, the $(4k+2)$ -dimensional surgery obstruction $s_{4k+2}$ should also
vanish. In view of Lemma 3.1, this proves our assertion.
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