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ABSTRACT. In this paper we study the graded quotients of the lower central series of
the image of the IA-automorphism group of a free group by the Burau representation.
$\ln$ particular, we determine their structures for degrees 1 and 2.

1. INTRODUCTION

For $n\geq 2$ , let $F_{n}$ be a free group of rank $n$ with basis $x_{1},x_{2},$ $\ldots,$ $x_{n}$ , and $\Gamma_{n}(1)$ $:=F_{n}$ ,
$\Gamma_{n}(2),$

$\ldots$ its lower central series. We denote by Aut $F_{n}$ the group of automorphisms of
$F_{n}$ . For each $k\geq 0$ , let $A_{\eta}(k)$ be the group of automorphisms of $F_{n}$ which induce the
identity on the quotient group $F_{n}/\Gamma_{n}(k+1)$ . Then we have a descending filtration

Aut $F_{n}=\mathcal{A}_{n}(0)\supset A_{n}(1)\supset A_{n}(2)\supset\cdots$

of Aut $F_{n}$ , which is called the Johnson filtration of Aut $F_{n}$ . The Johnson filtration
of Aut $F_{n}$ was originally introduced in 1963 with a remarkable pioneer work by An-
dreadakis $[1|$ who showed that $\mathcal{A}_{m}(1),$ $\mathcal{A}_{n}(2),$

$\ldots$ is a central series of $A_{m}(1)$ , and that
the graded quotient $gr^{k}(A_{n})$ $:=A_{n}(k)/\mathcal{A}_{n}(k+1)$ is a free abelian group of finite rank
for each $k\geq 1$ . Furtheremore, he [1] also showed that $\mathcal{A}_{2}(1),$ $\mathcal{A}_{2}(2),$

$\ldots$ coincides with
the lower central series of $A_{2}(1)$ .

The group $\mathcal{A}_{\eta}(1)$ is called the IA-automorpshim group which is also denoted by
IA$n$ . Magnus [15] showed that IA$n$ is finitely generated. Furthermore, recently, Cohen-
Pakianathan [5, 6], Farb [7] and Kawazumi [13] inedepedently determined the abelian-
ization of $IA_{n}$ . (See Subsection 2.2.) In general, however, the group structure of $IA_{n}$ is
far from being well understood. For example, a presentation of $IA_{n}$ is still not known.
For $n=3$, Krsti\v{c} and McCool [14] showed that $1A_{3}$ is not finitely presentable. For
$n\geq 4$ , it is not known whether $IA_{n}$ is finitely presentable or not. In addition to this,
even the structures of the low dimensional (co)homology of IA$n$ are not completely
determined.

Since each of the graded quotients $gr^{k}(A_{n})$ is considered as a one by one approxima-
tion of $IA_{n}$ , to determine the structure of $gr^{k}(A_{n})$ plays very important roles on study
of the group structure and the (co)homology groups of IA$n$ . In order to investigate each
of $gr^{k}(\mathcal{A}_{n})$ , certain injective homomorphisms

$\tau_{k}:gr^{k}(\mathcal{A}_{n})arrow H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$
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are defined. These homomorphisms are called the Johnson homomorphisms of Aut $F_{n}$ .
(For definition, see [20] and [26].) Recently, the study of the Johnson filtration and
the Johnson homomorphisms of Aut $F_{n}$ are made good progress by many authors, for
example, [5], [6], [7], [13], [18], [19], [20], [24] and [26]. Here, we are interested in the
following two problems. One is to determine whether $\mathcal{A}_{m}(k)$ coincides with the k-th term
$\mathcal{A}_{\gamma}^{l}(k)$ of the lower central series of $IA_{n}=\mathcal{A}_{n}(1)$ or not. Andreadakis [1] showed that
$\mathcal{A}_{3}(3)=\mathcal{A}_{3}’(3)$ . Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13] independently
showed that $\mathcal{A}_{m}(2)=\mathcal{A}_{n}’(2)$ for any $n\geq 3$ . Furthermore, recently, Pettet [24] obtained
that $\mathcal{A}_{n}’(3)$ has a finite index in $A_{n}(3)$ . However, it seems that there are few results for
higher degrees. The other problem is to detremine the abelianization of each $\mathcal{A}_{m}(k)$ for
$k\geq 2$ . By a contribution from the study of the Johnson homomorphisms of Aut $F_{n}$ , we
see that it contains a free abelian group of finite rank. However, it is not known even
whether each of $H_{1}(\mathcal{A}_{n}(k), Z)$ is finitely generated or not.

In this paper, we study the images of $A_{m}(k)$ and $\mathcal{A}_{n}^{l}(k)$ through the Burau represen-
tation, which is one of the most important Magnus representations of Aut $F_{n}$ defined
on $IA_{n}$ . (For definition, see subsection 2.4.) In general, the Magnus representations of
Aut $F_{n}$ are representations of various subgroups of Aut $F_{n}$ by making use of the Fox’s
free differential calculus. (See [4] for details.) In this paper, we denote the Burau rep-
resentation by $\tau_{B}$ , and write $\mathcal{B}_{n}(k)$ $:=\tau_{B}(\mathcal{A}_{n}(k))$ and $\mathcal{B}_{n}’(k);=\tau_{B}(\mathcal{A}_{n}^{l}(k))$ . First, we
determine the abelianization of $\tau_{B}(IA_{n})$ .
Theorem 1. For any $n\geq 2_{f}H_{1}(\tau_{B}(1A_{n}), Z)\cong Z^{\oplus n(n-1)}$ .

Next, to study $\mathcal{B}_{n}^{l}(k)$ and its graded quotients $gr^{k}(\mathcal{B}_{n}^{l})$ $:=\mathcal{B}_{n}’(k)/\mathcal{B}_{n}(k+1)$ for $k\geq 2$ ,
we consider a certain normal subgroup of $\tau_{B}(IA_{n})$ . For $1\leq i\neq j\leq n$ , let $L_{ij}$ be an
automorphism of $F_{n}$ defined by

$L_{ij}:\{\begin{array}{ll}x_{i} \mapsto x_{j}x_{i}x_{j}^{-1}, x_{t} \mapsto x_{t}, (t\neq i).\end{array}$

We denote by $y_{n}$ a subgroup of $\tau_{B}$ (IA$n$ ) generated by $L_{in}$ and $L_{nj}$ for $1\leq i,j\leq n-1$ .
Let $\mathcal{Y}_{n}’(k)$ be the lower central series of $\mathcal{Y}_{n}$ . Then we prove:
Theorem 2. For any $n\geq 2$ and $k\geq 2,$ $\mathcal{Y}_{n}^{l}(k)=\mathcal{B}_{n}^{l}(k)$ .

Using this, we show:

Theorem 3. For $n\geq 2,$ $gr^{2}(\mathcal{B}_{n}’)\cong Z^{\oplus(n^{2}-n-1)}$ .
Observing the proof of the theorem above, as a corollary, we obtain:

Corollary 1. For $n\geq 2,$ $\mathcal{B}_{n}(3)=\mathcal{B}_{n}^{l}(3)$ .
To show these, for $1\leq l\leq k$ , we define certain homomorphisms $\psi_{k,l}$ from $\mathcal{B}_{n}(k)$ to a

free abelian group, and determine its image in Section 3. Using these homomorphisms,
we detect a free abelian subgroup of $gr^{k}(\mathcal{B}_{n})$ and $gr^{k}(\mathcal{B}_{n}^{l})$ . We also show:
Corollary 2. For $n\geq 2,$ $k\geq 2$ and $1\leq l\leq k,$ $\psi_{k_{2}l}(\mathcal{A}_{n}(k))=\psi_{k_{2}l}(\mathcal{A}_{n}’(k))$ .

This shows that the difference between $\mathcal{A}_{m}(k)$ and $\mathcal{A}_{n}’(k)$ is characterized by the kemel
of the homomorphisms $\psi_{k,l}$ . FMrthermore, observing the image of $\psi_{k,k}$ , we obtain:
Corollary 3. For $n\geq 2$ and $k\geq 2,$ $H_{1}(\mathcal{A}_{n}(k), Z)\supset Z^{\oplus k(n^{2}-n-1)}$ .
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We remark that we can not detect all of $Z^{\oplus k(n^{2}-n-1)}\subset H_{1}(\mathcal{A}_{n}(k), Z)$ by the k-
th Johnson homomorphism of Aut $F_{n}$ since some part of $Z^{\oplus k(n^{2}-n-1)}$ is contained in
$\mathcal{A}_{m}(k+1)$ .

As an application, using a result $gr^{2}(\mathcal{B}_{n}’)\cong Z^{\oplus n^{2}-n-1}$ , we can determine the image of
the cup product $\cup:\Lambda^{2}H^{1}(\tau_{B}(IA_{n}), Z)arrow H^{2}(\tau_{B}(IA_{n}), Z)$ . We show:

Theorem 4. For $n\geq 2,$ ${\rm Im}(\cup)\cong Z^{\oplus(n-2)(n+1)(n^{2}-n-1)/2}$

Finally, we consider the case where $n=2$ . In particular, we show
Theorem 5. For any $k\geq 2_{f}gr^{k}(\mathcal{B}_{2}’)\cong Z$ .

Here we remark that by a result of Andreadakis $[1|$ , we have gr$k(\mathcal{B}_{2})=$ gr$k(\mathcal{B}_{2}’)$ for
each $k\geq 1$ .

In Section 2, we show the definition and some properties of the IA-automorphism
group, the Johnson filtration and the Magnus representations of the automorphism
group of a free group. In Section 3, to study the gr$k(\mathcal{B}_{n})$ and $gr^{k}(\mathcal{B}_{n}^{l})$ , we define
homomorphisms $\psi_{k_{1}l}$ and determine their images. In Section 4, we consider the lower
central series $\mathcal{B}_{n}’(k)$ of $\tau_{B}(1A_{n})$ . In particular, we determine the structure of the graded
quotients $gr^{k}(\mathcal{B}_{n}^{l})$ for $k=1$ and 2. In Section 5, we determine the image of the
cup product map $\cup:\Lambda^{2}H^{1}(\tau_{B}(IA_{n}), Z)arrow H^{2}(\tau_{B}(IA_{n}), Z)$ . Finally, In Section 6,
we consider the case where $n=2$ .
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2. PRELIMINARIES
In this section, we recall the definition and some properties of the IA-automorphism

group and the Magnus representations of the automorphism group of a free group.
2.1. Notation.

Throughout the paper, we use the following notation and conventions.
$\bullet$ For a group G, the abelianization of G is denoted by $G^{ab}$ .

3

89



$\bullet$ For a group $G$ , the group Aut $G$ acts on $G$ from the right. For any $\sigma\in$ Aut $G$

and $x\in G$ , the action of $\sigma$ on $x$ is denoted by $x^{\sigma}$ .
$\bullet$ For a group $G$ , and its quotient group $G/N$ , we also denote the coset class of

an element $g\in G$ by $g\in G/N$ if there is no confusion.
$\bullet$ For elements $x$ and $y$ of a group, the commutator bracket $[x, y]$ of $x$ and $y$ is

defined to be $[x, y];=xyx^{-1}y^{-1}$ .
2.2. IA-automorphism group.

For $n\geq 2$ , let $F_{n}$ be a free group of rank $n$ with basis $x_{1},$ $\ldots,$ $x_{n}$ . We denote the
abelianization of $F_{n}$ by $H$ , and its dual group by $H^{*}$ $:=Hom_{Z}(H, Z)$ . Let $\rho$ : Aut $F_{n}arrow$

Aut $H$ be the natural homomorphism induced from the abelianization of $F_{n}$ . In this
paper we identifies Aut $H$ with the general linear group GL$(n, Z)$ by fixing the basis of
$H$ as a free abelian group induced from the basis $x_{1},$

$\ldots,$ $x_{n}$ of $F_{n}$ . The kernel IA$n$ of
$\rho$ is called the IA-automorphism group of $F_{n}$ . It is well known due to Nielsen [21] that
$IA_{2}$ coincides with the inner automorphsim group Inn $F_{2}$ of $F_{2}$ . Namely, $1A_{2}$ is a free
group of rank 2. However, $IA_{n}$ for $n\geq 3$ is much larger than the inner automorphism
group Inn $F_{n}$ of $F_{n}$ . Indeed, Magnus [15] showed that for any $n\geq 3,$ $IA_{n}$ is finitely
generated by automorphisms

$K_{ij}:x_{t}\mapsto\{\begin{array}{ll}x_{j}^{-1}x_{i}x_{j}, t=i,x_{t}, t\neq i\end{array}$

for distinct $i,$ $j\in\{1,2, \ldots, n\}$ and

$K_{ijk}:x_{t}\mapsto\{\begin{array}{ll}x_{i}[x_{j}, x_{k}], t=i,x_{t}, t\neq i\end{array}$

for distinct $i,$ $j,$ $k\in\{1,2, \ldots, n\}$ such that $j<k$ . In this paper, for the convenience,
we often use automorphisms $L_{ij}$ $:=K_{ij}^{-1}$ and $L_{ijk}$ $:=K_{ijk}[K_{ij}^{-1}, K_{1k}^{-1}]$ . Then we see that

$L_{ij}:x_{t}\mapsto\{\begin{array}{ll}x_{j}x_{i}x_{j}^{-1}, t=i,x_{t}, t\neq i, ’\end{array}$ $L_{ijk}:x_{t}\mapsto\{\begin{array}{ll}[x_{j}, x_{k}]x_{i}, t=i,x_{t}, t\neq i, ’\end{array}$

and that IA$n$ is also generated by $L_{1j}$ and $L_{1jk}$ . Recently, Cohen-Pakianathan [5, 6],
Farb [7] and Kawazumi [13] inedepedently showed
(1) $IA_{n}^{ab}\cong H^{*}\otimes_{Z}\Lambda^{2}H$

as a GL $(n, Z)$ -module.

2.3. Johnson filtration.
In this subsection we briefly recall the definition and some properties of the Johnson

filtration of Aut $F_{n}$ . (For details, see [26] for example.)
Let $\Gamma_{n}(1)\supset\Gamma_{n}(2)\supset\cdots$ be the lower central series of a free group $F_{n}$ defined by

$\Gamma_{n}(1):=F_{n}$ , $\Gamma_{n}(k):=[\Gamma_{n}(k-1), F_{n}]$ , $k\geq 2$ .
For $k\geq 0$ , the action of Aut $F_{n}$ on each nilpotent quotient $F_{n}/\Gamma_{n}(k+1)$ induces a
homomorphism

$\rho^{k}$ : Aut $F_{n}arrow$ Aut $(F_{n}/\Gamma_{n}(k+1))$ .
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The map $\rho^{0}$ is trivial, and $\rho^{1}=\rho$ . We denote the kernel of $\rho^{k}$ by $\mathcal{A}_{n}(k)$ . Then the
groups $\mathcal{A}_{m}(k)$ define a descending central filtration

Aut $F_{n}=\mathcal{A}_{n}(0)\supset \mathcal{A}_{n}(1)\supset \mathcal{A}_{n}(2)\supset\cdots$

of Aut $F_{n}$ , with $\mathcal{A}_{m}(1)=IA_{n}$ . We call it the Johnson filtration of Aut $F_{n}$ , and denote
each of its graded quotient by $gr^{k}(\mathcal{A}_{n})$ $:=\mathcal{A}_{n}(k)/\mathcal{A}_{n}(k+1)$ .

The Johnson filtration of Aut $F_{n}$ was originally introduced in 1963 with a remarkable
pioneer work by Andreadakis [1] who showed that $\mathcal{A}_{m}(1),$ $\mathcal{A}_{n}(2),$

$\ldots$ is a descending
central series of $A_{n}(1)$ and gr$k(\mathcal{A}_{n})$ $:=\mathcal{A}_{n}(k)/A_{n}(k+1)$ is a free abelian group of finite
rank. The Johnson filtration has been studied with the Johnson homomorphisms of
Aut $F_{n}$ . The study of the Johnson homomorphisms was begun in 1980 by D. Johnson
[11]. He [12] studied the Johnson homomorphism of a mapping class group of a closed
oriented surface, and determined the abelianization of the Torelli group. The Johnson
homomorphisms of Aut $F_{n}$ are also defined in a similar way, and there is a broad range
of remarkable results for them. (For surveys and related topics conceming with the
Johnson homomorphisms, see [19] and [20] for example.)

Let $\mathcal{A}_{n}^{l}(1),$ $A’(2),$ $\ldots$ be the lower central series of $IA_{n}$ . In this paper, we are
interested in the difference between $A_{m}(k)$ and $\mathcal{A}_{n}^{l}(k)$ . Andreadakis [1] showed that the
filtration $A_{2}(1),$ $A_{2}(2),$ $\ldots$ coincides with the lower central series of $\mathcal{A}_{2}(1)=$ Inn $F_{2}$ ,
and that $A_{3}(3)=\mathcal{A}_{3}(3)$ . Recently, Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi
$[$ 13$]$ independently showed that $\mathcal{A}_{m}(2)=\mathcal{A}_{n}^{l}(2)$ for any $n\geq 3$ . Pettet $[$24$]$ showed that
$\mathcal{A}_{n}^{l}(3)$ has a finite index in $\mathcal{A}_{m}(3)$ at most for any $n\geq 3$ . In general, however, it is still
open problem whether the Johnson filtration $\mathcal{A}_{m}(1),$ $\mathcal{A}_{n}(2),$

$\ldots$ coincides with the lower
central series of $1A_{n}$ or not.

2.4. Magnus representations.

In this subsection we recall the Magnus representation of $IA_{n}$ . (For details, see [4].)
For each $1\leq i\leq n$ , let

$\frac{\partial}{\partial x_{i}}:Z[F_{n}]arrow Z[F_{n}]$

be the FOX derivation defined by

$\frac{\partial}{\partial x_{i}}(w)=\sum_{j=1}^{f}\epsilon_{j}\delta_{\mu J^{i}},x_{\mu^{1}1}^{\epsilon\ldots z^{(\epsilon-1)}}x_{\mu j}^{1}j\in Z[F_{n}]$

for any reduced word $w=x_{\mu_{1}}^{\epsilon_{1}}\cdots x_{\mu_{P}}^{\epsilon,}\in F_{n},$ $\epsilon_{j}=\pm 1$ . (For details for the fox derivation,
see [8]. $)$ Let $\varphi$ : $F_{n}arrow G$ be any group homomorphism. If there is no confusion, we
also denote by $\varphi$ both the ring homomorphism $\overline{\varphi}$ : $Z[F_{n}|arrow Z[G|$ induced from $\varphi$ and
the group homomorphism $\hat{\varphi}$ : GL $(n, Z[F_{n}])arrow$ GL $(n,$ $Z[G|)$ induced from $\overline{\varphi}$ . For any
matrix $C=(q_{j})\in$ GL$(n, Z[F_{n}])$ , let $C^{\varphi}$ be the matrix $(c_{ij}^{\varphi})\in$ GL $(n,$ $Z[G|)$ . Then we
obtain a map $\tau_{\varphi}$ : Aut $F_{n}arrow$ GL $(n,$ $Z[G|)$ defined by

$\sigma\mapsto(\frac{\partial x_{i^{\sigma}}}{\partial x_{j}})^{\varphi}$

This map is not a homomorphism in general. Let $A_{\varphi}$ be a subgroup of Aut $F_{n}$ consisting
of automorphisms $\sigma$ such that $(x^{\sigma})^{\varphi}=x^{\varphi}$ . Then, by restricting $\tau_{\varphi}$ to $A_{\varphi}$ , we obtain a
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homomorphism
$\tau_{\varphi}:A_{\varphi}arrow GL(n, Z[G])$ ,

which is called the Magnus representation of $A_{\varphi}$ .

Here we consider two particular homomorphisms from $F_{n}$ . The first one is the abelian-
ization $\mathfrak{a}$ : $F_{n}arrow H$ of $F_{n}$ . It is clear that $IA_{n}\subset A_{\alpha}$ . We call the Magnus represen-
tation $\tau_{\alpha}$ : $IA_{n}arrow$ GL$(n, Z[H])$ the Gassner representation of $IA_{n}$ , denoted by $\tau_{G}$ . Let
$s_{1},$

$\ldots,$ $s_{n}$ be the coset classes of $x_{1},$ $\ldots,$ $x_{n}$ in $H$ respectively. Then, for example, $\tau_{G}(L_{ij})$

and $\tau_{G}(L_{ijk})$ are given by

$\underline{i}$

$\underline{j}$
$\underline{k}$

$\underline{j\underline{i}}(001$

$s_{j}0 \frac{i}{0}$

.

$1-s_{i}\underline{j}01$

$001$

and
$\underline{\underline{j\underline{i}}k}(_{0}^{1}0$ $.0001$

.

$1-s_{k}01$

.

$s_{j}-1001$

$00001$

respectively. Bachmuth determined the image $1m(\tau_{G})$ of $\tau_{G}$ :

Theorem 2.1 (Bachmuth, [2]). For $n\geq 2$ and $C=(q_{j})\in$ GL$(n, Z[H]),$ $C\in{\rm Im}(\tau_{G})$

if and only if $C$ satisfies
(1) $\det(C)=s_{1}^{e_{1}}s_{2}^{\epsilon_{2}}\cdots s_{n}^{e_{n}}$ , $e_{i}\in Z$ ,
(2) For any $1\leq i\leq n$ ,

$\sum_{j=1}^{n}c_{ij}(1-s_{j})=1-s_{i}$ .

Let $I$ $:=Ker(Z[F_{n}]arrow Z)$ be the augmentation ideal of the group ring $Z[H]$ . By
a fundumental argument in Fox’s free differential calculus, we see that for any $C=$
$(c_{ij})\in 1m(\tau_{G}|_{A_{n}(k)}),$ $c_{2j}-\delta_{ij}\in I^{k}$ for any $i\neq j$ . Here $\delta_{ij}$ is the Kronecker’s delta.

Let $\langle s\rangle$ be the infinite cyclic group generated by $s$ . The other homomorphism is
$b$ : $F_{n}arrow\langle s\rangle$ defined by $x_{i}\mapsto s$ . The group ring $Z[\langle s\rangle]$ is naturaly considered as the
Laurent polynomial ring $Z[s^{\pm 1}|$ of one indetrminates over the integers. In this paper
we identify them. Then we call the Magnus representation

$\tau_{B}:=\tau_{6}:IA_{n}arrow$ GL $(n, Z[s^{\pm 1}])$ ,

the Burau representation of IA$n$ . For a homomorpshim $c$ : $Harrow\langle s\rangle$ defined by $s_{i}\mapsto s$ ,
$\tau_{B}=$ co $\tau_{G}$ . By Theorem 2.1, we have:

Lemma 2.1. For $n\geq 2$ , any element $C=(q_{j})\in{\rm Im}(\tau_{B})$ satisfies
(1) $\det(C)=s^{e}$ , $e\in Z$ ,
(2) For any $1\leq i\leq n$ ,

$\sum_{j=1}^{n}c_{ij}=1$ .
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Let $\mathcal{B}_{n}(k)$ and $\mathcal{B}_{n}(k)$ be the images of $A_{n}(k)$ and $\mathcal{A}_{n}^{l}(k)$ by the Burau representation
$\tau_{B}$ respectively. Let $J:=Ker(Z[s^{\pm 1}]arrow Z)$ be the augmentation ideal of the group ring
$Z[s^{\pm 1}]$ . For any $k\geq 1$ , an ideal $J^{k}$ is a principal ideal generated by $(1-s)^{k}$ . For any
$C=(c_{ij})\in \mathcal{B}_{n}(k)$ , we see $c_{ij}-\delta_{ij}\in J^{k}$ .

3. HOMOMORPHISMS $\psi_{k_{l}l}$

In this section we study homomorphisms from subgroups of GL $(n,$ $Z[s^{\pm 1}|)$ to certain
free abelian groups. The results, obtained in this section, are applied to determine the
structure of the graded quotients $gr^{k}(\mathcal{B}_{n}^{l})$ $:=\mathcal{B}_{n}’(k)/\mathcal{B}_{n}’(k+1)$ for $k=1$ and 2 in the
next section.

For any $n\geq 2$ and $k\geq 1$ , let $\Gamma(n, k)$ be the kernel of a homomorphism GL $(n, Z[s^{\pm 1}])arrow$

GL $(n, Z[s^{\pm 1}]/J^{k})$ induced from a natural projection $Z[s^{\pm 1}]arrow Z[s^{\pm 1}]/J^{k}$ . Firom the ar-
gument above, we see $\mathcal{B}_{n}(k)\subset\Gamma(n, k)$ . We denote by $M(n, R)$ the abelian group of
$(nx n)$-matrices over a ring $R$ . For any $k\geq 1$ and $1\leq l\leq k$ , we consider a map
$\xi_{k,l}:\Gamma(n, k)arrow M(n,$ $Z[s^{\pm 1}|/J^{\iota})$ defined by

$\xi_{k_{2}l}(C)=C’mod J^{l}$

where $C=E+(1-s)^{k}C’$ , and $E$ denotes the identity matrix. The map $\xi_{k_{2}l}$ is a
homomorphism since

$(E+(1-s)^{k}C’)(E+(1-s)^{k}D’)=E+(1-s)^{k}(C’+D’+(1-s)^{k}C’D^{l})$

for any $C=E+(1-s)^{k}C’,$ $D=E+(1-s)^{k}D’\in\Gamma(n, k)$ . Set

$\psi_{k,l}:=\xi_{k,l}\circ\tau_{B}|_{A_{n}(k)}:\mathcal{A}_{n}(k)arrow M(n, Z[s^{\pm 1}]/J^{\iota})$.
In the following, we completely determine the image of $\psi_{k,l}$ . First, we consider the case
where $k=l=1$ .

Proposition 3.1. For $n\geq 2,$ ${\rm Im}(\psi_{1,1})\cong Z^{\oplus n(n-1)}$ .

Now, for any $l\geq 1$ , the quotient ring $Z[s^{\pm 1}|/J^{l}$ is a free abelian group of rank $l$ with
a basis $\{(1-s)^{m}|0\leq m\leq l-1\}$ . We fix this basis in the following. To study $1m(\psi_{k_{?}l})$

for $k\geq 2$ , we consider some elements in $\mathcal{A}_{m}(k)$ . For $k\geq 2,1\leq l\leq k$ and $0\leq m\leq l-1$ ,
and distinct $i,$ $j$ and $u$ , set

$\sigma_{m}(i,j, u):=[L_{iju}, L_{ij}, L_{ij}, \ldots, L_{ij}]\in \mathcal{A}_{\mathfrak{n}}’(m+k)\subset \mathcal{A}_{n}(k)$

where $L_{ij}$ appears $m+k-1$ times among the component. Then we see

$\sigma_{m}(i,j, u):x_{t}\mapsto\{\begin{array}{ll}[x_{j}, x_{u}, x_{j}, x_{j}, \ldots, x_{j}]x_{i}, t=ix_{t}, t\neq i\end{array}$
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and
$\underline{i}$

$\psi_{k,l}(\sigma_{m}(i,j, u))=\underline{\underline{j}u\underline{i}}(_{0}^{0}$
$000$

.

$\underline{j}$ $\underline{u}$

. . . $0$

$(1-s)^{m}$ $-(1-s)^{m}$ .
$0$ $0$ :

$0$ $0$ :
.. . $0$

For $0\leq m\leq l-1$ , and distinct $i$ and $j$ , set

$w_{m}(i,j):=[K_{ij}, K_{ji}, K_{ij}, K_{ij}, \ldots, K_{\dot{*}j}]^{-1}\in \mathcal{A}_{n}^{l}(m+k)\subset A_{n}(k)$

where $K_{1j}$ appears $m+k-2$ times among the component. Then we see

$w_{m}(i,j):x_{t}\mapsto\{\begin{array}{ll}[x_{i}, x_{j}, x_{j}, \ldots, x_{j}, x_{t}|x_{t}, t=i,j,x_{t}, t\neq i,j\end{array}$

and
$\underline{i}$

$\underline{j}$

$\psi_{k,l}(w_{m}(i,j))=\underline{j\underline{i}}(\begin{array}{llllll}0 \cdots \cdots \cdots \cdots 0\vdots (1- s)^{m} -(1- s)^{m} \vdots 0 (1-\cdots s)^{m}\cdots -(1- s)^{m} 0\end{array})$ .

Set
$\mathfrak{E}:=\{\psi_{k_{2}l}(\sigma_{m}(i,j, n))|1\leq j<i\leq n-1,0\leq m\leq l-1\}$

$\cup\{\psi_{k,l}(\sigma_{m}(n, n-1, u))|1\leq u\leq n-2,0\leq m\leq l-1\}$

$\cup\{\psi_{k,l}(w_{m}(i,j))|1\leq i<j\leq n, 0\leq m\leq l-1\}\subset 1m(\psi_{k,l})$ .
Then we see:

Proposition 3.2. For $n\geq 2,$ $k\geq 2$ and $1\leq l\leq k,$ ${\rm Im}(\psi_{k,l})$ is a free abelian group
with basis $\not\subset$ . In particular, ${\rm Im}(\psi_{k_{J}l})\cong Z^{\oplus l(n^{2}-n-1)}$ .

From the proof of the Propositions above, we see:
Corollary 3.1. For $n\geq 2_{f}k\geq 2$ and $1\leq l\leq k,$ $\psi_{k,l}(\mathcal{A}_{n}(k))=\psi_{k,l}(\mathcal{A}_{n}^{l}(k))$ .

This shows that the difference between $\mathcal{A}_{m}(k)$ and $\mathcal{A}_{n}’(k)$ is characterized by the
kemel of $\psi_{k,l}$ . Furthermore, observing the image of $\psi_{k,k}$ , we have:

Corollary 3.2. For $n\geq 2$ and $k\geq 2_{f}H_{1}(\mathcal{A}_{n}(k), Z)$ contains a free abelian group of
rank $k(n^{2}-n-1)$ .
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4. FILTRATION $\mathcal{B}_{n}’(k)$

In this section, we consider the lower central series $\mathcal{B}_{n}’(k)$ of $\mathcal{B}_{n}^{l}(1)$ $:=\tau_{B}(IA_{n})$ . In
particular, we determine the structure of the graded quotients $gr^{k}(\mathcal{B}_{n}’)$ $:=\mathcal{B}_{n}^{l}(k)/\mathcal{B}_{n}^{l}(k+$

1 $)$ for $k=1$ and 2, using the homomorphisms $\xi_{1,1}$ and $\xi_{2,1}$ . We also show that $\mathcal{B}_{n}(3)=$

$\mathcal{B}_{n}^{l}(3)$ . First, we consider the case where $k=1$ , namely, the abelianization of $\tau_{B}(IA_{n})$ .
Theorem 4.1. For any $n\geq 2_{j}H_{1}(\tau_{B}(IA_{n}), Z)\cong Z^{\oplus n(n-1)}$ .

To study the graded quotients $gr^{k}(\mathcal{B}_{n}^{l})$ for $k\geq 2$ , we consider a certain normal
subgroup $y_{n}$ of $\tau_{B}(IA_{n})$ . Let $\mathcal{Y}_{n}$ be a subgroup of $\tau_{B}(IA_{n})$ generated by $\overline{L}_{in}$ and $\overline{L}_{nj}$

for $i,j\neq n$ . In particular, we show that the lower central series $\mathcal{Y}_{n}’(k)$ of $y_{n}$ coincides
with $\mathcal{B}_{n}^{l}(k)$ for any $k\geq 2$ . In the following, we use $\overline{L}_{ij}$ for $\tau_{B}(L_{ij})$ for simplicity.
Lemma 4.1. For any $n\geq 2,$ $\mathcal{Y}_{n}$ is a normal subgroup of $\tau_{B}(IA_{n})$ .

From this lemma, we see that the natural action of $\tau_{B}(1A_{n})$ on $H_{1}(\mathcal{Y}_{n}, Z)$ by conju-
gation is trivial. Next, in order to show that $y_{n}$ contains the commutator subgroup of
$\tau_{B}$ (IA$n$ ), we prepare some lemmas.
Lemma 4.2. For $1\leq i\neq j\leq n,$ $[\overline{L}_{ij},\overline{L}_{ji}]\in \mathcal{Y}_{n}$ .
Lemma 4.3. For $1\leq i\neq j\neq k\leq n,$ $[\overline{L}_{ij}, \overline{L}_{ik}]_{f}[\overline{L}_{ij},$ $\overline{L}_{jk}]\in y_{n}$ .

Then we have:

Lemma 4.4. For any $n\geq 2_{f}\mathcal{B}_{n}’(2)\subset y_{n}$ .

Here we remark that the quotient group of $\tau_{B}(IA_{n})$ by $y_{n}$ is given by
Proposition 4.1. For $n\geq 2,$ $\tau_{B}(IA_{n})/y_{n}\cong H_{1}(\tau_{B}(IA_{n-1}), Z)$ .

Next we show that $\mathcal{Y}_{n}^{l}(k)$ coincides with $\mathcal{B}_{n}’(k)$ for any $k\geq 2$ .
Theorem 4.2. For any $n\geq 2$ and $k\geq 2,$ $\mathcal{Y}_{n}^{l}(k)=\mathcal{B}_{n}^{l}(k)$ .

Next we determine $gr^{2}(\mathcal{B}_{n}^{l})$ using the homomorphism $\xi_{2_{2}1}$ .
Theorem 4.3. For $n\geq 2_{2}gr^{2}(\mathcal{B}_{n}’)\cong Z^{\oplus(n^{2}-n-1)}$ .

As a corollary, we obtain
Corollary 4.1. For $n\geq 2,$ $\mathcal{B}_{n}(3)=\mathcal{B}_{n}’(3)$ .

By Pettet [24], $\mathcal{A}_{n}^{l}(3)$ has a finite index in $\mathcal{A}_{m}(3)$ . From Corollary 4.1, we see that if
$\mathcal{A}_{n}^{l}(3)\neq A_{n}(3)$ , the defference between them is contained in the kemel of $\tau_{B}$ .

5. THE CUP PRODUCT

In this section we determine the image of the cup product
$\cup:\Lambda^{2}H^{1}(\tau_{B}(IA_{n}), Z)arrow H^{2}(\tau_{B}(IA_{n}), Z)$ .
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First, we consider an interpretation of the second cohomology group $H^{2}(\tau_{B}(IA_{n}), Z)$ .
Let $F$ be a free group of rank $n(n-1)$ on $\{\overline{L}_{ij}|1\leq i\neq j\leq n\}$ . Let $\varphi$ : $Farrow\tau_{B}(IA_{n})$

be a natural surjection and $R$ the kernel of $\varphi$ . Then we have a minimal presentation of
$\tau_{B}(IA_{n})$

(2) $1arrow Rarrow Farrow^{\varphi}\tau_{B}$ (IA$n$ ) $arrow 1$ .
The word “minimal”means that the number of generators is minimal among any pre-
sentation of $\tau_{B}(IA_{n})$ . Since the abelianization of $\tau_{B}(IA_{n})$ is a free abelian group with
basis $\{\overline{L}_{ij}|1\leq i\neq j\leq n\}$ by Theorem 4.1, the induced homomorphism

$\varphi^{*}:H^{1}(\tau_{B}(IA_{n}), Z)arrow H^{1}(F, Z)$

is an isomorphism. Hence considering the cohomological five-term exact sequence
$0arrow H^{1}(\tau_{B}(IA_{n}),Z)arrow H^{1}(F, Z)arrow H^{1}(R, Z)^{\tau_{B}(IA_{n})}$

$arrow H^{2}(\tau_{B}(IAn), Z)arrow H^{2}(F, Z)=0$.
of (2), we obtain an isomorphism

$H^{2}(\tau_{B}(1A_{n}), Z)\cong H^{1}(R, Z)^{\tau_{B(}}$
IA$\hslash)$ .

To study the abelian group $H^{1}(R, Z)^{\tau_{B}(IA_{n})}$ , we consider a descending filtration of $R$ .
Let $\Gamma_{F}(k)$ be the lower central series of $F$ and $\mathcal{L}_{F}(k)$ $:=\Gamma_{F}(k)/\Gamma_{F}(k+1)$ for $k\geq 1$ .
Set $R_{k}$ $:=R\cap\Gamma_{F}(k)$ and $\overline{R}_{k}$ $:=R/R_{k}$ for $k\geq 1$ . Then $R_{k}=R$ for $1\leq k\leq 2$ . The
natural projection $Rarrow\overline{R}_{k+1}$ induces an injective homomorphism

$\psi^{k}:H^{1}(\overline{R}_{k+1}, Z)^{\tau_{B}(IA_{n})}arrow H^{1}(R, Z)^{\tau(IA_{\hslash})}B$.
Hence we can consider $H^{1}(\overline{R}_{k+1}, Z)^{\tau_{B}(IA_{n})}$ as a subgroup of $H^{2}(\tau_{B}(IA_{n}), Z)$ . In the fol-
lowing, we study the case where $k=2$ . In this case, we remark that $H^{1}(\overline{R}_{3}, Z)^{\tau(IA_{\hslash})}B=$

$H^{1}(\overline{R}_{3}, Z)$ since $\tau_{B}$ (IA$n$ ) acts on 773 trivially. Then we have:
Proposition 5.1. The image of the cup product

$\cup:\Lambda^{2}H^{1}(\tau_{B}(IA_{n}), Z)arrow H^{2}(\tau_{B}(IA_{n}), Z)$

is $H^{1}(\overline{R}_{3}, Z)$ .

Since $\mathcal{L}_{F}(2)$ is a free abelian group of rank $n(n-1)(n^{2}-n-1)/2$ , as a corollary, we
obtain:

Theorem 5.1. For $n\geq 2,$ ${\rm Im}(U)\cong Z^{\oplus(n-2)(n+1)(n^{2}-n-1)/2}$

6. THE CASE $n=2$

In this section, we completely determine the structures of $gr^{k}(\mathcal{B}_{2}^{l})$ and $gr^{k}(\mathcal{B}_{2})$ for
any $k\geq 1$ . Recall that $1A_{2}=$ Inn $F_{2}$ is generated by $K_{21}$ and $K_{12}$ . For the convenience,
set $\iota_{1}$ $:=K_{21}$ and $\iota_{2};=K_{12}$ . We remark that from Theorem 4.1, the abelianization of
$\tau_{B}$ (IA2) is a free abelian group of rank 2 generated by $\iota_{1}$ and $\iota_{2}$ .
Theorem 6.1. For any $k\geq 2,$ $gr^{k}(\mathcal{B}_{2}^{l})\cong Z$ .
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Since $\mathcal{A}_{2}(k)=\mathcal{A}_{Q}^{l}(k)$ for any $k\geq 1$ due to Andreadakis $[1|$ , we obtain
Corollary 6.1. For any $k\geq 2,$ $gr^{k}(\mathcal{B}_{2})\cong Z$ .
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