ON THE IMAGE OF THE BURAU REPRESENTATION OF THE IA-AUTOMORPHISM GROUP OF A FREE GROUP

TAKAO SATOH

Graduate School of Sciences, Department of Mathematics, Osaka University 1-1 Machikaneyama, Toyonaka-city, Osaka 560-0043, Japan

ABSTRACT. In this paper we study the graded quotients of the lower central series of the image of the IA-automorphism group of a free group by the Burau representation. In particular, we determine their structures for degrees 1 and 2.

1. INTRODUCTION

For $n \ge 2$, let F_n be a free group of rank n with basis x_1, x_2, \ldots, x_n , and $\Gamma_n(1) := F_n$, $\Gamma_n(2), \ldots$ its lower central series. We denote by Aut F_n the group of automorphisms of F_n . For each $k \ge 0$, let $\mathcal{A}_n(k)$ be the group of automorphisms of F_n which induce the identity on the quotient group $F_n/\Gamma_n(k+1)$. Then we have a descending filtration

Aut
$$F_n = \mathcal{A}_n(0) \supset \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$

of Aut F_n , which is called the Johnson filtration of Aut F_n . The Johnson filtration of Aut F_n was originally introduced in 1963 with a remarkable pioneer work by Andreadakis [1] who showed that $\mathcal{A}_n(1)$, $\mathcal{A}_n(2)$, ... is a central series of $\mathcal{A}_n(1)$, and that the graded quotient $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ is a free abelian group of finite rank for each $k \geq 1$. Furtheremore, he [1] also showed that $\mathcal{A}_2(1)$, $\mathcal{A}_2(2)$, ... coincides with the lower central series of $\mathcal{A}_2(1)$.

The group $\mathcal{A}_n(1)$ is called the IA-automorphim group which is also denoted by IA_n. Magnus [15] showed that IA_n is finitely generated. Furthermore, recently, Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13] inedepedently determined the abelianization of IA_n. (See Subsection 2.2.) In general, however, the group structure of IA_n is far from being well understood. For example, a presentation of IA_n is still not known. For n = 3, Krstić and McCool [14] showed that IA₃ is not finitely presentable. For $n \geq 4$, it is not known whether IA_n is finitely presentable or not. In addition to this, even the structures of the low dimensional (co)homology of IA_n are not completely determined.

Since each of the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ is considered as a one by one approximation of IA_n , to determine the structure of $\operatorname{gr}^k(\mathcal{A}_n)$ plays very important roles on study of the group structure and the (co)homology groups of IA_n . In order to investigate each of $\operatorname{gr}^k(\mathcal{A}_n)$, certain injective homomorphisms

$$\tau_k: \operatorname{gr}^{\kappa}(\mathcal{A}_n) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1)$$

²⁰⁰⁰ Mathematics Subject Classification. 20F28(Primary), 20J06(Secondly).

Key words and phrases. automrophism group of a free group, IA-automorphism group, Burau representation, Johnson filtration.

are defined. These homomorphisms are called the Johnson homomorphisms of Aut F_n . (For definition, see [20] and [26].) Recently, the study of the Johnson filtration and the Johnson homomorphisms of Aut F_n are made good progress by many authors, for example, [5], [6], [7], [13], [18], [19], [20], [24] and [26]. Here, we are interested in the following two problems. One is to determine whether $\mathcal{A}_n(k)$ coincides with the k-th term $\mathcal{A}'_n(k)$ of the lower central series of $IA_n = \mathcal{A}_n(1)$ or not. Andreadakis [1] showed that $\mathcal{A}_3(3) = \mathcal{A}'_3(3)$. Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13] independently showed that $\mathcal{A}_n(2) = \mathcal{A}'_n(2)$ for any $n \geq 3$. Furthermore, recently, Pettet [24] obtained that $\mathcal{A}'_n(3)$ has a finite index in $\mathcal{A}_n(3)$. However, it seems that there are few results for higher degrees. The other problem is to detremine the abelianization of each $\mathcal{A}_n(k)$ for $k \geq 2$. By a contribution from the study of the Johnson homomorphisms of Aut F_n , we see that it contains a free abelian group of finite rank. However, it is not known even whether each of $H_1(\mathcal{A}_n(k), \mathbb{Z})$ is finitely generated or not.

In this paper, we study the images of $\mathcal{A}_n(k)$ and $\mathcal{A}'_n(k)$ through the Burau representation, which is one of the most important Magnus representations of Aut F_n defined on IA_n. (For definition, see subsection 2.4.) In general, the Magnus representations of Aut F_n are representations of various subgroups of Aut F_n by making use of the Fox's free differential calculus. (See [4] for details.) In this paper, we denote the Burau representation by τ_B , and write $\mathcal{B}_n(k) := \tau_B(\mathcal{A}_n(k))$ and $\mathcal{B}'_n(k) := \tau_B(\mathcal{A}'_n(k))$. First, we determine the abelianization of $\tau_B(IA_n)$.

Theorem 1. For any $n \geq 2$, $H_1(\tau_B(IA_n), \mathbb{Z}) \cong \mathbb{Z}^{\oplus n(n-1)}$.

Next, to study $\mathcal{B}'_n(k)$ and its graded quotients $\operatorname{gr}^k(\mathcal{B}'_n) := \mathcal{B}'_n(k)/\mathcal{B}'_n(k+1)$ for $k \geq 2$, we consider a certain normal subgroup of $\tau_B(\operatorname{IA}_n)$. For $1 \leq i \neq j \leq n$, let L_{ij} be an automorphism of F_n defined by

$$L_{ij}:\begin{cases} x_i & \mapsto x_j x_i x_j^{-1}, \\ x_t & \mapsto x_t, \end{cases} \quad (t \neq i).$$

We denote by \mathcal{Y}_n a subgroup of $\tau_B(IA_n)$ generated by L_{in} and L_{nj} for $1 \leq i, j \leq n-1$. Let $\mathcal{Y}'_n(k)$ be the lower central series of \mathcal{Y}_n . Then we prove:

Theorem 2. For any $n \ge 2$ and $k \ge 2$, $\mathcal{Y}'_n(k) = \mathcal{B}'_n(k)$.

Using this, we show:

Theorem 3. For $n \geq 2$, $\operatorname{gr}^2(\mathcal{B}'_n) \cong \mathbb{Z}^{\oplus (n^2 - n - 1)}$.

Observing the proof of the theorem above, as a corollary, we obtain:

Corollary 1. For $n \geq 2$, $\mathcal{B}_n(3) = \mathcal{B}'_n(3)$.

To show these, for $1 \leq l \leq k$, we define certain homomorphisms $\psi_{k,l}$ from $\mathcal{B}_n(k)$ to a free abelian group, and determine its image in Section 3. Using these homomorphisms, we detect a free abelian subgroup of $\operatorname{gr}^k(\mathcal{B}_n)$ and $\operatorname{gr}^k(\mathcal{B}'_n)$. We also show:

Corollary 2. For $n \geq 2$, $k \geq 2$ and $1 \leq l \leq k$, $\psi_{k,l}(\mathcal{A}_n(k)) = \psi_{k,l}(\mathcal{A}'_n(k))$.

This shows that the difference between $\mathcal{A}_n(k)$ and $\mathcal{A}'_n(k)$ is characterized by the kernel of the homomorphisms $\psi_{k,l}$. Furthermore, observing the image of $\psi_{k,k}$, we obtain:

Corollary 3. For $n \geq 2$ and $k \geq 2$, $H_1(\mathcal{A}_n(k), \mathbb{Z}) \supset \mathbb{Z}^{\oplus k(n^2 - n - 1)}$.

We remark that we can not detect all of $\mathbf{Z}^{\oplus k(n^2-n-1)} \subset H_1(\mathcal{A}_n(k), \mathbf{Z})$ by the kth Johnson homomorphism of Aut F_n since some part of $\mathbf{Z}^{\oplus k(n^2-n-1)}$ is contained in $\mathcal{A}_n(k+1)$.

As an application, using a result $\operatorname{gr}^2(\mathcal{B}'_n) \cong \mathbb{Z}^{\oplus n^2 - n - 1}$, we can determine the image of the cup product $\cup : \Lambda^2 H^1(\tau_B(\operatorname{IA}_n), \mathbb{Z}) \to H^2(\tau_B(\operatorname{IA}_n), \mathbb{Z})$. We show:

Theorem 4. For $n \ge 2$, $Im(\cup) \cong \mathbb{Z}^{\oplus (n-2)(n+1)(n^2-n-1)/2}$

Finally, we consider the case where n = 2. In particular, we show

Theorem 5. For any $k \geq 2$, $\operatorname{gr}^k(\mathcal{B}'_2) \cong \mathbb{Z}$.

Here we remark that by a result of Andreadakis [1], we have $\operatorname{gr}^k(\mathcal{B}_2) = \operatorname{gr}^k(\mathcal{B}'_2)$ for each $k \geq 1$.

In Section 2, we show the definition and some properties of the IA-automorphism group, the Johnson filtration and the Magnus representations of the automorphism group of a free group. In Section 3, to study the $\operatorname{gr}^k(\mathcal{B}_n)$ and $\operatorname{gr}^k(\mathcal{B}'_n)$, we define homomorphisms $\psi_{k,l}$ and determine their images. In Section 4, we consider the lower central series $\mathcal{B}'_n(k)$ of $\tau_B(\operatorname{IA}_n)$. In particular, we determine the structure of the graded quotients $\operatorname{gr}^k(\mathcal{B}'_n)$ for k = 1 and 2. In Section 5, we determine the image of the cup product map $\cup : \Lambda^2 H^1(\tau_B(\operatorname{IA}_n), \mathbb{Z}) \to H^2(\tau_B(\operatorname{IA}_n), \mathbb{Z})$. Finally, In Section 6, we consider the case where n = 2.

CONTENTS

1
3
3
4
4
5
7
9
9
10
11
11

2. PRELIMINARIES

In this section, we recall the definition and some properties of the IA-automorphism group and the Magnus representations of the automorphism group of a free group.

2.1. Notation.

Throughout the paper, we use the following notation and conventions.

• For a group G, the abelianization of G is denoted by G^{ab} .

- For a group G, the group Aut G acts on G from the right. For any $\sigma \in \operatorname{Aut} G$ and $x \in G$, the action of σ on x is denoted by x^{σ} .
- For a group G, and its quotient group G/N, we also denote the coset class of an element $g \in G$ by $g \in G/N$ if there is no confusion.
- For elements x and y of a group, the commutator bracket [x, y] of x and y is defined to be $[x, y] := xyx^{-1}y^{-1}$.

2.2. IA-automorphism group.

For $n \geq 2$, let F_n be a free group of rank n with basis x_1, \ldots, x_n . We denote the abelianization of F_n by H, and its dual group by $H^* := \operatorname{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$. Let $\rho : \operatorname{Aut} F_n \to \operatorname{Aut} H$ be the natural homomorphism induced from the abelianization of F_n . In this paper we identifies Aut H with the general linear group $\operatorname{GL}(n, \mathbf{Z})$ by fixing the basis of H as a free abelian group induced from the basis x_1, \ldots, x_n of F_n . The kernel IA_n of ρ is called the IA-automorphism group of F_n . It is well known due to Nielsen [21] that IA₂ coincides with the inner automorphism group Inn F_2 of F_2 . Namely, IA₂ is a free group of rank 2. However, IA_n for $n \geq 3$ is much larger than the inner automorphism group Inn F_n of F_n . Indeed, Magnus [15] showed that for any $n \geq 3$, IA_n is finitely generated by automorphisms

$$K_{ij}: x_t \mapsto \begin{cases} x_j^{-1} x_i x_j, & t = i, \\ x_t, & t \neq i \end{cases}$$

for distinct $i, j \in \{1, 2, ..., n\}$ and

$$K_{ijk}: x_t \mapsto \begin{cases} x_i[x_j, x_k], & t = i, \\ x_t, & t \neq i \end{cases}$$

for distinct $i, j, k \in \{1, 2, ..., n\}$ such that j < k. In this paper, for the convenience, we often use automorphisms $L_{ij} := K_{ij}^{-1}$ and $L_{ijk} := K_{ijk}[K_{ij}^{-1}, K_{ik}^{-1}]$. Then we see that

$$L_{ij}: x_t \mapsto \begin{cases} x_j x_i x_j^{-1}, & t = i, \\ x_t, & t \neq i, \end{cases}, \quad L_{ijk}: x_t \mapsto \begin{cases} [x_j, x_k] x_i, & t = i, \\ x_t, & t \neq i, \end{cases}$$

and that IA_n is also generated by L_{ij} and L_{ijk} . Recently, Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13] inedependently showed

(1) $\operatorname{IA}_n^{\operatorname{ab}} \cong H^* \otimes_{\mathbb{Z}} \Lambda^2 H$

as a $GL(n, \mathbf{Z})$ -module.

2.3. Johnson filtration.

In this subsection we briefly recall the definition and some properties of the Johnson filtration of Aut F_n . (For details, see [26] for example.)

Let $\Gamma_n(1) \supset \Gamma_n(2) \supset \cdots$ be the lower central series of a free group F_n defined by

$$\Gamma_n(1) := F_n, \quad \Gamma_n(k) := [\Gamma_n(k-1), F_n], \quad k \ge 2$$

For $k \geq 0$, the action of Aut F_n on each nilpotent quotient $F_n/\Gamma_n(k+1)$ induces a homomorphism

$$\rho^k$$
: Aut $F_n \to \operatorname{Aut}(F_n/\Gamma_n(k+1))$.

The map ρ^0 is trivial, and $\rho^1 = \rho$. We denote the kernel of ρ^k by $\mathcal{A}_n(k)$. Then the groups $\mathcal{A}_n(k)$ define a descending central filtration

Aut
$$F_n = \mathcal{A}_n(0) \supset \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$

of Aut F_n , with $\mathcal{A}_n(1) = I\mathcal{A}_n$. We call it the Johnson filtration of Aut F_n , and denote each of its graded quotient by $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$.

The Johnson filtration of Aut F_n was originally introduced in 1963 with a remarkable pioneer work by Andreadakis [1] who showed that $\mathcal{A}_n(1)$, $\mathcal{A}_n(2)$, ... is a descending central series of $\mathcal{A}_n(1)$ and $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ is a free abelian group of finite rank. The Johnson filtration has been studied with the Johnson homomorphisms of Aut F_n . The study of the Johnson homomorphisms was begun in 1980 by D. Johnson [11]. He [12] studied the Johnson homomorphism of a mapping class group of a closed oriented surface, and determined the abelianization of the Torelli group. The Johnson homomorphisms of Aut F_n are also defined in a similar way, and there is a broad range of remarkable results for them. (For surveys and related topics concerning with the Johnson homomorphisms, see [19] and [20] for example.)

Let $\mathcal{A}'_n(1)$, $\mathcal{A}'_n(2)$, ... be the lower central series of IA_n . In this paper, we are interested in the difference between $\mathcal{A}_n(k)$ and $\mathcal{A}'_n(k)$. Andreadakis [1] showed that the filtration $\mathcal{A}_2(1)$, $\mathcal{A}_2(2)$, ... coincides with the lower central series of $\mathcal{A}_2(1) = Inn F_2$, and that $\mathcal{A}_3(3) = \mathcal{A}'_3(3)$. Recently, Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13] independently showed that $\mathcal{A}_n(2) = \mathcal{A}'_n(2)$ for any $n \ge 3$. Pettet [24] showed that $\mathcal{A}'_n(3)$ has a finite index in $\mathcal{A}_n(3)$ at most for any $n \ge 3$. In general, however, it is still open problem whether the Johnson filtration $\mathcal{A}_n(1)$, $\mathcal{A}_n(2)$, ... coincides with the lower central series of IA_n or not.

2.4. Magnus representations.

In this subsection we recall the Magnus representation of IA_n. (For details, see [4].) For each $1 \leq i \leq n$, let

$$\frac{\partial}{\partial x_i}: \mathbf{Z}[F_n] \to \mathbf{Z}[F_n]$$

be the Fox derivation defined by

$$\frac{\partial}{\partial x_i}(w) = \sum_{j=1}^r \epsilon_j \delta_{\mu_j,i} x_{\mu_1}^{\epsilon_1} \cdots x_{\mu_j}^{\frac{1}{2}(\epsilon_j-1)} \in \mathbf{Z}[F_n]$$

for any reduced word $w = x_{\mu_1}^{\epsilon_1} \cdots x_{\mu_r}^{\epsilon_r} \in F_n$, $\epsilon_j = \pm 1$. (For details for the fox derivation, see [8].) Let $\varphi : F_n \to G$ be any group homomorphism. If there is no confusion, we also denote by φ both the ring homomorphism $\bar{\varphi} : \mathbb{Z}[F_n] \to \mathbb{Z}[G]$ induced from φ and the group homomorphism $\hat{\varphi} : \operatorname{GL}(n, \mathbb{Z}[F_n]) \to \operatorname{GL}(n, \mathbb{Z}[G])$ induced from $\bar{\varphi}$. For any matrix $C = (c_{ij}) \in \operatorname{GL}(n, \mathbb{Z}[F_n])$, let C^{φ} be the matrix $(c_{ij}^{\varphi}) \in \operatorname{GL}(n, \mathbb{Z}[G])$. Then we obtain a map $\tau_{\varphi} : \operatorname{Aut} F_n \to \operatorname{GL}(n, \mathbb{Z}[G])$ defined by

$$\sigma \mapsto \left(\frac{\partial x_i^{\sigma}}{\partial x_j}\right)^{\varphi}.$$

This map is not a homomorphism in general. Let A_{φ} be a subgroup of Aut F_n consisting of automorphisms σ such that $(x^{\sigma})^{\varphi} = x^{\varphi}$. Then, by restricting τ_{φ} to A_{φ} , we obtain a

homomorphism

$$\tau_{\varphi}: A_{\varphi} \to \mathrm{GL}(n, \mathbf{Z}[G]),$$

which is called the Magnus representation of A_{φ} .

Here we consider two particular homomorphisms from F_n . The first one is the abelianization $\mathfrak{a} : F_n \to H$ of F_n . It is clear that $IA_n \subset A_\mathfrak{a}$. We call the Magnus representation $\tau_\mathfrak{a} : IA_n \to GL(n, \mathbb{Z}[H])$ the Gassner representation of IA_n , denoted by τ_G . Let s_1, \ldots, s_n be the coset classes of x_1, \ldots, x_n in H respectively. Then, for example, $\tau_G(L_{ij})$ and $\tau_G(L_{ijk})$ are given by

$$\underbrace{i}_{\underline{j}} \begin{pmatrix} \underline{j} & \underline{j} \\ 1 & 0 & \cdots & 0 \\ 0 & s_{j} & 1 - s_{i} & \vdots \\ \vdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow{k} \begin{bmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 1 - s_{k} & s_{j} - 1 & 0 \\ \vdots & 0 & 1 & 0 & 0 \\ \vdots & 0 & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

respectively. Bachmuth determined the image $Im(\tau_G)$ of τ_G :

Theorem 2.1 (Bachmuth, [2]). For $n \ge 2$ and $C = (c_{ij}) \in GL(n, \mathbb{Z}[H])$, $C \in Im(\tau_G)$ if and only if C satisfies

(1) $\det(C) = s_1^{e_1} s_2^{e_2} \cdots s_n^{e_n}, \quad e_i \in \mathbb{Z},$ (2) For any $1 \le i \le n,$ $\sum_{i=1}^n c_{ij} (1-s_j) = 1 - s_i.$

Let $I := \operatorname{Ker}(\mathbb{Z}[F_n] \to \mathbb{Z})$ be the augmentation ideal of the group ring $\mathbb{Z}[H]$. By a fundumental argument in Fox's free differential calculus, we see that for any $C = (c_{ij}) \in \operatorname{Im}(\tau_G|_{\mathcal{A}_n(k)}), c_{ij} - \delta_{ij} \in I^k$ for any $i \neq j$. Here δ_{ij} is the Kronecker's delta.

Let $\langle s \rangle$ be the infinite cyclic group generated by s. The other homomorphism is $\mathfrak{b}: F_n \to \langle s \rangle$ defined by $x_i \mapsto s$. The group ring $\mathbb{Z}[\langle s \rangle]$ is naturally considered as the Laurent polynomial ring $\mathbb{Z}[s^{\pm 1}]$ of one indetrminates over the integers. In this paper we identify them. Then we call the Magnus representation

$$\tau_B := \tau_{\mathfrak{b}} : \mathrm{IA}_n \to \mathrm{GL}(n, \mathbf{Z}[s^{\pm 1}]),$$

the Burau representation of IA_n . For a homomorphim $\mathfrak{c} : H \to \langle s \rangle$ defined by $s_i \mapsto s$, $\tau_B = \mathfrak{c} \circ \tau_G$. By Theorem 2.1, we have:

Lemma 2.1. For $n \geq 2$, any element $C = (c_{ij}) \in \text{Im}(\tau_B)$ satisfies

- (1) $\det(C) = s^e, \quad e \in \mathbf{Z},$
- (2) For any $1 \leq i \leq n$,

$$\sum_{j=1}^n c_{ij} = 1.$$

93

Let $\mathcal{B}_n(k)$ and $\mathcal{B}'_n(k)$ be the images of $\mathcal{A}_n(k)$ and $\mathcal{A}'_n(k)$ by the Burau representation τ_B respectively. Let $J := \operatorname{Ker}(\mathbb{Z}[s^{\pm 1}] \to \mathbb{Z})$ be the augmentation ideal of the group ring $\mathbb{Z}[s^{\pm 1}]$. For any $k \geq 1$, an ideal J^k is a principal ideal generated by $(1-s)^k$. For any $C = (c_{ij}) \in \mathcal{B}_n(k)$, we see $c_{ij} - \delta_{ij} \in J^k$.

3. Homomorphisms $\psi_{k,l}$

In this section we study homomorphisms from subgroups of $\operatorname{GL}(n, \mathbb{Z}[s^{\pm 1}])$ to certain free abelian groups. The results, obtained in this section, are applied to determine the structure of the graded quotients $\operatorname{gr}^k(\mathcal{B}'_n) := \mathcal{B}'_n(k)/\mathcal{B}'_n(k+1)$ for k = 1 and 2 in the next section.

For any $n \geq 2$ and $k \geq 1$, let $\Gamma(n, k)$ be the kernel of a homomorphism $\operatorname{GL}(n, \mathbb{Z}[s^{\pm 1}]) \to \operatorname{GL}(n, \mathbb{Z}[s^{\pm 1}]/J^k)$ induced from a natural projection $\mathbb{Z}[s^{\pm 1}] \to \mathbb{Z}[s^{\pm 1}]/J^k$. From the argument above, we see $\mathcal{B}_n(k) \subset \Gamma(n, k)$. We denote by M(n, R) the abelian group of $(n \times n)$ -matrices over a ring R. For any $k \geq 1$ and $1 \leq l \leq k$, we consider a map $\xi_{k,l} : \Gamma(n, k) \to M(n, \mathbb{Z}[s^{\pm 1}]/J^l)$ defined by

$$\xi_{k,l}(C) = C' \mod J^l$$

where $C = E + (1 - s)^k C'$, and E denotes the identity matrix. The map $\xi_{k,l}$ is a homomorphism since

$$(E + (1 - s)^{k}C')(E + (1 - s)^{k}D') = E + (1 - s)^{k}(C' + D' + (1 - s)^{k}C'D')$$

for any $C = E + (1-s)^k C'$, $D = E + (1-s)^k D' \in \Gamma(n,k)$. Set

$$\psi_{k,l} := \xi_{k,l} \circ \tau_B|_{\mathcal{A}_n(k)} : \mathcal{A}_n(k) \to M(n, \mathbb{Z}[s^{\pm 1}]/J^l).$$

In the following, we completely determine the image of $\psi_{k,l}$. First, we consider the case where k = l = 1.

Proposition 3.1. For $n \geq 2$, $\operatorname{Im}(\psi_{1,1}) \cong \mathbb{Z}^{\oplus n(n-1)}$.

Now, for any $l \ge 1$, the quotient ring $\mathbb{Z}[s^{\pm 1}]/J^l$ is a free abelian group of rank l with a basis $\{(1-s)^m \mid 0 \le m \le l-1\}$. We fix this basis in the following. To study $\operatorname{Im}(\psi_{k,l})$ for $k \ge 2$, we consider some elements in $\mathcal{A}_n(k)$. For $k \ge 2$, $1 \le l \le k$ and $0 \le m \le l-1$, and distinct i, j and u, set

$$\sigma_m(i,j,u) := [L_{iju}, L_{ij}, L_{ij}, \dots, L_{ij}] \in \mathcal{A}'_n(m+k) \subset \mathcal{A}_n(k)$$

where L_{ij} appears m + k - 1 times among the component. Then we see

$$\sigma_m(i,j,u): x_t \mapsto \begin{cases} [x_j, x_u, x_j, x_j, \dots, x_j] x_i, & t=i \\ x_t, & t \neq i \end{cases}$$

and

$$\psi_{k,l}(\sigma_m(i,j,u)) = \frac{i}{j} \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & 0 & (1-s)^m & -(1-s)^m & \vdots \\ \vdots & 0 & 0 & 0 & \vdots \\ \vdots & 0 & 0 & 0 & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

For $0 \le m \le l-1$, and distinct i and j, set

$$w_m(i,j) := [K_{ij}, K_{ji}, K_{ij}, K_{ij}, \dots, K_{ij}]^{-1} \in \mathcal{A}'_n(m+k) \subset \mathcal{A}_n(k)$$

where K_{ij} appears m + k - 2 times among the component. Then we see

$$w_m(i,j): x_t \mapsto \begin{cases} [x_i, x_j, x_j, \dots, x_j, x_t] x_t, & t=i, j, \\ x_t, & t\neq i, j \end{cases}$$

and

$$\psi_{k,l}(w_m(i,j)) = \frac{i}{\underline{j}} \begin{pmatrix} 0 & \cdots & \cdots & 0\\ \vdots & (1-s)^m & -(1-s)^m & \vdots\\ \vdots & (1-s)^m & -(1-s)^m & \vdots\\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

 \mathbf{Set}

$$\begin{split} \mathfrak{E} &:= \{\psi_{k,l}(\sigma_m(i,j,n)) \mid 1 \le j < i \le n-1, \ 0 \le m \le l-1\} \\ &\cup \{\psi_{k,l}(\sigma_m(n,n-1,u)) \mid 1 \le u \le n-2, \ 0 \le m \le l-1\} \\ &\cup \{\psi_{k,l}(w_m(i,j)) \mid 1 \le i < j \le n, \ 0 \le m \le l-1\} \subset \operatorname{Im}(\psi_{k,l}), \end{split}$$

Then we see:

Proposition 3.2. For $n \ge 2$, $k \ge 2$ and $1 \le l \le k$, $\operatorname{Im}(\psi_{k,l})$ is a free abelian group with basis \mathfrak{E} . In particular, $\operatorname{Im}(\psi_{k,l}) \cong \mathbb{Z}^{\oplus l(n^2-n-1)}$.

From the proof of the Propositions above, we see:

Corollary 3.1. For $n \geq 2$, $k \geq 2$ and $1 \leq l \leq k$, $\psi_{k,l}(\mathcal{A}_n(k)) = \psi_{k,l}(\mathcal{A}'_n(k))$.

This shows that the difference between $\mathcal{A}_n(k)$ and $\mathcal{A}'_n(k)$ is characterized by the kernel of $\psi_{k,l}$. Furthermore, observing the image of $\psi_{k,k}$, we have:

Corollary 3.2. For $n \ge 2$ and $k \ge 2$, $H_1(\mathcal{A}_n(k), \mathbb{Z})$ contains a free abelian group of rank $k(n^2 - n - 1)$.

In this section, we consider the lower central series $\mathcal{B}'_n(k)$ of $\mathcal{B}'_n(1) := \tau_B(\mathrm{IA}_n)$. In particular, we determine the structure of the graded quotients $\mathrm{gr}^k(\mathcal{B}'_n) := \mathcal{B}'_n(k)/\mathcal{B}'_n(k+1)$ for k = 1 and 2, using the homomorphisms $\xi_{1,1}$ and $\xi_{2,1}$. We also show that $\mathcal{B}_n(3) = \mathcal{B}'_n(3)$. First, we consider the case where k = 1, namely, the abelianization of $\tau_B(\mathrm{IA}_n)$.

Theorem 4.1. For any $n \geq 2$, $H_1(\tau_B(IA_n), \mathbb{Z}) \cong \mathbb{Z}^{\oplus n(n-1)}$.

To study the graded quotients $\operatorname{gr}^k(\mathcal{B}'_n)$ for $k \geq 2$, we consider a certain normal subgroup \mathcal{Y}_n of $\tau_B(\operatorname{IA}_n)$. Let \mathcal{Y}_n be a subgroup of $\tau_B(\operatorname{IA}_n)$ generated by \overline{L}_{in} and \overline{L}_{nj} for $i, j \neq n$. In particular, we show that the lower central series $\mathcal{Y}'_n(k)$ of \mathcal{Y}_n coincides with $\mathcal{B}'_n(k)$ for any $k \geq 2$. In the following, we use \overline{L}_{ij} for $\tau_B(L_{ij})$ for simplicity.

Lemma 4.1. For any $n \geq 2$, \mathcal{Y}_n is a normal subgroup of $\tau_B(IA_n)$.

From this lemma, we see that the natural action of $\tau_B(IA_n)$ on $H_1(\mathcal{Y}_n, \mathbb{Z})$ by conjugation is trivial. Next, in order to show that \mathcal{Y}_n contains the commutator subgroup of $\tau_B(IA_n)$, we prepare some lemmas.

Lemma 4.2. For $1 \leq i \neq j \leq n$, $[\overline{L}_{ij}, \overline{L}_{ji}] \in \mathcal{Y}_n$.

Lemma 4.3. For $1 \leq i \neq j \neq k \leq n$, $[\overline{L}_{ij}, \overline{L}_{ik}], [\overline{L}_{ij}, \overline{L}_{jk}] \in \mathcal{Y}_n$.

Then we have:

Lemma 4.4. For any $n \geq 2$, $\mathcal{B}'_n(2) \subset \mathcal{Y}_n$.

Here we remark that the quotient group of $\tau_B(IA_n)$ by \mathcal{Y}_n is given by

Proposition 4.1. For $n \geq 2$, $\tau_B(IA_n)/\mathcal{Y}_n \cong H_1(\tau_B(IA_{n-1}), \mathbf{Z})$.

Next we show that $\mathcal{Y}'_n(k)$ coincides with $\mathcal{B}'_n(k)$ for any $k \geq 2$.

Theorem 4.2. For any $n \ge 2$ and $k \ge 2$, $\mathcal{Y}'_n(k) = \mathcal{B}'_n(k)$.

Next we determine $\operatorname{gr}^2(\mathcal{B}'_n)$ using the homomorphism $\xi_{2,1}$.

Theorem 4.3. For $n \geq 2$, $\operatorname{gr}^2(\mathcal{B}'_n) \cong \mathbb{Z}^{\oplus (n^2 - n - 1)}$.

As a corollary, we obtain

Corollary 4.1. For $n \geq 2$, $\mathcal{B}_n(3) = \mathcal{B}'_n(3)$.

By Pettet [24], $\mathcal{A}'_n(3)$ has a finite index in $\mathcal{A}_n(3)$. From Corollary 4.1, we see that if $\mathcal{A}'_n(3) \neq \mathcal{A}_n(3)$, the definence between them is contained in the kernel of τ_B .

5. THE CUP PRODUCT

In this section we determine the image of the cup product

$$\cup : \Lambda^2 H^1(\tau_B(\mathrm{IA}_n), \mathbf{Z}) \to H^2(\tau_B(\mathrm{IA}_n), \mathbf{Z}).$$

First, we consider an interpretation of the second cohomology group $H^2(\tau_B(IA_n), \mathbb{Z})$.

Let F be a free group of rank n(n-1) on $\{\overline{L}_{ij} \mid 1 \leq i \neq j \leq n\}$. Let $\varphi : F \to \tau_B(\mathrm{IA}_n)$ be a natural surjection and R the kernel of φ . Then we have a minimal presentation of $\tau_B(\mathrm{IA}_n)$

(2)
$$1 \to R \to F \xrightarrow{\varphi} \tau_B(\mathrm{IA}_n) \to 1.$$

The word "minimal" means that the number of generators is minimal among any presentation of $\tau_B(IA_n)$. Since the abelianization of $\tau_B(IA_n)$ is a free abelian group with basis $\{\overline{L}_{ij} \mid 1 \leq i \neq j \leq n\}$ by Theorem 4.1, the induced homomorphism

$$\varphi^*: H^1(\tau_B(\mathrm{IA}_n), \mathbf{Z}) \to H^1(F, \mathbf{Z})$$

is an isomorphism. Hence considering the cohomological five-term exact sequence

$$0 \to H^1(\tau_B(\mathrm{IA}_n), \mathbb{Z}) \to H^1(F, \mathbb{Z}) \to H^1(R, \mathbb{Z})^{\tau_B(\mathrm{IA}_n)}$$
$$\to H^2(\tau_B(\mathrm{IA}_n), \mathbb{Z}) \to H^2(F, \mathbb{Z}) = 0.$$

of (2), we obtain an isomorphism

$$H^2(\tau_B(\mathrm{IA}_n), \mathbf{Z}) \cong H^1(R, \mathbf{Z})^{\tau_B(\mathrm{IA}_n)}$$

To study the abelian group $H^1(R, \mathbb{Z})^{\tau_B(IA_n)}$, we consider a descending filtration of R. Let $\Gamma_F(k)$ be the lower central series of F and $\mathcal{L}_F(k) := \Gamma_F(k)/\Gamma_F(k+1)$ for $k \geq 1$. Set $R_k := R \cap \Gamma_F(k)$ and $\overline{R}_k := R/R_k$ for $k \geq 1$. Then $R_k = R$ for $1 \leq k \leq 2$. The natural projection $R \to \overline{R}_{k+1}$ induces an injective homomorphism

$$\psi^{k}: H^{1}(\overline{R}_{k+1}, \mathbb{Z})^{\tau_{B}(\mathrm{IA}_{n})} \to H^{1}(R, \mathbb{Z})^{\tau_{B}(\mathrm{IA}_{n})}$$

Hence we can consider $H^1(\overline{R}_{k+1}, \mathbb{Z})^{\tau_B(\mathrm{IA}_n)}$ as a subgroup of $H^2(\tau_B(\mathrm{IA}_n), \mathbb{Z})$. In the following, we study the case where k = 2. In this case, we remark that $H^1(\overline{R}_3, \mathbb{Z})^{\tau_B(\mathrm{IA}_n)} = H^1(\overline{R}_3, \mathbb{Z})$ since $\tau_B(\mathrm{IA}_n)$ acts on \overline{R}_3 trivially. Then we have:

Proposition 5.1. The image of the cup product

 $\cup : \Lambda^2 H^1(\tau_B(\mathrm{IA}_n), \mathbf{Z}) \to H^2(\tau_B(\mathrm{IA}_n), \mathbf{Z})$

is $H^1(\overline{R}_3, \mathbb{Z})$.

Since $\mathcal{L}_F(2)$ is a free abelian group of rank $n(n-1)(n^2 - n - 1)/2$, as a corollary, we obtain:

Theorem 5.1. For $n \ge 2$, $Im(\cup) \cong \mathbb{Z}^{\oplus (n-2)(n+1)(n^2-n-1)/2}$

6. The case n = 2

In this section, we completely determine the structures of $\operatorname{gr}^k(\mathcal{B}'_2)$ and $\operatorname{gr}^k(\mathcal{B}_2)$ for any $k \geq 1$. Recall that $\operatorname{IA}_2 = \operatorname{Inn} F_2$ is generated by K_{21} and K_{12} . For the convenience, set $\iota_1 := K_{21}$ and $\iota_2 := K_{12}$. We remark that from Theorem 4.1, the abelianization of $\tau_B(\operatorname{IA}_2)$ is a free abelian group of rank 2 generated by ι_1 and ι_2 .

Theorem 6.1. For any $k \geq 2$, $\operatorname{gr}^k(\mathcal{B}'_2) \cong \mathbb{Z}$.

Since $\mathcal{A}_2(k) = \mathcal{A}'_2(k)$ for any $k \ge 1$ due to Andreadakis [1], we obtain

Corollary 6.1. For any $k \geq 2$, $\operatorname{gr}^k(\mathcal{B}_2) \cong \mathbb{Z}$.

7. Acknowledgments

This research is supported by JSPS Research Fellowship for Young Scientists.

REFERENCES

- S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
- [2] S. Bachmuth; Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93-104.
- [3] Y. A. Bakhturin, Identities in Lie algebras, Nauka, Moscow 1985; English translation, Identical relations in Lie Algebras, VNU Sience press, Utrecht (1987).
- [4] J. S. Birman; Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82 (1974).
- [5] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.
- [6] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.
- [7] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation.
- [8] R. Fox; Free defferential calculus I, Ann. of Math. 57 (1953), 547-560.
- [9] M. Hall; A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1 (1950), 575-581.
- [10] P. J. Hilton and U. Stammbach; A Course in Homological Algebra, Graduate Texts in Mathematics 4, Springer - Verlag, New York (1970).
- [11] D. Johnson; An abelian quotient of the mapping class group, Math. Ann. 249 (1980), 225-242.
- [12] D. Johnson; The strucure of the Torelli group III: The abelianization of \mathcal{I}_g , Topology 24 (1985), 127-144.
- [13] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
- [14] S. Krstić, J. McCool; The non-finite presentability in $IA(F_3)$ and $GL_2(\mathbb{Z}[t, t^{-1}])$, Invent. Math. 129 (1997), 595-606.
- [15] W. Magnus; Über n-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
- [16] J. McCool; Some remarks on IA automorphims of free groups, Can. J. Math. Vol. XL, no. 5 (1998), 1144-1155.
- [17] W. Magnus, A. Karras, D. Solitar; Combinatorial group theory, Interscience Publ., New York (1966).
- [18] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
- [19] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
- [20] S. Morita; Cohomological structure of the mapping class group and beyond, Proceedings of Symposia in Pure Mathematics 74 (2006), 329-354.
- [21] J. Nielsen; Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
- [22] J. Nielsen; Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209.
- [23] J. Nielsen; Untersuchungen zur Topologie der geschlossenen Zweiseitigen Fläschen, Acta Math. 50 (1927), 189-358.
- [24] A. Pettet; The Johnson homomorphism and the second cohomology of IA_n , Algebraic and Geometric Topology 5 (2005) 725-740.
- [25] C. Reutenauer; Free Lie Algebras, London Mathematical Societymonographs, new series, no. 7, Oxford University Press (1993).
- [26] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.

[27] E. Witt; Treue Darstellung Liescher Ringe, Journal für die Reine und Angewandte Mathematik, 177 (1937), 152-160.

98

[28] V. M. Zhuravlev; A free Lie algebra as a module over the full linear group, Sbornik Mathematics 187 (1996), 215-236.

GRADUATE SCHOOL OF SCIENCES, DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY, 1-1 MACHIKANEYAMA, TOYONAKA-CITY, OSAKA 560-0043, JAPAN *E-mail address*: takao@math.sci.osaka-u.ac.jp