Borsuk's antipodal theorem for set-valued mappings

明治大学 四反田義美 (Shitanda Yoshimi) Meiji University Izumi Campus

1 Introduction

When a non empty closed set $\varphi(x)$ in a topological space Y is assigned for each x of a topological space X, we call the correspondence a set-valued mapping and write $\varphi: X \to Y$ by the Greek alphabet. For single-valued mapping, we write $f: X \to Y$ etc. by the Roman alphabet. In this paper, we assume that set-valued mappings are upper semi-continuous.

In this paper, we shall prove Borsuk's antipodal theorem for an admissible mapping $\varphi : \partial \overline{U} \to \mathbb{R}^n$ where U is a bounded symmetric open neighborhood of the origin of \mathbb{R}^{n+k} $(k \ge 1)$ and generalize to the case of an admissible mapping $\varphi : \partial \overline{U} \to \mathbb{E}$ where U is a bounded symmetric open neighborhood of the origin of the normed space \mathbb{E} .

In the second section, we review various cohomology theories and summerize some definitions and result. In this paper, we shall mainly use Alexander-Spanier cohomology theory $\bar{H}^*(X; \mathbf{F})$ with coefficient in a field \mathbf{F} .

In the third section, we define an equivariant mapping in the class of set-valued mappings (cf. Definition 3.4) and discuss about Borsuk's antipodal theorem for admissible mappings. Y.S.Chang proved a generalization of Borsuk's antipodal theorem (cf. Theorem 4 in [1]) for closed convex valued mappings by using the method of general topology and analysis. We shall prove the following theorem which is a generalization of his theorem by using the method of algebraic topology (cf. Theorem 3.6).

Main Theorem 1. Let U be a bounded open neighborhood of the origin in \mathbb{R}^{m+k} for $k \geq 1$ which is symmetric with respect to the involution T(x) = -x. Assume that φ : $\partial \overline{U} \to \mathbb{R}^m$ is an equivariant admissible mapping. Then there exists point $x_0 \in \partial \overline{U}$ such that $\varphi(x_0) \ni 0$.

We shall prove the following theorem (cf. Theorem 3.7) which is a generalization of Theorem 6 in [1] and also a generalization of Theorem 9.1, 9.2 of §10 in [6] for set-valued mappings.

Main Theorem 2. Let U be a bounded open neighborhood of the origin in \mathbb{R}^{m+k} for $k \geq 0$ which is symmetric with respect to the involution T(x) = -x. Assume that $\varphi: \overline{U} \to \mathbb{R}^m$ is an admissible mapping which is equivariant on the boundary $\partial \overline{U}$ of \overline{U} . Then there exists a point $x_0 \in \overline{U}$ such that $\varphi(x_0) \ni 0$ and a point $x_1 \in \overline{U}$ such that $\varphi(x_1) \ni x_1$.

In the last section, we discuss a generalization of results of $\S3$ to the infinite dimensional normed space. We obtain the following theorem (cf. Theorem 4.2) which is a generalization of Theorem 7 in [1] in the case of the normed space.

Main Theorem 3. Let U be a symmetric bounded open neighborhood of the origin in a normed space **E**. Assume that $\varphi : \overline{U} \to \mathbf{E}$ is upper semi-continuous, compact convex valued mapping and is equivariant on $\partial \overline{U}$. Then there exist a fixed point $z_0 \in \overline{U}$ such that $\varphi(z_0) \ni z_0$.

In the above theorem, we can not deduce the existence of the zero value of φ . We shall generalize Borsuk-Ulam theorem to the case of infinite dimensional spaces.

Main Theorem 4. Let \mathbf{E}_k be a closed subspace of codimension $k \ge 1$ of \mathbf{E} and U be a symmetric bounded open neighborhood of the origin of \mathbf{E} . If $\Phi : \partial \overline{U} \to \mathbf{E}_k$ is a compact admissible mapping, there is a point $x_0 \in \partial \overline{U}$ such that $\varphi(x_0) \cap \varphi(T(x_0)) \neq \emptyset$ where $\varphi(x) = x - \Phi(x)$.

2 Various cohomology theories

To begin with, we give some remarks about several cohomology theories. For the detail, see Y.Shitanda [12]. The Alexander-Spanier cohomology theory $\overline{H}^*(-;G)$ is isomorphic to the singular cohomology theory $H^*(-;G)$, that is,

$$\mu: \bar{H}^*(X;G) \cong H^*(X;G)$$

if the singular cohomology theory satisfies the continuity condition (cf. Theorem 6.9.1 in [13]). For a paracompact Hausdorff space X, it holds also the isomorphism between Čech cohomology theory $\check{H}^*(-;G)$ with coefficient in a constant sheaf and the Alexander-Spanier cohomology theory $\bar{H}^*(-;G)$ (cf. Theorem 6.8.8 in [13])

$$\check{H}^*(X;G) \cong \bar{H}^*(X;G).$$

An ANR space is an r-image of some open set of a normed space (cf. Proposition 1.8 in [5]). For an ANR space X, it holds also the isomorphism:

$$\check{H}^*(X;G) \cong \bar{H}^*(X;G) \cong H^*(X;G)$$

by Theorem 6.1.10 of [13]. The remarkable feature of the Alexander-Spanier cohomology theory is that it satisfies the continuity property (cf. Theorem 6.6.2 in [13]). Hereafter we mainly use the Alexander-Spanier (co)homology theory with coefficient field \mathbf{F} .

Definition 2.1. Let X and Y be paracompact Hausdorff spaces. A mapping $f : X \to Y$ is called a Vietoris mapping, if it satisfies the following conditions:

- 1. f is proper and onto continuous mapping.
- 2. $f^{-1}(y)$ is an acyclic space for any $y \in Y$, that is, $\overline{H}^*(f^{-1}(y); \mathbf{F}) = 0$ for positive dimension.

When f is closed and onto continuous mapping and satisfies the condition (2), we call it weak Vietoris mapping.

If $f^{-1}(K)$ is compact set for any compact subset $K \subset Y$, f is called a proper mapping. Note that a proper mapping is closed. A mapping $f: X \to Y$ is called a compact mapping, if f(X) is contained in a compact set of Y, or equivalently its closure $\overline{f(Y)}$ is compact.

The following theorem is called Vietoris's theorem and is essentially important for our purpose (cf. Theorem 6.9.15 in [13]).

Theorem 2.2. Let $f : X \to Y$ be a weak Vietoris mapping between paracompact Hausdorff spaces X and Y. Then,

$$f^*: \bar{H}^m(Y; \mathbf{F}) \to \bar{H}^m(X; \mathbf{F}) \tag{1}$$

is an isomorphism for all $m \geq 0$.

The graph of set-valued mapping $\varphi : X \to Y$ is defined by $\Gamma_{\varphi} = \{(x, y) \in X \times Y \mid y \in \varphi(x)\}$. If φ is upper semi-continuous, Γ_{φ} is closed, but the converse is not true. If the image $\varphi(X)$ is contained in a compact set, the converse is true (cf. §14 in [5]).

Definition 2.3. An upper semi-continuous mapping $\varphi : X \to Y$ is admissible, if there exists a paracompact Hausdorff space Γ satisfying the following conditions:

1. there exist a Vietoris mapping $p: \Gamma \to X$ and a continuous mapping $q: \Gamma \to Y$,

2. $\varphi(x) \supset q(p^{-1}(x))$ for each $x \in X$.

A pair of mappings (p,q) is called a selected pair of φ .

Define $\varphi^* : \overline{H}^*(Y) \to \overline{H}^*(X)$ by the set $\{(p^*)^{-1}q^*\}$ where (p,q) is a selected pair of admissible mapping $\varphi : X \to Y$. And φ_* is similarly defined.

Let N be a paracompact Hausdorff space with a free involution T and $p: \Gamma \to N$ a Vietoris mapping. Consider the following diagram:

$\hat{\Gamma} \xrightarrow{\Delta}$	$\Gamma \times \Gamma$	
\hat{p}	$p \times p$	(2)
$N \xrightarrow{\Delta}$	$N \times N$	

where Δ is given by $\Delta(x) = (x, T(x))$. $\hat{\Gamma}$ is defined by the pull-back square and \hat{p} and $\hat{\Delta}$ are induced mappings in the pull-back square, i.e. $\hat{p}(y, y') = p(y)$. Involutions on N^2 , Γ^2 are given by switching mappings T(x, x') = (x', x). All mappings are equivariant with respect to their involutions. Clearly $\hat{\Gamma}$ has free involution \hat{T} . The following lemma is proved in Lemma 4.6 of [12].

Lemma 2.1. Let N be a paracompact Hausdorff space with a free involution T and p: $\Gamma \to N$ be a Vietoris mapping. Then $\hat{p}: \hat{\Gamma} \to N$ is a π -equivariant Vietoris mapping and $\hat{\Gamma}$ is a paracompact Hausdorff space. $\hat{p}_{\pi}: \hat{\Gamma}_{\pi} \to N_{\pi}$ is a Vietoris mapping and $\hat{\Gamma}_{\pi}$ is a paracompact Hausdorff space. Moreover if N is a metric space and A is a π -invariant closed subspace of N, then $\bar{H}^*(\hat{\Gamma} - \hat{p}^{-1}(A); \mathbf{F}_2)$ and $\bar{H}^*(\hat{\Gamma}_{\pi} - \hat{p}_{\pi}^{-1}(A_{\pi}); \mathbf{F}_2)$ are isomorphic to $\bar{H}^*(N - A; \mathbf{F}_2)$ and $\bar{H}^*(N_{\pi} - A_{\pi}; \mathbf{F}_2)$ respectively.

3 Borsuk's antipodal theorem

The classical Borsuk's antipodal theorem says that an equivariant mapping $f: S^m \to \mathbb{R}^m$ has the zero value, that is, there exists a point $x_0 \in S^m$ such that $f(x_0) = 0$ (cf. Theorem 5.2 of §5 in [6]). A generalized Borsuk's antipodal theorem is also stated as follows (cf. Theorem 9.2 of §10 in [6]).

Theorem 3.1. Let U be a bounded symmetric open neighborhood of the origin in \mathbb{R}^m . Assume that the closure \overline{U} of U is a finite polyhedron and $f: \overline{U} \to \mathbb{R}^m$ be a continuous mapping which is equivariant on the boundary $\partial \overline{U}$ of \overline{U} . Then f has the zero value, that is, there exists a point $x_0 \in \overline{U}$ such that $f(x_0) = 0$.

S.Y.Chang proved the following Borsuk antipodal theorems for upper semi-continuous mappings which are closed convex set valued (cf. Theorem 4 in [1]). A set valued mapping $F: X \to Y$ is called antipodal mapping in his paper, if F satisfies $F(x) \cap (-F(-x)) \neq \emptyset$ for all $x \in X$.

Theorem 3.2. Let U be a bounded symmetric open neighborhood of the origin in \mathbb{R}^{m+1} , and $F : \partial \overline{U} \to \mathbb{R}^m$ be upper semi-continuous, closed convex-valued, and antipodal preserving. Then F has the zero value, that is, there exists a point $x_0 \in \overline{U}$ such that $F(x_0) \ni 0$.

We prepare a theorem for later applications.

Theorem 3.3. Let N be a paracompact Hausdorff space with a free involution T and M an m-dimensional closed manifold with a free involution T'. Assume that $c^m \neq 0$ for $c = c(N,T) \in \overline{H}^1(N_{\pi}; \mathbf{F}_2)$ and f is an equivariant mapping. Then $f^* : \overline{H}^*(M; \mathbf{F}_2) \to \overline{H}^*(N; \mathbf{F}_2)$ is not trivial for a positive dimension.

Proof. Let $h: M \to S^{\infty}$ be an equivariant mapping such that $h_{\pi}^{*}(\omega) = c(M, T')$. Here ω is the generator of $\bar{H}^{1}(RP^{\infty}; \mathbf{F}_{2})$. $hf: N \to S^{\infty}$ is also an equivariant mapping such that $(hf)_{\pi}^{*}(\omega) = c(N, T)$. From $c(N, T)^{m} \neq 0$, it holds $c(M, T')^{m} \neq 0$. By Gysin-Smith exact sequence, we see $\phi^{*}(c_{M}) = c(M, T')^{m}$ where c_{M} is the dual cocycle of the *m*-dimensional fundamental cycle [M]. By

$$\phi^* f^*(c_M) = f_\pi^* \phi^*(c_M) = f_\pi^*(c(M, T')^m) = c(N, T)^m \neq 0,$$

we obtain the result.

In this paper we adopt a new definition of an equivariant mapping for set valued mappings. Our definition is a generalization of S. Y. Chang's definition.

Definition 3.4. Let X and Y be paracompact Hausdorff spaces with involutions T and T' respectively. An admissible mapping $\varphi : X \to Y$ is said to be equivariant, if there exist a paracompact Hausdorff space Γ with a free involution and an equivariant Vietoris mapping $p: \Gamma \to X$ and an equivariant continuous mapping $q: \Gamma \to Y$ such that $qp^{-1}(x) \subset \varphi(x)$ for $x \in X$. An admissible mapping $\varphi : X \to Y$ is said to be equivariant on a closed

subspace X_0 of X, if there exists an equivariant Vietoris mapping $p_0 : \Gamma_0 \to X_0$ and equivariant mapping $q_0 : \Gamma_0 \to Y$ and satisfies the following commutativity:

where (p,q) is a selected pair of φ and i is a closed inclusion.

For an equivariant mapping $\varphi : X \to Y$, it holds $qp^{-1}(x) \subset \varphi_0(x)$ for $x \in X$ where $\varphi_0(x) = \varphi(x) \cap T'\varphi(T(x))$. For an admissible mapping $\varphi : X \to Y$ which is equivariant on X_0 , it holds $q_0p_0^{-1}(x) \subset \varphi_0(x)$ for $x \in X_0$.

We shall generalize Theorem 3.1 and 3.2 in what follows. Let $\partial \overline{U}$ be the boundary of \overline{U} , that is, $\partial \overline{U} = \overline{U} - Int\overline{U}$.

Proposition 3.5. Let U be a bounded open neighborhood of the origin in \mathbb{R}^{m+k} for $k \geq 1$ which is symmetric with respect to the involution T(x) = -x. Assume that the boundary $\partial \overline{U}$ is an (m + k - 1)-dimensional manifold and $\varphi : \partial \overline{U} \to \mathbb{R}^m$ is an admissible mapping and is equivariant on $\partial \overline{U}$. Then there exists a point $x_0 \in \overline{U}$ such that $\varphi(x_0) \ni 0$.

Proof. Set $M = \overline{U - D}$ where D is an open disk centered at 0 with a small radius r > 0. M is a topological manifold with boundary which has the free involution T. We have $i^*(c(M,T)) = c(\partial \overline{U},T)$ for the inclusion $i: \partial \overline{U} \to M$ and $j^*(c(M,T)) = c(\partial \overline{D},T)$ for the inclusion $j: \partial \overline{D} \to M$. We can prove the following formula:

$$c^{m+k-1}(\partial \overline{U}, T)[(\partial \overline{U})_{\pi}] = c^{m+k-1}(S^{m+k-1}, T)[S^{m+k-1}_{\pi}]$$

by the method of Theorem 4.9 in J.Milnor [7]. Since $c^{m+k-1}(S^{m+k-1},T)$ is not zero, we obtain

$$c^{m+k-1}(\partial \overline{U}, T) \neq 0. \tag{3}$$

By our assumption, there exists an equivariant Vietoris mapping $p_0 : \Gamma_0 \to \partial \overline{U}$ and an equivariant mapping $q_0 : \Gamma_0 \to \mathbf{R}^m$ such that $q_0 p_0^{-1}(x) \subset \varphi(x)$ for $x \in \partial \overline{U}$. We have a formula:

$$c(\Gamma_0, T') = p_{0\pi}^*(c(\partial \overline{U}), T) \neq 0.$$
(4)

Assume that $\varphi(x)$ does not contain zero. q_0 is considered as $q_0 : \Gamma_0 \to \mathbf{R}^m - \{0\}$. Since q_0 is equivariant, we have a formula:

$$q_{0\pi}^{*}(c) = c(\Gamma_0, T')$$
(5)

where c is the first Stiefel-Whitney class of $\mathbb{R}^m - \{0\}$. From the results (4), (5), we have

$$(q_{0\pi})^*(c^{m+k-1}) = c(\Gamma_0, T')^{m+k-1} = (p_{0\pi})^*(c(\partial \overline{U}, T)^{m+k-1}).$$
(6)

The left side of the equation is zero by $c^m = 0$ and the right side is not zero by the results (3) and (4) and the bijectivity of $(p_{0\pi})^*$. From the contradiction, we obtain the conclusion.

We must remark that φ is defined on $\partial \overline{U}$, not on \overline{U} . We can also generalize Proposition 3.5 for the case that $\partial \overline{U}$ is not an (m + k - 1)-dimensional closed manifold. The following theorem is a generalization of Theorem 4 of S.Y.Chang [1].

Theorem 3.6. Let U be a bounded open neighborhood of the origin in \mathbb{R}^{m+k} for $k \geq 1$ which is symmetric with respect to the involution T(x) = -x. Assume that $\varphi : \partial \overline{U} \to \overline{\mathbb{R}}^m$ is an equivariant admissible mapping. Then there exists point $x_0 \in \partial \overline{U}$ such that $\varphi(x_0) \ni 0$.

Proof. We symmetrically cover \overline{U} by finitely many open disks $\{V_{\alpha}\}_{\alpha \in A}$ with a small radius below r > 0 such that $\overline{U} \subset \bigcup_{\alpha \in A} V_{\alpha}$. We may assume that $W = \bigcup_{\alpha \in A} \overline{V_{\alpha}}$ is a manifold with boundary. Moreover we may assume that the boundary ∂W is a manifold. If ∂W is not a manifold, it happened at a point x where two closed disks \overline{V}_1 and \overline{V}_2 are tangent each other. Since the point x is clearly outside of \overline{U} , it is sufficient to add two small disks symmetrically at x and T(x). Therefore we have

$$c^{m+k-1}(\partial W, T) \neq 0. \tag{7}$$

as in the proof of Proposition 3.5.

Set $\overline{U}_r = \{x \in \overline{U} \mid d(x, \partial \overline{U}) \geq 2r\}$ where $d(x, \partial \overline{U})$ is the distance between x and $\partial \overline{U}$. We symmetrically cover \overline{U}_r by finitely many open disks $\{V'_{\beta}\}_{\beta \in B}$ with a small radius below r > 0 such that $\overline{U}_r \subset \bigcup_{\beta \in B} V'_{\beta} \subset \overline{U}$. Set $W' = \bigcup_{\beta \in B} \overline{V'_{\beta}}$. We may assume that W' is a manifold with boundary and satisfies $W' \subset Int\overline{U}$. By Proposition 3.5 and $\partial(W - IntW') = \partial W \cup \partial W'$, we obtain

$$c^{m+k-1}(\partial W', T) \neq 0, \quad c^{m+k-1}(W - IntW', T) \neq 0.$$

Since families $\{IntW - W'\}$ and $\{W - IntW'\}$ are cofinal coverings of $\partial \overline{U}$, we have the isomorphism

$$\bar{H}^*(\partial \overline{U}) \cong \lim_{\to \to} \bar{H}^*(IntW - W') \cong \lim_{\to \to} \bar{H}^*(W - IntW')$$
(8)

by the continuity of the Alexander-Spanier cohomology theory. By the naturality of Stiefel-Whitney class with respect to $\{W - IntW'\}$, we see

$$c^{m+k-1}(\partial \overline{U}, T) \neq 0.$$
(9)

Therefore we obtain the result by the similar method as the proof of Proposition 3.5. \Box

Let ∂U be the boundary of U. Note that $\partial U = \overline{U} - U$. Generally ∂U and $\partial \overline{U}$ are different and $\partial \overline{U} \subset \partial U$. For an open set U of a normed space \mathbf{E} , it is said to be balanced if satisfies $sU \subset U$ for all s, $(0 \leq s \leq 1)$. Since a bounded open symmetric balanced space U satisfies the condition of the following theorem, we obtain easily Theorem 6 in [1].

Theorem 3.7. Let U be a bounded open neighborhood of the origin in \mathbb{R}^{m+k} for $k \geq 0$ which is symmetric with respect to the involution T(x) = -x. Assume that $\varphi: \overline{U} \to \mathbb{R}^m$ is an admissible mapping which is equivariant on the boundary $\partial \overline{U}$ of \overline{U} . Then there exists a point $x_0 \in \overline{U}$ such that $\varphi(x_0) \ni 0$ and a point $x_1 \in \overline{U}$ such that $\varphi(x_1) \ni x_1$.

Proof. We define a new open neighborhood V of the origin in \mathbb{R}^{m+k+1} :

$$V = \{ (x,s) \in \mathbf{R}^{m+k+1} \mid x \in Int\overline{U}, \ |s| < d(x,\partial\overline{U}) \}.$$
(10)

Clearly V is an open neighborhood of the origin in \mathbb{R}^{m+k+1} and bounded symmetric with respect to the antipodal involution in \mathbb{R}^{m+k+1} . We easily see :

$$\overline{V} = \{ (x, s) \in \mathbf{R}^{m+k+1} \mid x \in \overline{U}, \ |s| \leq d(x, \partial \overline{U}) \}.$$
(11)

The boundary $\partial \overline{V}$ of \overline{V} is

$$\partial \overline{V} = \{ (x, s) \in \mathbf{R}^{m+k+1} \mid x \in \overline{U}, \ |s| = d(x, \partial \overline{U}) \}.$$
(12)

Define a mapping $J: \overline{U} \to \mathbf{R}^{m+k+1}$ by

$$J(x) = x + d(x, \partial \overline{U})e_{m+k+1}$$
(13)

where $x \in \mathbf{R}^{m+k}$ and e_{m+k+1} is the (m+k+1)-th unit vector in \mathbf{R}^{m+k+1} . Clearly we see $\partial \overline{V} = J(\overline{U}) \cup \{TJ(\overline{U})\}$. As Theorem 3.6, we have $c(\partial \overline{V}, T)^{m+k} \neq 0$ and $c(\partial \overline{U}, T)^{m+k-1} \neq 0$.

For the case k > 0 the theorem is proved by the similar method as Theorem 3.6. We shall prove for the case k = 0. Let $\hat{\varphi} : \overline{U} \to \mathbf{R}^m$ be defined as follows:

$$\hat{\varphi}(x) = \begin{cases} \varphi(x) & \text{if } x \in Int\overline{U} \\ \varphi(x) \cup \{T\varphi(Tx)\} & \text{if } x \in \partial\overline{U}. \end{cases}$$
(14)

Since φ is upper semi-continuous, we can easily verify that $\hat{\varphi}$ is upper semi-continuous. Since φ is an equivariant admissible mapping on $\partial \overline{U}$, we can easily verify that $\hat{\varphi}$ is equivariant admissible on $\partial \overline{U}$. Note $\hat{\varphi}(Tx) = T\hat{\varphi}(x)$ for $x \in \partial \overline{U}$.

Define $\Psi: \partial \overline{V} \to \mathbf{R}^m$ by

$$\Psi(z) = \begin{cases} \hat{\varphi}(J^{-1}(z)) & \text{if } z \in J(\overline{U}) \\ T\hat{\varphi}(J^{-1}(Tz)) & \text{if } z \in TJ(\overline{U}). \end{cases}$$
(15)

 Ψ is well-defined and an upper semi-continuous mapping defined on $\partial \overline{V}$.

Let $p: \Gamma \to \overline{U}$ and $q: \Gamma \to \mathbb{R}^m$ be a selected pair of φ . We shall show that Ψ is equivariant on $\partial \overline{V}$. Let $\hat{\Gamma}$ be the space obtained by the pushout $\Gamma \stackrel{i}{\leftarrow} \Gamma_0 \stackrel{iT}{\to} \Gamma$. Here we note $i_1: \Gamma_0 \to \Gamma_1$ in the place of $i: \Gamma_0 \to \Gamma$ and $i_2: \Gamma_0 \to \Gamma_2$ in the place of $iT: \Gamma_0 \to \Gamma$. $\hat{\Gamma}$ has the involution \hat{T} induced by the following diagram:

$$\Gamma_{1} \xleftarrow{i_{1}} \Gamma_{0} \xrightarrow{i_{2}} \Gamma_{2}$$

$$\downarrow h \qquad \qquad \downarrow T \qquad \qquad \downarrow k$$

$$\Gamma_{2} \xleftarrow{i_{2}} \Gamma_{0} \xrightarrow{i_{1}} \Gamma_{1}$$

where $h: \Gamma_1 \to \Gamma_2, \ k: \Gamma_2 \to \Gamma_1$ are defined by the identity $\Gamma \to \Gamma$. $\hat{p}: \hat{\Gamma} \to \partial \overline{V}$ is defined by

$$\hat{p}(x) = \begin{cases} J(p(x)) & \text{if } x \in \Gamma_1 \\ TJ(p(\hat{T}x)) & \text{if } x \in \Gamma_2. \end{cases}$$

We easily see $\hat{p}:\hat{\Gamma}\to\partial\overline{V}$ is a Vietoris mapping.

 $\hat{q}:\hat{\Gamma}\to\mathbf{R}^m$ is defined by

$$\hat{q}(x) = egin{cases} q(x) & ext{if } x \in \Gamma_1 \ Tq(\hat{T}x) & ext{if } x \in \Gamma_2. \end{cases}$$

By Theorem 3.6, we obtain a point $x_0 \in \partial \overline{V}$ such that $\Psi(x_0) \ni 0$. This means $\varphi(y_0) \ni 0$ for a point $y_0 \in \overline{U}$.

For the second part, define $\varphi_1 : \overline{U} \to \mathbf{R}^{m+k}$ by $\varphi_1(x) = x - j\varphi(x)$ for $x \in \overline{U}$ where $j : \mathbf{R}^m \to \mathbf{R}^{m+k}$. $p : \Gamma \to \overline{U}$ and $p - jq : \Gamma \to \mathbf{R}^{m+k}$ are the selected pair of φ_1 . We easily verify that φ_1 is equivariant on $\partial \overline{U}$ by our hypothesis on φ . By apply the former part of this theorem to the case, there exists an element $x_1 \in \overline{U}$ such that $\varphi_1(x_1) \ni 0$, i.e. $\varphi(x_1) \ni x_1$.

4 Generalization to normed spaces

For a normed space \mathbf{E} , D is defined by $\{x \in \mathbf{E} \mid ||x|| \leq 1\}$ and S its boundary. We easily see that S is acyclic for an infinite dimensional normed space. Let S_{π} be the orbit space of S by the antipodal involution. The cohomology ring of S_{π} is the polynomial ring or truncated polynomial ring according to the infinite or finite dimensional normed spaces. This is easily proved by using the Gysin-Smith exact sequence of a double covering space.

We shall give a generalization of Theorem 3.7 to the normed space. We prepare the Schauder approximation theorem for our application (cf. Theorem 12.9 in [5]).

Theorem 4.1. Let X be a Hausdorff space and U an open set of a normed space E and $f: X \to U$ a continuous compact mapping. Then, for any $\epsilon > 0$, there exists a continuous compact mapping $f_{\epsilon}: X \to U$ satisfying the following condition:

- 1. $f_{\epsilon}(X) \subset \mathbf{E}^{n(\epsilon)}$ for a finite dimensional subspace $\mathbf{E}^{n(\epsilon)}$ of \mathbf{E}
- 2. $||f_{\epsilon}(x) f(x)|| < \epsilon$ for any $x \in X$
- 3. $f_{\epsilon}(x), f(x): X \to U$ are homotopic, noted by $f_{\epsilon} \simeq f$.

In what follows, we assume that Γ is a metric space. The following theorem 4.2 is called Borsuk's fixed point theorem (cf. Theorem 3.3 in §6 in [6], Theorem 3.7). Y.S.Chang proved Theorem 4.2 for the case of a bounded symmetric balanced neighborhood of the origin in a locally convex topological space (cf. Theorem 7 in [1]). We shall extend his theorem to the case of spaces which is not necessarily contractible.

Theorem 4.2. Let U be a symmetric bounded open neighborhood of the origin in a normed space \mathbf{E} . Assume that $\varphi : \overline{U} \to \mathbf{E}$ is upper semi-continuous, compact convex valued mapping and is equivariant on $\partial \overline{U}$. Then there exist a fixed point $z_0 \in \overline{U}$ such that $\varphi(z_0) \ni z_0$.

Proof. The normed space \mathbf{E} has the involution T defined by T(x) = -x. Let $p: \Gamma \to \overline{U}$ and $q: \Gamma \to \mathbf{E}$ be a selected pair of φ . Let $p_0: \Gamma_0 \to \overline{U}$ and $q_0: \Gamma_0 \to \mathbf{E}$ be a selected pair of φ_0 which are equivariant mappings and $\varphi_0(x) = \varphi(x) \cap (T\varphi(T(x)))$ for $x \in \partial \overline{U}$.

For any natural number n, we find finite dimensional vector subspaces $\{\mathbf{V}_n\}$ in \mathbf{E} and $\{q_n : \Gamma \to \mathbf{V}_n\}$ such that

$$\|q(y) - q_n(y)\| < \frac{1}{n} \quad (y \in \Gamma)$$
 (16)

by the approximation theorem of Schauder. Note that we can choose vector spaces $\{\mathbf{V}_n\}$ such that dim \mathbf{V}_n increases as n increases and $\mathbf{V}_n \subset \mathbf{V}_{n+1}$ for all n by seeing the construction in the approximation theorem.

Note that Γ_0 has the involution T. Define $q_{n,0}: \Gamma_0 \to \mathbf{V}_n$ by

$$q_{n,0}(z) = \frac{1}{2} \{ q_n(z) - q_n(\tilde{T}(z)) \}$$
(17)

which is equivariant. We obtain the following inequality:

$$\|q_{n,0}(z) - q_0(z)\| < \frac{1}{n}$$
(18)

for $z \in \Gamma_0$. This is proved by $||q_n(z) - q_0(z)|| < \frac{1}{n}$ for $z \in \Gamma_0$ and $||q_n(\tilde{T}z) + q_0(z)|| =$ $||q_n(\tilde{T}z) - q_0(\tilde{T}z)|| < \frac{1}{n}$ for $z \in \Gamma_0$. And it holds also

$$\|q_{n,0}(z) - q_n(z)\| < \frac{1}{n}$$
(19)

for $z \in \Gamma_{n,0}$. This is proved by $||q_n(\tilde{T}z) + q_n(z)|| \leq ||q_n(\tilde{T}z) - q_0(\tilde{T}z)|| + ||q_0(\tilde{T}z) + q_n(z)|| \leq ||q_n(\tilde{T}z) - q_0(\tilde{T}z)|| + ||-q_0(z) + q_n(z)|| < \frac{2}{n}$ for $z \in \Gamma_0$. Especially q_n and $q_{n,0}$ are homotopic. Let $\varphi_n : \overline{U} \to \mathbf{V}_n$ be defined by

$$\varphi_n(x) = B_n(\varphi(x)) \cap \mathbf{V}_n. \tag{20}$$

where $B_n(\varphi(x)) = \{z \in \mathbf{E} | d(z, \varphi(x)) \leq \frac{1}{n}\}$. By the inequality (16), it holds $\varphi_n(x) \neq \emptyset$ for $x \in \overline{U}$. The graph of a set valued mapping $\hat{h}(x) = B_n(\varphi(x))$ is clearly a closed set in $\mathbf{E} \times \mathbf{E}$ and also the graph of φ_n is a closed set in $\mathbf{V}_n \times \mathbf{V}_n$. Since the image of $\varphi_n(\overline{U})$ is contained in a compact set by the condition of φ and the definition of φ_n , φ_n is upper semi-continuous and compact mapping. $p_n = p$ and q_n is a selected pair of φ_n . Since $q_{n,0}$ is equivariant, φ_n is equivariant on $\partial \overline{U}$ by the inequality (19).

Set $K_n = \overline{U \cap \mathbf{V}_n}$ in \mathbf{V}_n and $K_{n,0} = \partial(\overline{U \cap \mathbf{V}_n})$. Set $\Gamma_n = p^{-1}(K_n)$, $\Gamma_{n,0} = (p_0)^{-1}(K_{n,0})$. $p_n : \Gamma_n \to K_n$ and $p_{n,0} : \Gamma_{n,0} \to K_{n,0}$ are the restrictions of p to Γ_n and $\Gamma_{n,0}$ respectively. The restriction of q_n to Γ_n is also written by $q_n : \Gamma_n \to \mathbf{V}_n \subset \mathbf{E}$. Let $\psi_n : K_n \to \mathbf{V}_n$ be the restriction of φ_n to K_n . We see $\psi_n(x) \neq \emptyset$ for $x \in K_n$ by (18). Let $\psi_{n,0} : K_{n,0} \to \mathbf{V}_n$ be defined by $\psi_{n,0}(x) = \psi_n(x) \cap T\psi_n(T(x))$ for $x \in K_{n,0}$. We see $\psi_{n,0}(x) \neq \emptyset$ for $x \in K_{n,0}$ by (19).

We apply Theorem 3.7 to the case $\psi_n : K_n \to \mathbf{V}_n$. We have a point $z_n \in K_n$ such that $z_n \in \varphi_n(z_n)$. From $z_n \in \psi_n(z_n)$, i.e. $z_n \in \varphi_n(z_n)$, we have a sequence $\{w_n\}$ satisfying $||z_n - w_n|| < \frac{1}{n}$ and $w_n \in \varphi(z_n)$. Since φ is a compact mapping, a subsequence of $\{w_n\}$ converges to w_0 . Therefore we may assume that $\{z_n\}$ converge to a point w_0 . Since φ is upper semi-continuous, we have $z_0 \in \varphi(z_0)$.

In the above theorem, we can not prove the existence of the zero value of φ as the finite dimensional case. Now we shall give some examples. Let D be the unit disk in a Hilbert space **H**. Let $f: D \to D$ be defined by

$$f(\{z_n\}) = (\sqrt{1 - \|z\|^2}, \{z_n\}).$$
(21)

Clearly f is a continuous mapping on D and equivariant on the boundary S and not a compact mapping. If f has a zero value, it holds the equations $\sqrt{1 - ||z||^2} = 0$, $z_n = 0$ for all n. We obtain easily the contradiction from the equations. Therefore f has not a zero value. We see also easily that f has not a fixed point.

Let $g: D \to D$ be defined by

$$g(\{z_n\}) = (\sqrt{1 - \|z\|^2}, \{\frac{z_n}{n}\}).$$
(22)

Clearly g is a continuous mapping on D and equivariant on the boundary S and a compact mapping. If g has a zero value, it holds the equations $\sqrt{1 - ||z||^2} = 0$, $\frac{z_n}{n} = 0$ for all n. We obtain easily the contradiction from the equations. Therefore g has not the zero value. Of course g has a fixed point (cf. §12 in [5], §3 in [12]).

Definition 4.3. Let X be a subset of a vector space V and $\Phi : X \to V$ a compact admissible mapping. A set-valued mapping $\varphi : X \to V$ is called an admissible compact field, if φ is defined by $\varphi(x) = x - \Phi(x)$.

Let \mathbf{E}_k be a closed subspace of codimension k of a normed space \mathbf{E} . K.Geba and L. Górniewicz [3] proved the following theorem for the case of the unit sphere of a normed space. Our method is different from their method.

Theorem 4.4. Let \mathbf{E}_k be a closed subspace of codimension $k \geq 1$ of \mathbf{E} and U be a symmetric bounded open neighborhood of the origin of \mathbf{E} . If $\Phi : \partial \overline{U} \to \mathbf{E}_k$ is a compact admissible mapping, there is a point $x_0 \in \partial \overline{U}$ such that $\varphi(x_0) \cap \varphi(T(x_0)) \neq \emptyset$ where $\varphi(x) = x - \Phi(x)$.

Proof. Let (p,q) a selected pair of Φ where $p: \Gamma \to \partial \overline{U}$ is a Vietoris mapping and $q: \Gamma \to \mathbf{E}_k$ continuous mapping. There is a k-dimensional subspace \mathbf{L}_k such that $\mathbf{E} = \mathbf{E}_k \oplus \mathbf{L}_k$.

By the approximation theorem of Schauder, there are finite dimensional vector subspace $\mathbf{V}_n \subset \mathbf{E}_k$ and $q_n : \Gamma \to \mathbf{V}_n$ such that

$$\|q(y)-q_n(y)\|<\frac{1}{n}$$

for $y \in \Gamma$. We may assume that dim \mathbf{V}_n increases and $\mathbf{V}_n \subset \mathbf{V}_{n+1}$. Let $\Phi_n : \partial \overline{U} \to \mathbf{V}_n$ be a set-valued mapping defined by

$$\Phi_n(x) = B_n(\Phi(x)) \cap \mathbf{V}_n$$

where $B_n(\Phi(x)) = \{y \in \mathbf{E} \mid d(\Phi(x), y) \leq \frac{1}{n}\}$. Since the graph of Φ_n is closed and $\Phi_n(\partial \overline{U})$ is compact, Φ_n is upper semi-continuous. Clearly Φ_n has a selected pair $p: \Gamma \to \partial \overline{U}$ and $q_n: \Gamma \to \mathbf{V}_n$. Therefore Φ_n is a compact admissible mapping.

Set $\varphi_n(x) = x - \Phi_n(x)$. Consider $\Psi_n : W_n \to \mathbf{V}_n$ defined by the restriction of Φ_n to W_n where $W_n = \partial \overline{U} \cap (\mathbf{V}_n \oplus \mathbf{L}_k)$. Note that $c(W_n, T)^{i_n+k-1} \neq 0$ by Proposition 3.5 where dim $W_n = i_n$.

By applying Theorem 6.3 of Y.Shitanda [12] to $\psi_n(x) = x - \Psi_n(x)$, we have a point $x_n \in W_n$ such that $\psi_n(x_n) \cap \psi_n(T(x_n)) \neq \emptyset$. This means $x_n - y_n = -x_n - z_n$ for some $y_n \in \Psi_n(x_n)$ and $z_n \in \Psi_n(T(x_n))$. Since Φ is compact mapping, there are convergent points y_0 and z_0 of $\{y_n\}$ and $\{z_n\}$ respectively. Therefore there is a convergent point x_0 where $x_n \to x_0$ and $x_0 = \frac{y_0 - z_0}{2}$. We see easily $y_0 \in \Phi(x_0)$ and $z_0 \in \Phi(T(x_0))$. By $x_0 - y_0 = -x_0 - z_0$, we have $\varphi(x_0) \cap \varphi(T(x_0)) \neq \emptyset$, i.e. $A(\varphi) \neq \emptyset$ where $A(\varphi) = \{x \in \partial \overline{U} \mid \varphi(x) \cap \varphi(T(x)) \neq \emptyset\}$.

Let X be a space with a free involution T and S^k a k-dimensional sphere with the antipodal involution. Define $\gamma(X)$ and $\operatorname{Ind}(X)$ by

$$\gamma(X) = \inf \{k \mid f : X \to S^k \text{ equivariant mapping} \}$$

$$\operatorname{Ind}(X) = \sup \{k \mid c^k \neq 0\}$$

respectively, where $c \in \overline{H}^1(X_{\pi}; \mathbf{F}_2)$ is the class $c = f_{\pi}^*(\omega)$ for an equivariant mapping $f : X \to S^{\infty}$. If X is a compact space with a free involution, it holds the following formula (cf. §3 in [2]):

$$\operatorname{Ind}(X) \leq \gamma(X) \leq \dim X.$$
 (23)

K. Gęba and L. Górniewicz proved $\operatorname{Ind} A(\varphi) \geq k - 1$ (cf. Theorem 2.5 in [2]). We shall generalize their result.

Corollary 4.5. Under the hypothesis of Theorem 4.4, it holds

$$\operatorname{Ind} A(\varphi) \geq k - 1.$$

Proof. We use the notation of Theorem 4.4. Consider $\varphi_n : W_n \to \mathbf{V}_n$ where $\tilde{\varphi}_n = \varphi(x) \cap \mathbf{V}_n$ for $x \in W_n$. Clearly it holds $A(\tilde{\varphi}_n) \subset A(\tilde{\varphi}_{n+1})$. By Theorem 6.3 of [12], we have $\operatorname{Ind}(A(\tilde{\varphi}_n)) \geq k-1$. Therefore we obtain the result.

References

- [1] Chang S.Y. Borsuk's Antipodal and Fixed Point Theorems for Set-Valued Maps, Proc. of Amer. Math. Soc. vol.121,937-941, (1994).
- [2] Gęba K. and Górniewicz L. On the Bourgin-Yang Theorem for Multi-valued Maps I, Bull. Polish Acad. Sci. Math. Vol.34 No.5-6. (1986), 315-322.
- [3] Gęba K. and Górniewicz L. On the Bourgin-Yang Theorem for Multi-valued Maps II, Bull. Polish Acad. Sci. Math. Vol.34 No.5-6. (1986), 323-327.
- [4] Górniewicz, L. A Lefschetz-type fixed point theorem, Fundamenta Mathematicae 88, (1975),103-115.
- [5] Górniewicz, L. Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic Publishers, (1999).
- [6] Granas A. and Dugundji J. Fixed Point Theory, Springer Monographs in Mathematics, Springer Verlag, New York Inc (2003)
- [7] Milnor J. Characteristic classes, Annals of Mathematics Studies, Princeton University Press
- [8] Nakaoka M. Generalizations of Borsuk-Ulam Theorem, Osaka J. Math. 7, (1970),423-441.
- [9] Nakaoka M. Continuous map of manifolds with involution I, Osaka J. Math. 11, (1974),129-145.
- [10] Nakaoka M. Continuous map of manifolds with involution II, Osaka J. Math. 11, (1974),147-162.
- [11] Nakaoka M. Equivariant point theorems for involution, Japan J. Math. Vol.4, No.2, (1978), 263-298.
- [12] Shitanda Y. Fixed point theorems and equivarint points for set-valued mappings, submitted.
- [13] Spanier E. H. Algebraic Topology, Springer-Verlag, New York (1966)