
$G$-ISOVARIANCE AND THE DIAGRAM OBSTRUCTION

MASATSUGU NAGATA

RIMS, Kyoto University

SECTION 1. INTRODUCTION

In 1987, W. Browder $[Br|$ claimed a fundamental theorem relating equivariant
vs. isovariant homotopy equivalences, under the Gap Hypothesis. Twenty years have
passed since then, but the claim is still “folklore”, despite the fact that many people
(cf. [We 1]) have developed theories under the assumption that Browder’s claim is
true. The current author’s earlier works $[N2],$ $[N3]$ also relied on it.

In 2006, R. Schultz $[Sch|$ published a proof of Browder’s theorem for semi-free
actions. He used homotopy theoretic methods, and built a new obstruction theory in
order to construct an isovariant homotopy equivalence from an equivariant homotopy
equivalence in the semi-free situation. However, for general (non-semi-hee) cases, the
situation is not settled yet. If one wants to generalize Schultz’ proof for non-semi-free
cases, one would have to construct even more complicated obstruction theories, which
do not look so straightforward.

In this note, we would like to generalize the homotopy theoretic methods done
by Schultz and other people, to investigate a possible proof of Browder’s theorem in a
more general case, rather than the very restricted case done by Schultz. In order to do
that, we generalize the diagram cohomoloogy obstruction theory developed by Dula
and Schultz [DS] to more general group actions. We have not succeeded in proving
the theorem yet, but we will give some construction that we hope to be able to be
applied in the general situation, which we would like to work on elsewhere.
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SECTION 2. DEFINITION AND THE BASIC EXAMPLE

Let $G$ be a finite group. Let $M$ be a closed, connected, G-oriented smooth
G-manifold. For any subgroup $H$ of $G$ , let $M^{H}$ be the fixed-point set, which may
consist of submanifolds of various dimension. A G-manifold $M$ is said to satisfy the
Gap Hypothesis if the following holds:

The Gap Hypothesis. For any pair of subgroups $K\lessgtr H$ of $G$ , and for any pair
of connected components $B\subset M^{H}$ and $C\subset M^{K}$ such that $B\subsetneqq C$ , the inequality
2 $\dim B+2\leq\dim C$ , in other words, $\dim B<[\frac{1}{2}\dim C|$ , holds.

The Gap Hypothesis provides general position arguments and transversality
between each isotropy type pieces, thus making it possible to provide various geo-
metric constructions in the equivariant settings. Madsen and Rothenberg $([MR2|)$

constructed a beautiful surgery exact sequence in an equivariant category, and used
it to classify spherical space forms.

Browder’s insight told us to use this condition to construct isovariant homotopy
equivalences from equivariant homotopy equivalences. And that is what we would like
to consider here.

Deflnition. A map $f$ : $Xarrow Y$ between G-sapces $X$ and $Y$ is called equivariant if
$f(gx)=gf(x)$ for all $g\in G$ and $x\in X$ . In other words, the isotropy subgroup $G_{x}$ is
included in the isotropy subgroup $G_{f(x)}$ for all $x\in X$ . The map $f$ is called isovariant
if $G_{x}$ is equal to $G_{f(x)}$ for all $x\in X$ .

Browder $[Br|$ claimed the folowing:

Theorem (Browder). Let. $M$ and $N$ be closed, connected, G-oriented smooth G-
manifolds. $\mathcal{A}ssume$ that $M$ satisfies the Gap Hypothesis. Then, any G-homotopy
equivalence $f$ : $Marrow N$ is G-equivariantly homotopic to a G-isovariant homotopy
equivalence $f’$ . Moreover, if $M\cross I$ satisfies the Gap Hypothesis, then the $f’$ is unique
up to G-homotopy.

Here is an example, given by Browder, that illustrates the principal obstruction
in deforming an equivariant map into an isovariant map:

Let $G$ be a cyclic group of prime order, and let it act on the sphere $S^{q}$ by
rotation, with 2 fixed points $0$ and $\infty$ . Let $Y=S^{k}xS^{q}$ where $G$ acts trivially on
the first coordinate $S^{k}$ , thus the fixed point set is $Y^{G}=(S^{k}x0)\cup(S^{k}x\infty)$ . Let
$X=(S^{k}\cross S^{q})\# cG(S^{k}xS^{q})$ , the equivariant connected sum of $Y=S^{k}xS^{q}$ and
$|G|$ copies of G-trivial $(S^{k}xS^{q})$ with $G$ freely acting by circulating the $|G|$ copies,
and the equivariant connected sum is made on a free orbit.

Define $f$ : $Xarrow Y$ to be the identity on the first component $S^{k}\cross S^{q}$ , and
via the composition of the projection $G(S^{k}xS^{q})arrow GS^{q}$ and the canonical G-map
$GS^{q}arrow S^{q}$ on the second component of the equivariant connected sum.

182



G-ISOVARIANCE AND THE DIAGRAM OBSTRUCTION

By construction, $f$ is a degree 1 equivariant map. But it is not an isovari-
ant map, because the fixed point set $X^{G}$ is just the “central” $(S^{k}x0)$ on the first
component, thus $f^{G}$ : $X^{G}arrow Y^{G}$ is just the identity, but the free part of $X$ is
$X-X^{G}=S^{k}\cross(S^{q-1}\cross \mathbb{R})\# cG(S^{k}\cross S^{q})$ , which contains all the $S^{q}$-cycles on the
$|G|$ copies of $(S^{k}xS^{q})$ . When mapped onto $Y$ , this free part must intersect with the
fixed-point set $Y^{G}$ in $Y$ , thus $f$ could not be deformed in any way to an isovariant
map.

Note that both $X$ and $Y$ satisfy the Gap Hypothesis if $q\geq k+2$ , thus it is
a serious obstruction in considering Browder’s deformation of equivariant things into
isovariant things. The Gap Hypothesis and degree 1 maps are not enough; being an
equivariant homotopy equivalence is an essential condition, and so this is really a deep
geometrical problem.

SECTION 3. THE METHODS OF SCHULTZ

Schultz $[Sch|$ gave a proof of Browder’s theorem under the additional assump-
tion that the G-action is semi-free (that is, $M-M^{G}$ is G-free) everywhere. In the
semi-free case, the only possible isotropy types are G-free and trivial types, so one
can do the construction considering only those two distinct types. Thus, Schultz (and
Dula and Schultz [DS] $)$ constructed an obstruction theory in a form of equivariant co-
homology, which they called “diagram cohomology”, of triads of the form (manifold;
regular neighborhood of the fixed-point set, and the free-part).

Since the fixed point sets $N^{G}=U_{\alpha}^{N_{\alpha}}$ and $M^{G}=II_{\alpha}^{M_{\alpha}}$ with $M_{\alpha}=$

$f^{-1}(N_{\alpha})\cap M^{G}$ is in one-to-one correspondence component-wise, one can first deform
$f$ inside the regular neighborhood of each of the components $M_{\alpha}$ of the fixed-point
set. The normal bundles of $M_{\alpha}$ and $N_{\alpha}$ are stably fiber homotopy equivalent, but
thanks to the Gap Hypothesis, it is unstably fiber homotopy equivalent. Therefore,
it is possible to deform $f$ to be isovariant in the regular neighborhood of $M_{\alpha}$ for each
$\alpha$ , by using standard construction.

Next one pushes down the non-isovariant points into the system of tubular
neighborhoods of $M_{\alpha}$ . That is, deform the map $f$ so that any non-isovariant point is
contained in a closed tubular neighborhood $W_{\alpha}$ of $M_{\alpha}$ for some $\alpha$ . (See Proposition
4.2 of [Sch]. $)$ Here, the deformation is done via the ”diagram cohomology” obstruction
theory. $\circ ne$ notes that the map $f$ : $Xarrow Y$ in the example of the previous section
cannot be deformed this way, since the “diagram cohomology” detects its non-trivial
obstruction.
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Finally, one deforms the result map into a G-isovariant map. Again, one uses
the “diagram cohomology” to detect the deformation obstruction. First, one uses G-
transversality (due to the Gap Hypothesis) to construct appropriate “diagram maps”
that have necessary local isovariancy properties (which they call “almost isovariant
maps,”) and then apply the “diagram cohomology” obstruction theory to see that the
obstruction vanishes, producing the desired deformation, to get a global G-isovariant
map. (See Proposition 5.3 of $[Sch|.)$

Schultz has successfully built an appropriate obstruction theory just enough
for proving the theorem in the semi-hee case. As he remarks in the last section in
his paper, he seems to be interested in applying the obstruction theory to situations
where the Gap Hypothesis fails, and to build a new framework of applications of
equivariant homotopy theory into equivariant surgery. However, in non-semi-hee
cases, the “diagram cohomology” obstruction theory (of [DS]) does not seem to be
directly applicable, and things seem to be much complicated if one pursues to reduce
them into algebraic topology methods. So, here we try to consider a different direction,
that is, to look into more naive geometric methods, to reduce things into the deep
theories of equivariant surgery.

However, a more generalized version of obstruction theory is still needed, and
so we first work out a new form of “diagram cohomology” in the style of Dula and
Schultz [DS].

Claim. The diagram cohomology obstruction theory of Dula and Schultz can be di-
rectly generalized to non-semi-free actions of metacyclic groups. In particular, Theo-
rem 4.5 of [DS] still holds for an arbitrary action of any metacyclic group.

In order to prove this, we go back to Serre-type spectral sequence of Bredon
cohomology with twisted coefficients, as developed by J. M. Mller [Mo] and I. Moer-
duk and J.-A. Svensson $[MoS]$ . Working parrarel to Dula and Schultz for such group
actions using Bredon cohomology with twisted coefficients, Dula and Schultz’ argu-
ments can be directly generalized to our cases, too, and Theorem 4.5 of [DS] can be
proved in such cases, providing recognition principle for a diagram map to produce
an isovariant map. We will discuss further details elsewhere.

SECTION 3. EQUIVARIANT SURGERY

First we make use of the following theorem of W. L\"uck:
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Theorem (L\"uck). Let $M$ and $N$ be smooth G-manifolds with codimension $\geq 3$

gaps, $f$ : $Marrow N$ a G-homotopy equivalence, and $x\in M^{G}$ . Then, the tangent
representation at $x\in M$ is G-homotopy equivalent to that of $f(x)\in N$ .

Therefore, under our Gap Hypothesis, the equivariant normal bundles of the
fixed-point sets are G-homotopy invariant between $M$ and $N$ . We would like to
construct an equivariant unstable fiber homotopy equivalence between the regular
neighborhoods of the fixed-points sets, and so we rely on the following classic theorem
of C. T. C. Wall ([W], \S 11 and \S 12) :

Codimension 1 Embedding Theorem (Wall). Let $M$ and $N$ be smooth G-
manifolds with the Gap Hypothesis, and $f$ : $Marrow N$ a G-homotopy equivalence.
Assume that $N$ is divided into G-submanifolds $N=N_{1}\cup N_{2}$ such that $N_{0}=N_{1}\cap N_{2}=$

$\partial N_{1}=\partial N_{2}$ and $\pi_{1}N_{0}\cong\pi_{1}N_{1}$ . Assume further that $N_{0}$ is in the G-free part
N–SN, where $SN= \bigcup_{H\neq e}N^{H}$ . Then, $f$ is G-homotopic to a map $f’$ such that
$M_{i}=f^{;-1}(N_{i})$ is G-homotopy equivalent to $N_{i}$ , respectively for $i=0,1,2$ , via the
map $f^{l}$ .

Making use of it, we can deform the G-homotopy equivalence between the
normal bundles of the fixed-point sets into an (unstable) fiber homotopy equivalence
between the regular neighborhoods. Thus far, the argument is similar to the one
explained in Schultz’ paper [Sch].

In order to approach toward the proof of Browder’s theorem, we proceed in-
ductively on the system of isotropy types. For now, we start by assuming that the
theorem is true over $SM$ .

So, we assume that $f$ : $Marrow N$ a G-homotopy equivalence such that $f|_{\partial M}$ is
already an isovariant homotopy equivalence. We need to deform $f$ (by G-homotopy)
relative to $\partial M$ into a G-isovariant map.

Let $U$ be a regular neighborhood of $SN$ in N. $N-\partial N$ is G-free, and $f^{-1}(N-$

$U)\subset M=\partial M$ by assumption. Now let $N_{1}=\overline{U}$ and $N_{2}=\overline{N-U}$ , which readily
satisfies the assumptions in the Codimension 1 Embedding Theorem because $f|_{\partial M}$ is
assumed to be an isovariant homotopy equivalence.

Now apply the Codimension 1 Embedding Theorem to deform the map to get
a thickening (in the line of the argument of \S 11 of Wall $s$ book [W])

$M=V\cup M_{2}arrow U\cup N_{2}=N$

where $Varrow U$ is a G-homotopy equivalence, and $V$ is G-h-cobordant to the regular
neighborhood $W$ of $SM$ .

We have now “divided” the manifolds into the “interior” and the “exterior” of
the regular neighborhoods of $SM$ and $SN$ respectively.

Note that the argument is still similar to Schultz’ paper [Sch]. He has also
divided things to “interior” (good neighborhood of the singular set) and “exterior”
(free part on the target manifold, where the map may go non-isovariant). From here,
Schultz goes ahead to construct an obstruction theory to handle the deformation
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obstruction of the “exterior” relative to the “interior”. We would like to go from
here toward the equivariant surgery methods, to avoid a much complicated algebraic
system in the non-semi-free case.

Since the regular neighborhoods are (unstably) G-fiber homotopy equivalent to
each other, the proof could be completed once we could perform an equivariant surgery
process to deform the G-homotopy equivalence $f|_{\partial}w$ into a G-homotopy equivalence
$f|\partial V$ .

That last process could be reduced to the $\pi-\pi$ Theorem in the equivariant
surgery. We now rely on the arguments of \S 13.2 of Weinberger’s book [We 1]. As-
suming some variant of the Gap Hypothesis, Weinberger has established a form of
the equivariant surgery exact sequence. (See \S 13.2 of [We 1], p.225):

Equivariant Surgery Exact Sequence. Suppose that $G$ is a finite group acting
orrientation preservingly an a (topological) manifold $M$ with smdl gaps and with all
fixed point sets locally flat submanifolds. Suppose also that all fixed sets have dimen-
sion at least five. Then we have a long exact surgery sequence for isovarzant structure
sets.

We could follow Weinberger’s techniques, to perform equivariant surgery to de-
form the G-homotopy equivalence $f|_{\partial W}$ into a G-homotopy equivalence $f|_{\partial V}$ . How-
ever, in the non-semi-free situation, the deformation must be done relative to the
system of pieces of neighborhoods of the isotropy sets that are already deformed to
be isovariant. So, we need to rely on some kind of ”stratification” of such pieces of
isotropy set neighborhoods.

Since we have assumed the Gap Hypothesis, those pieces can be assumed to
be in the general position, and thus the stratified surgery can be applied. We use the
following form of the $\pi-\pi$ Theorem. (See Section 7.1 of [We $1|)$ :

Stratifled $\pi-\pi$ Theorem. Suppose $(Y, X)$ is a strongly stratified pair, $X=\partial Y_{f}$ and
each pure stratum of $Y$ touches exactly one stratum of $X$ for which the inclusion is a
l-equivalence. If all strata of $X$ are of dimension $\geq 5$ , then any normal invariant of
$(W, V)arrow(Y, X)$ can be surged into a simple homotopy equivalence.

Since our Gap Hypothesis is stronger than the condition needed here, our gen-
eral position situation is enough to apply the Stratified $\pi-\pi$ Theorem to our stratified
data, we can surger the data to construct a K-homotopy equivalence. However, in
order to get an equivariant homotopy equivalence map in the global level, we still
need a destabilization obstruction, as explained in Section 6.2 of [We 1]:

$S(X)arrow S^{-\infty}(X)arrow\hat{H}(\mathbb{Z}/2:Wh^{Top}(X))$

where the latter term is 2-torsion only. Thus, the surgery can be done up to 2-torsion.
This provides the desired deformation, at least up to 2-torsion.

In order to handle the 2-torsion obstruction, we probably need to make use of
the Nil arguments of Cappell and Weinberger (see \S 14.2 of [We 1]), which was origi-
nally invented by Cappell in order to deepen Wall’s submanifold embedding theorems.
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In the case of actions of metacyclic groups, those obstructions can be reduced
to certain explicit construction built upon the diagram cohomology obstructions dis-
cussed at the end of Section 2, and can be used to show that the desired deformation
is possible.

The L-group term in the equivariant surgery exact sequence consists of the
hierarchical strata-wise L-group classes, each of which is interpreted (by the origi-
nal realization theorem of C. T. C. Wall ([W], Section3) $)$ as appropriate classes of
equivariant normal maps. They were computed by various people in various situa-
tion, including Madsen-Rothenberg $([MR2])$ , Cappell-Weinberger-Yan ([CWY]) and
Weinberger-Yan $([WY2|)$ . In our case, since we have started with a G-homotopy
equivalence, we could be successful in reducing the surgery obstruction into the $\pi-\pi$

Theorem situation, at least up to 2-torsion, as above.
In this way, reducing the deformation construction into the stratified $\pi-\pi$ The-

orem seems to work in the general non-semi-free case. Unlike Schultz’s methods, it
really depends on the deep geometric results of equivariant surgery theories, but on
the other hand, it may open up a deeper geometric understanding on the properties
of isovariant homotopy equivalences, so we hope to work further in this direction. We
hope to provide more details to this generality in a future work.
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