SMITH PROBLEM FOR A FINITE OLIVER GROUP WITH NON-TRIVIAL CENTER

九州大学大学院芸術工学研究院 角

俊雄 (Toshio Sumi) Faculty of Design Kyushu University

1. INTRODUCTION

The Smith problem is that two tangential representations are isomorphic or not for a smooth action on a homotopy sphere with exactly two fixed points. Two real G-modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere Σ such that $S^G = \{x, y\}$ for two points x and y at which $T_x(\Sigma) \cong U$ and $T_y(\Sigma) \cong V$ as real G-modules. We will consider a subset Sm(G) of the real representation ring RO(G) of G consisting of the differences U-V of real G-modules U and V which are Smith equivalent. We also define a subset CSm(G) of RO(G) consisting of the differences $U - V \in Sm(G)$ of real G-modules U and V which are Smith equivalent. We also define a subset CSm(G) of RO(G) consisting of the differences $U - V \in Sm(G)$ of real G-modules U and V which are Smith equivalent. We also define a subset CSm(G) of RO(G) consisting of the differences $U - V \in Sm(G)$ of real G-modules U and V which are Smith equivalent. We also define a subset CSm(G) of RO(G) consisting of the differences $U - V \in Sm(G)$ of real G-modules U and V such that for the sphere Σ appearing in the notion of Smith equivalence of U and V satisfies that Σ^P is connected for every $P \in \mathcal{P}(G)$. Moreover, we assume that $0 \in CSm(G)$ as definition.

In many groups, Smith equivalent modules are not isomorphic. In this paper we discuss the Smith problem for an Oliver group with non-trivial center. Throughout this paper we assume a group is finite.

2. TOPOLOGICAL VIEWPOINT

We denote by $\mathcal{P}(G)$ the family of subgroups of G consisting of the trivial subgroup of G and all subgroups of G of prime power order, and by $\mathcal{L}(G)$ the family of large subgroups of G. Here, by a *large subgroup* of G we mean a subgroup $H \leq G$ such that $O^p(G) \leq H$ for some prime p, where $O^p(G)$ is the smallest normal subgroup of G such that $|G/O^p(G)| = p^k$ for some integer $k \geq 0$. A real G-module V is called $\mathcal{L}(G)$ -free if dim $V^H = 0$ for each $H \in \mathcal{L}(G)$, which amounts to saying that dim $V^{O^p(G)} = 0$ for each prime p dividing |G|. Following [PSo], we denote by LO(G) the subgroup of RO(G)consisting of the differences U - V of two real $\mathcal{L}(G)$ -free G-modules U and V such that $\operatorname{Res}_{\mathcal{P}}^{\mathcal{G}}(U) \cong \operatorname{Res}_{\mathcal{P}}^{\mathcal{G}}(V)$ for every $P \in \mathcal{P}(G)$.

For two subgroups P < H of G with $P \in \mathcal{P}(G)$, and a smooth G-manifold X or a real G-module X, we consider the number

$$d_X(P,H) = \dim X^P - 2 \dim X^H$$

²⁰⁰⁰ Mathematics Subject Classification. 57S17, 20C15.

Key words and phrases. real representation, Smith problem, Oliver group.

where dim means the dimension of the G-CW complex. Furthermore we define by $\dim Z = \dim X - \dim Y$ for a virtual real G-module Z = X - Y of RO(G). A smooth G-manifold X satisfies the gap condition (GC) if $d_X(P, H) > 0$ for every pair (P, H) of subgroups P < H of G with $P \in \mathcal{P}(G)$.

The following theorem goes back to [PSo], the Realization Theorem.

Theorem 2.1 ([PSo]). Let G be a finite Oliver gap group. Then $LO(G) \subseteq CSm(G)$.

We impose a number of restrictions on a smooth G-manifold, in particular, a real G-module X. The restrictions are collected in the following conditions, where we consider series $P < H \leq G$ of subgroups P and H of G always with $P \in \mathcal{P}(G)$. We say that a smooth G-manifold X satisfies the weak gap condition (WGC) if the conditions (WGC1)-(WGC4) all hold (cf. [LM], [MP]), and we say that X satisfies the semi-weak gap condition (SWGC) if the conditions (WGC1) and (WGC2) both hold.

- (WGC1) $d_{\chi}(P, H) \ge 0$ for every $P < H \le G, P \in \mathcal{P}(G)$.
- (WGC2) If $d_X(P, H) = 0$ for some $P < H \le G$, $P \in \mathcal{P}(G)$, then [H : P] = 2, dim $X^H > \dim X^K + 1$ for every $H < K \le G$, and X^H is connected.
- (WGC3) If $d_X(P, H) = 0$ for some $P < H \leq G$, $P \in \mathcal{P}(G)$, and [H : P] = 2, then X^H can be oriented in such a way that the map $g: X^H \to X^H$ is orientation preserving for any $g \in N_G(H)$.
- (WGC4) If $d_X(P, H) = d_X(P, H') = 0$ for some $P < H, P < H', P \in \mathcal{P}(G)$, then the smallest subgroup $\langle H, H' \rangle$ of G containing H and H' is not a large subgroup of G.

Now, for a finite group G, we define subgroups VLO(G), WLO(G) and MLO(G) of the free abelian group LO(G) as follows.

 $VLO(G) = \{U - V \in LO(G) \mid U \oplus W \text{ and } V \oplus W \text{ both satisfy the gap condition for some real } \mathcal{L}(G)\text{-free } G\text{-module } W \}$ $WLO(G) = \{U - V \in LO(G) \mid U \oplus W \text{ and } V \oplus W \text{ both satisfy the weak gap condition } U \oplus W \text{ both satisfy the weak gap condition } W \}$

 $WLO(G) = \{U - V \in LO(G) \mid U \oplus W \text{ and } V \oplus W \text{ both satisfy the weak gap condition} for some real <math>\mathcal{L}(G)$ -free G-module $W\}$

 $MLO(G) = \{U - V \in LO(G) \mid U \oplus W \text{ and } V \oplus W \text{ both satisfy the semi-weak gap}$ condition for some real $\mathcal{L}(G)$ -free G-module $W\}$

Note that if $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ then for an $\mathcal{L}(G)$ -free real G-modules U and V there is a real $\mathcal{L}(G)$ -free G-module W such that both $U \oplus W$ and $V \oplus W$ satisfy (WGC2), and if G is an Oliver group then for an $\mathcal{L}(G)$ -free real G-modules U and V there is a real $\mathcal{L}(G)$ -free G-module W such that both $U \oplus W$ and $V \oplus W$ satisfy (WGC2) and (WGC4).

In general, $VLO(G) \subseteq WLO(G) \subseteq MLO(G) \subseteq LO(G)$ by definitions. But if G is a gap group, then for every $U-V \in LO(G)$, there exists a real $\mathcal{L}(G)$ -free G-module W satisfying the gap condition, such that $U \oplus W$ and $V \oplus W$ also satisfy the gap condition, and thus $U-V \in VLO(G)$, and hence

VLO(G) = WLO(G) = MLO(G) = LO(G).

Therefore, the following theorem extends the result in Theorem 2.1 by using Theorem in [MP].

Theorem 2.2. Let G be a finite Oliver group. Then $WLO(G) \subseteq CSm(G)$.

3. Algebraic viewpoint

We denote by PO(G) the subgroup of RO(G) of G consisting of the differences U - Vof representations U and V such that dim $U^G = \dim V^G$ and $\operatorname{Res}_P^G(U) \cong \operatorname{Res}_P^G(V)$ for any subgroup P of G of prime power order. We note that in [PSo], PO(G) is denoted by IO(G, G). Similarly, we denote by $\overline{PO}(G)$ the subgroup of RO(G) of G consisting of the differences U - V of representations U and V such that dim $U^G = \dim V^G$ and $\operatorname{Res}_P^G(U) \cong \operatorname{Res}_P^G(V)$ for any subgroup P of G of odd prime power order and order 2, 4. By a theorem of Sanchez [Sa], the difference of two Smith equivalent representations lies in $\overline{PO}(G)$.

We define the Laitinen number a_G as the number of real conjugacy classes in G represented by elements of G not of prime power order. The rank of PO(G) is equal to the maximum of 0 and $a_G - 1$. Moreover the rank of $\overline{PO}(G)$ is equal to the rank of PO(G) plus the number of all real conjugacy classes represented by 2-elements of order ≥ 8 . Now, let H be a normal subgroup of G. We denote by PO(G, H) the subgroup of RO(G) consisting of the differences U - V of representations U and V such that $U^H \cong V^H$ as representations over G/H, and $\operatorname{Res}_P^G(U) \cong \operatorname{Res}_P^G(V)$ for any subgroup P of prime power order. Again, we note that in [PSo], PO(G, H) is denoted by IO(G, H). It holds that PO(G) = PO(G, G). Let $b_{G/H}$ be the number of all real conjugacy classes in G/H which are images from real conjugacy classes of G represented by elements not of prime power order by the surjection $G \to G/H$. Then the rank of PO(G, H) is equal to $a_G - b_{G/H}$ (see [PSo]).

Proposition 3.1 (cf. [PSo]). It holds that

$$PO(G, G^{nil}) \le LO(G) \le PO(G) \le \overline{PO}(G) \le RO(G).$$

Note that $G^{nil} = \bigcap_p O^p(G)$. Also it is known that

$$LO(G) \subseteq CSm(G) \subseteq Sm(G)$$

if G is an Oliver gap group.

4. Upper restriction

Let S be a set of primes dividing |G| and 1, and let denote by $G^{\cap S}$ the normal subgroup of G defined as

$$G^{\cap S} = \bigcap_{L \trianglelefteq G; [G:L] \in S} L.$$

Theorem 4.1 ([M07a, KMK]). Let G be a finite Oliver group. We set $S = \{2, 3\}$ if a Sylow 2-subgroup of G is normal and set $S = \{2\}$ otherwise. Then it holds that

 $CSm(G) \subseteq PO(G, G^{\cap S})$ and $Sm(G) \subseteq \overline{PO}(G, G^{\cap S})$.

In addition if G is a gap group and $G^{nil} = G^{\cap S}$, then it holds that

 $LO(G) = CSm(G) = PO(G, G^{nil}).$

Here G^{nil} is the minimal subgroup among normal subgroups N of G such that G/N is nilpotent.

In particular, $a_G = b_{G/G^{\cap S}}$ yields that CSm(G) = 0.

Proposition 4.2 (cf. [PSu08]). $G/G^{\cap S}$ is an elementary abelian group.

5. KNOWN RESULTS

In this section we summarize several known results ([Ju, M07a, M07b, PSo, PSu07, Su]). First we treat a non-solvable group. Pawałowski and Solomon [PSo] showed that $0 \neq PO(G, G^{nil}) \subseteq CSm(G)$ if G is a non-solvable gap group with $a_G \ge 2$, Pawałowski and Sumi [PSu07]showed that $0 \neq LO(G) \cap CSm(G)$ if G is a non-solvable group with $a_G \ge 2$, except $Aut(A_6)$, $P\SigmaL(2, 27)$, and Morimoto [M07a, M07b] showed that $Sm(Aut(A_6)) = 0$ and $CSm(P\SigmaL(2, 27)) \neq 0$. Combining these results we can state that

Theorem 5.1. For a finite non-solvable group G, $Sm(G) \neq 0$ if and only if $a_G \leq 1$ or $G \cong Aut(A_6)$.

We say that an element not of prime power order is an NPP element. Morimoto showed the following theorem to get $CSm(P\Sigma L(2, 27)) \neq 0$.

Theorem 5.2 (Morimoto). Let G be an Oliver gap group. Suppose that $O^2(G)$ has a dihedral subgroup D_{2pq} of order 2pq with distinct primes p and q and G has two real conjugacy classes of NPP elements contained in $O^2(G)$. Then $CSm(G) \neq 0$.

To show $LO(G) \cap CSm(G) \neq 0$ for a non-solvable group with $LO(G) \neq 0$, Pawałowski and Sumi introduced a basic pair (cf. [PSu07, Su]). Let $f: G \to G/G^{nil}$ be a natural homomorphism. For two NPP elements x and y of an finite Oliver group G, we call (x, y)a basic pair, if f(x) = f(y), x is not real conjugate to y, and one of the following claims is satisfied:

(1) x and y are elements of some gap subgroup of G.

(2) |x| is even and the involution of $\langle x \rangle$ is conjugate to the involution of $\langle y \rangle$ in G.

We denote by $\pi(G)$ the set of all primes dividing the order of G. Note that $\langle x \rangle G^{nil} = \langle y \rangle G^{nil}$ as f(x) = f(y). Recall that if |x| is even, then for the involution c of $\langle x \rangle$, $c \in O^2(G)$ or $|\pi(O^2(C_G(c)))| \ge 2$, then $\langle x \rangle O^2(G)$ is a gap group.

Theorem 5.3 ([PSu07]). If an Oliver group has a basic pair, it holds $LO(G) \cap CSm(G) \neq 0$.

Recall that $LO(G/G^{nil}) \subseteq LO(G)$. Furthermore we have

Proposition 5.4. $2LO(G/G^{nil}) \subseteq WLO(G)$ and in particular $LO(G/G^{nil}) \neq 0$ implies $CSm(G) \neq 0$.

Then $LO(G) \cap CSm(G) = 0$ implies $LO(G/G^{nil}) = 0$. Thus the following proposition is important.

Proposition 5.5 ([PSu07]). Let H be a nilpotent group with LO(H) = 0. Then H is isomorphic to one of the following groups:

- (1) a p-group for a prime p,
- (2) $C_2 \times P$ for an odd prime p and a p-group P, or
- (3) $P \times C_3$ for a 2-group P such that any element is self-conjugate.

Lemma 5.6. If $a_G \ge 2$ and LO(G) = 0 it holds $|\pi(G/G^{nil})| = 1, 2$.

Proof. If $|\pi(G/G^{nil})| \ge 3$, then G/G^{nil} is a gap group with $LO(G/G^{nil}) \ne 0$, a contrary. If $|\pi(G/G^{nil})| = 0$, then G is perfect and thus rank $LO(G) = a_G - 1 > 0$, a contrary. \Box

Theorem 5.7. If $LO(G) \cap CSm(G) = 0$, then G has no element x with $|\pi(\langle x \rangle)| \ge 3$.

Proof. We assume that x is an element of G of order pqr such that p,q,r are distinct primes. It is clear that $a_G \ge 4$. We may assume that $x^{pq} \in G^{nil}$ by Lemma 5.6. Then $(x^{pq}x^{qr}x^{pr}, x^{qr}x^{pr})$ is a basic pair, a contrary.

Thus $|\pi(\langle c \rangle)| \leq 2$ for each non-trivial element $c \in Z(G)$.

6. Induced modules and PO(G)

Let G be a finite group and NPP(G) be the set of all elements of G not of prime power order. Note that NPP(G) does not contain the identity element. For the real representation ring RO(G), the real vector space $RO(G) \otimes \mathbb{R}$ is identified with the vector space consisting of all maps from the set of real conjugacy classes of G to the real number field \mathbb{R} . We denote by $1_{(g)_{\pm}^{G}}^{G}$ the map defined by $1_{(g)_{\pm}^{G}}^{G}((g)_{\pm}^{G}) = 1$ and $1_{(g)_{\pm}^{G}}^{G}((a)_{\pm}^{G}) = 0$ if a is not real conjugate to g. Then

$$RO(G) \otimes \mathbb{R} \cong \langle 1^G_{(g)^G_{\pm}} \mid (g)^G_{\pm} \subseteq G \rangle$$

and

$$RO(G)_{\mathcal{P}(G)} \otimes \mathbb{R} \cong \langle 1_{(g)_{\pm}^G}^G \mid g \in \operatorname{NPP}(G) \rangle.$$

Let K be a subgroup of G. The induced map $\operatorname{Ind}_{K}^{G} 1_{(k)_{\pm}^{K}}^{K}$ has a non-zero value at $(g)_{\pm}^{G}$ only if g is real conjugate to k in G, i.e. $(g)_{\pm}^{G} = (k)_{\pm}^{G}$, since

$$\operatorname{Ind}_{K}^{G} 1_{(k)_{\pm}^{K}}^{K}((a)_{\pm}^{G}) = \sum_{\substack{bK \in G/K \\ b^{-1}ab \in K}} 1_{(k)_{\pm}^{K}}^{K}((b^{-1}ab)_{\pm}^{K}).$$

We denote by $RO(G)_{\mathcal{P}(G)}$ the subset of RO(G) consisting the differences U - V of real representations U and V such that $\operatorname{Res}_{P}^{G}(U) \cong \operatorname{Res}_{P}^{G}(V)$ for $P \in \mathcal{P}(G)$. It is clear that

$$PO(G) = \operatorname{Ker}(\operatorname{Fix}^G : RO(G)_{\mathcal{P}(G)} \to \mathbb{R}).$$

We have the following commutative diagram.

It holds that

$$(\operatorname{Ind}_{K}^{G} RO(K)_{\mathcal{P}(K)}) \otimes \mathbb{R} = (\operatorname{Ind}_{K}^{G} RO(K))_{\mathcal{P}(G)} \otimes \mathbb{R}$$

and then that

$$(\operatorname{Ind}_{K}^{G} RO(K)_{\mathcal{P}(K)}) \otimes \mathbb{Q} = (\operatorname{Ind}_{K}^{G} RO(K))_{\mathcal{P}(G)} \otimes \mathbb{Q}$$

Since an element of RO(G) is a linear combination with rational coefficients of induced modules of RO(C) for cyclic subgroups C of G, we obtain that

$$\sum_{\substack{(C)^G\\C\leq G}} (\operatorname{Ind}_C^G RO(C)_{\mathcal{P}(C)}) \otimes \mathbb{Q} = RO(G)_{\mathcal{P}(G)} \otimes \mathbb{Q}.$$

Furthermore, noting $\operatorname{Ind}_{C}^{G} RO(C)_{\mathcal{P}(C)} = 0$ for $C \in \mathcal{P}(G)$, it holds that

$$\sum_{\substack{((g))^G\\ \text{exp}(g)}} (\operatorname{Ind}_{(g)}^G RO(\langle g \rangle)_{\mathcal{P}(\langle g \rangle)}) \otimes \mathbb{Q} = RO(G)_{\mathcal{P}(G)} \otimes \mathbb{Q}.$$

If g has order 2p for an odd prime p, then $RO(\langle g \rangle)_{\mathcal{P}(\langle g \rangle)}) \otimes \mathbb{Q}$ is spanned by

$$(2\mathbb{R} - \mathbb{R}[\langle x^p \rangle]) \otimes (2\mathbb{R} - \eta)$$

for all real irreducible modules η over $\langle g^2 \rangle$ and $PO(\langle g \rangle) \otimes \mathbb{Q}$ is spanned by

$$(2\mathbb{R} - \mathbb{R}[\langle x^p \rangle]) \otimes (\eta - \eta')$$

for all non-trivial real irreducible modules η , η' over $\langle g^2 \rangle$. Hence we can investigate LO(G) for a finite non-gap group G with $G/O^2(G)$ an elementary abelian 2-group. Letting C_2^n be an elementary abelian 2-group of order 2^n , we obtain the following results.

Theorem 6.1. Let $G := K \times C_2^n$, $n \ge 2$ be an Oliver group such that $K/O^2(K)$ is an elementary abelian 2-group. Then it holds $MLO(G) \subseteq CSm(G) \subseteq LO(G)$. Furthermore if G is a gap group, it holds the equality CSm(G) = LO(G).

We will discuss in the case when G is a non-gap group in Theorem 6.1.

Proposition 6.2. Let G be an Oliver non-gap group such that $[G : O^2(G)] = 2$. The following two claims are equivalent.

(1) MLO(G) = LO(G).

(2) If two involutions x and y of G outside of $O^2(G)$ are not conjugate then $C_G(x)$ or $C_G(y)$ is a 2-group.

The author does not know a group G with $MLO(G) \neq LO(G)$.

7. NON-TRIVIAL CENTRAL

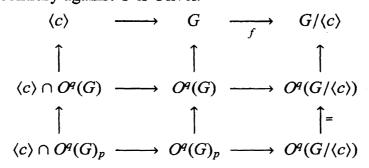
In this section we consider whether CSm(G) = 0 or not for an Oliver group G with $a_G \ge 2$. In the section 5 we know completely it for a non-solvable group G. From now on we assume that G is an Oliver solvable group with $LO(G) \cap CSm(G) = 0$ and $a_G \ge 2$. Recall that $PO(G, G^{nil}) \ne 0$ implies $a_G \ge 2$.

Lemma 7.1. If $Z(G) \neq \{1\}$ then $|\pi(G^{nil})| = 2$.

Proof. Since $LO(G/G^{nil}) = 0$, G/G^{nil} is isomorphic to P, $C_2 \times P$, or $C_3 \times P_2$, where P is a p-group and P_2 is a 2-group. Then for some subgroup K of G, the sequence $G^{nil} \leq K \leq G$ such that $|\pi(G/K)| = 1$ and K/G^{nil} is cyclic. Thus $|\pi(G^{nil})| \geq 2$. We assume that $|\pi(G^{nil})| \geq 3$. Take distinct primes p, q, r in $\pi(G^{nil})$. Let $c \in Z(G)$ be an element of prime order. We may assume that $|c| \neq q, r$. Take elements x_q and x_r of G^{nil} of order q and r respectively. Then cx_q and cx_r are NPP elements of distinct order. Therefore (cx_q, cx_r) is a basic pair.

Lemma 7.2. Z(G) has no NPP element.

Proof. We suppose that Z(G) has an NPP element c of order pq where p and q are primes. Then $|\pi(G)| = 2$ and $\pi(G) = \pi(\langle c \rangle) = \{p,q\}$ by Theorem 5.7. First we show that G^{nil} is not a subgroup of $\langle c \rangle$. Suppose $G^{nil} \leq \langle c \rangle$. Let $f: G \to G/\langle c \rangle$ be a canonical epimorphism. Note that $\pi(G/\langle c \rangle) = \{p,q\}$. Since f(G) is nilpotent, $O^q(f(G))$ is a Sylow p-subgroup of f(G) and a Sylow p-subgroup $O^q(G)_p$ of $O^q(G)$ is normal and its quotient $O^q(G)/O^q(G)_p$ is cyclic. This is a contrary against G is Oliver.



Thus we can take an element x of G^{nil} which is not in $\langle c \rangle$. Since f sends two NPP elements xc and c to elements of distinct order, xc and c are not real conjugate. It is clear that they are sent to the same element by $G \rightarrow G/G^{nil}$. Then (xc, c) is a basic pair, which is a contrary. Thus Z(G) has no NPP element.

The following can be straightforward checked.

Lemma 7.3. Let $c \in Z(G)$ be an element of order a prime p. If G^{nil} has an element x of order q^2 for some prime $q \neq p$, then G has a basic pair (cx, cx^q) .

We define the DressLength(G) as the minimal length *n* of sequences

$$G = G_0 > G_1 > G_2 > \cdots > G_n = \{1\}$$

such that $O^{p_j}(G_{j-1}) = G_j$ with some prime p_j for each j. In convenient, we assume DressLength(G) = ∞ if there is no sequence as above. For example, DressLength(G) = ∞ for a non-solvable group. It is easy to see that DressLength(G) \ge 3 if G is an Oliver group and that DressLength(G) \ge 3 if G is a gap group.

Now we recall classical results. A finite group is called a CP group if it has no NPP elements.

Lemma 7.4 (Higman, cf. [PSo, Lemma 2.5]). Let H be a finite solvable CP group. Then one of the following conclusions holds:

- (1) H is a p-group for some prime p; or
- (2) $H = K \rtimes C$ is a Frobenius group with kernel K and complement C, where K is a p-group and C is a q-group of q-rank 1 for two distinct primes p and q; or
- (3) $H = K \rtimes C \rtimes A$ is a 3-step group, in the sense that $K \rtimes C$ is a Frobenius group as in the conclusion (2) with C cyclic, and $C \rtimes A$ is a Frobenius group with kernel C and complement A, a cyclic p-group.

Proposition 7.5 ([Hu, Proposition 22.3 and Remark on p.193]). Aut(C_{2^a}) = $C_2 \times C_{2^{a-2}}$ where $x \mapsto x^5$ is a generator of $C_{2^{a-2}}$ and $x \mapsto x^{-1}$ is a generator of C_2 . Aut(C_{p^a}) = $C_{p^{a-1}(p-1)}$ for an odd prime p.

With these results we use a Frattini subgroup and a Fitting subgroup and then we obtain the following results.

Theorem 7.6. Let G be an Oliver solvable group with $a_G \ge 2$ and $Z(G) \ne \{1\}$. If CSm(G) = 0, then it holds the following.

- (1) Z(G) has no NPP element.
- (2) If Z(G) is a p-group, an element of G^{nil} not of p power order has prime order.
- (3) $|\pi(G)| = 2$.
- (4) DressLength(G) = 3, 4.

References

- [Go] Gorenstein, D., Finite Groups, (1980), second edition, Chelsea publishing company.
- [Hu] Humphreys, J. F., A course in group theory, (1996), Oxford University Press.
- [Ju] Ju, X.M., The Smith isomorphism question: A review and new results, RIMS Kokyuroku 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 43-51.
- [LM] Laitinen, E., Morimoto, M., Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520.

- [KMK] Koto, A., Morimoto, M. and Qi, Y., The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ. 48 (2008), 219–227.
- [LP] Laitinen, E. and Pawałowski, K., Smith equivalence of representations for finite perfect groups, Proc. Amer. Math. Soc. 127 (1999), 297-307.
- [M07a] Morimoto, M., Smith equivalent Aut(A₆)-representations are isomorphic, Proc. Amer. Math. Soc., **136** (2008), 3683–3688.
- [M07b] Morimoto, M., Construction of smooth actions on spheres for Smith equivalent representations, RIMS Kokyuroku 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 52–58.
- [MP] Morimoto, M. and Pawałowski, K., Smooth actions of finite Oliver groups on spheres, Topology 42, 2003, 395-421.
- [MSY] Morimoto, M., Sumi, T. and Yanagihara, M., Finite groups possessing gap modules, in Geometry and Topology: Aarhus 1998 (ed. K. Grove, I.H. Madsen, E.K. Pedersen), Contemp. Math. 258 (2000), 329-342.
- [PSo] Pawałowski, K. and Solomon, R., Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843–895.
- [PSu07] K. Pawałowski, K. and Sumi, T., Finite groups with Smith equivalent, nonisomorphic representations, in Proc. 33rd Symposium on Transformation Groups, in Yokohama 2006, (ed. T. Kawakami), Wing Co. Ltd., Wakayama, Japan (2007), 68-76.
- [PSu08] K. Pawałowski, K. and Sumi, T., *The Laitinen conjecture for finite solvable Oliver groups*, Proc. Amer. Math. Soc., to appear.
- [Sa] Sanchez, C.U., Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445–448.
- [Sm] Smith, P. A., New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415.
- [Su] Sumi, T., Finite groups possessing Smith equivalent, nonisomorphic representations, RIMS Kokyuroku 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 170–179.

FACULTY OF DESIGN, KYUSHU UNIVERSITY, SHIOBARU 4-9-1, FUKUOKA, 815-8540, JAPAN *E-mail address*: sumi@design.kyushu-u.ac.jp