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1. INTRODUCTION

The Smith problem is that two tangential representations are isomorphic or not for a
smooth action on a homotopy sphere with exactly two fixed points. Two real G-modules
$U$ and $V$ are called Smith $equi\nu alent$ if there exists a smooth action of $G$ on a sphere $\Sigma$

such that $S^{G}=(x,y\}$ for two points $x$ and $y$ at which $T_{X}(\Sigma)\cong U$ and $T_{y}(\Sigma)\cong V$ as real
G-modules. We will consider a subset $Sm(G)$ of the real representation ring $RO(G)$ of $G$

consisting ofthe differences $U-V$ ofreal G-modules $U$ and $V$ which are Smith equivalent.
We also define a subset $CSm(G)$ of $RO(G)$ consisting of the differences $U-V\in Sm(G)$

of real G-modules $U$ and $V$ such that for the sphere $\Sigma$ appearing in the notion of Smith
equivalence of $U$ and $V$ satisfies that $\Sigma^{P}$ is connected for every $P\in \mathcal{P}(G)$ . Moreover, we
assume that $0\in CSm(G)$ as definition.

In many groups, Smith equivalent modules are not isomorphic. In this paper we discuss
the Smith problem for an Oliver group with non-trivial center. Throughout this paper we
assume a group is finite.

2. TOPOLOGICAL VIEWPOINT

We denote by $P(G)$ the family of subgroups of $G$ consisting of the trivial subgroup
of $G$ and all subgroups of $G$ of prime power order, and by $\mathcal{L}(G)$ the family of large
subgroups of $G$ . Here, by a large subgroup of $G$ we mean a subgroup $H\leq G$ such that
$O^{p}(G)\leq H$ for some prime $p$ , where $O^{P}(G)$ is the smallest normal subgroup of $G$ such
that $|G/O^{P}(G)|=p^{k}$ for some integer $k\geq 0$ . A real $Garrow moduleV$ is called $\mathcal{L}(G)$-free
if $\dim V^{H}=0$ for each $H\in \mathcal{L}(G)$ , which amounts to saying that $\dim V^{O^{p}(G)}=0$ for
each prime $p$ dividing $|G|$ . Following [PSo], we denote by $LO(G)$ the subgroup of $RO(G)$

consisting of the differences $U-V$ of two real $\mathcal{L}(G)$-free G-modules $U$ and $V$ such that
${\rm Res}_{P}^{G}(U)\underline{\simeq}{\rm Res}_{P}^{G}(V)$ for every $P\in \mathcal{P}(G)$ .

For two subgroups $P<H$ of $G$ with $P\in \mathcal{P}(G)$ , and a smooth G-manifold $X$ or a real
G-module $X$, we consider the number

$d_{X}(P,H)=\dim \mathscr{J}-2\dim X^{H}$
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where $dim$ means the dimension of the G-CW complex. Furtherrnore we define by
$\dim Z=\dim X-\dim Y$ for a virtual real G-module $Z=X-Y$ of $RO(G)$ . A smooth
G-manifold $X$ satisfies the gap condition (GC) if $dAP,H)>0$ for every pair $(P, H)$ of
subgroups $P<H$ of $G$ with $P\in P(G)$ .

The following theorem goes back to [PSo], the Realization Theorem.

Theorem 2.1 ([PSo]). Let $G$ be afinite $Oli\nu er$ gap group. Then $LO(G)\subseteq CSm(G)$ .

We impose a number of restrictions on a smooth G-manifold, in particular, a real G-
module $X$. The restrictions are collected in the following conditions, where we con-
sider series $P<H\leq G$ of subgroups $P$ and $H$ of $G$ always with $P\in P(G)$ . We say
that a smooth G-manifold $X$ satisfies the weak gap condition (WGC) if the conditions
(WGCI)-(WGC4) all hold (cf. [LM], [MP]), and we say that $X$ satisfies the semi-weak
gap condition (SWGC) if the conditions (WGCI) and (WGC2) both hold.

(WGC I) $dAP,$ $H)\geq 0$ for every $P<H\leq G,$ $P\in P(G)$ .
(WGC2) If $d_{X}(P, H)=0$ for some $P<H\leq G,$ $P\in P(G)$ , then $[H : P]=2$,

$\dim X^{H}>\dim X^{K}+1$ for every $H<K\leq G$ , and $X^{H}$ is connected.
(WGC3) If $d_{X}(P,H)=0$ for some $P<H\leq G,$ $P\in P(G)$ , and $[H : P]=2$, then

$X^{H}$ can be oriented in such a way that the map $g:X^{H}arrow X^{H}$ is orientation
preserving for any $g\in N_{G}(H)$ .

(WGC4) If $d_{X}(P, H)=d_{X}(P,H’)=0$ for some $P<H,$ $P<H’,$ $P\in P(G)$ , then the
smallest subgroup $\langle H,H’\rangle$ of $G$ containing $H$ and $H’$ is not a large subgroup
of $G$ .

Now, for a finite group $G$, we define subgroups $VLO(G),$ $WLO(G)$ and $MLO(G)$ of the
hee abelian group $LO(G)$ as follows.

$VLO(G)=(U-V\in LO(G)|U\oplus W$ and $V\oplus W$ both satisfy the gap condition for
some real $L(G)$-free G-module $W$ )

$WLO(G)=\{U-V\in LO(G)|U\oplus W$ and $V\oplus W$ both satisfy the weak gap condition
for some real $\mathcal{L}(G)$-free G-module $W$ }

$MLO(G)=(U-V\in LO(G)|U\oplus W$ and $V\oplus W$ both satisfy the semi-weak gap
condition for some real $\mathcal{L}(G)$-free G-module $W$ }

Note that if $P(G)\cap \mathcal{L}(G)=\emptyset$ then for an .2 $(G)$-free real G-modules $U$ and $V$ there is a
real $\mathcal{L}(G)$-Ree G-module $W$ such that both $U\oplus W$ and $\nabla\oplus W$ satisfy (WGC2), and if $G$ is
an Oliver group then for an $\mathcal{L}(G)$-free real G-modules $U$ and $V$ there is a real .2 $(G)$-free
G-module $W$ such that both $U\oplus W$ and $V\oplus W$ satisfy (WGC2) and (WGC4).

In general, $VLO(G)\subseteq WLO(G)\subseteq MLO(G)\subseteq LO(G)$ by definitions. But if $G$ is a gap
group, then for every $U-V\in LO(G)$ , there exists a real.$\mathcal{L}(G)$-Ree G-module $W$ satisfying
the gap condition, such that $U\oplus W$ and $V\oplus W$ also satis$\theta$ the gap condition, and thus
$U-V\in VLO(G)$ , and hence

$VLO(G)=WLO(G)=MLO(G)=LO(G)$.
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Therefore, the following theorem extends the result in Theorem 2.1 by using Theorem in
[MP].

Theorem 2.2. Let $G$ be afinite Oliver group. Then $WLO(G)\subseteq CSm(G)$ .

3. ALGEBRAIC VIEWPOINT

We denote by $PO(G)$ the subgroup of $RO(G)$ of $G$ consisting of the differences $U-\nabla$

of representations $U$ and $V$ such that $\dim U^{G}=\dim V^{G}$ and ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for
any subgroup $P$ of $G$ of prime power order. We note that in [PSo], $PO(G)$ is denoted
by $IO(G, G)$ . Similarly, we denote by $\overline{PO}(G)$ the subgroup of $RO(G)$ of $G$ consisting
of the differences $U-V$ of representations $U$ and $\nabla$ such that $\dim U^{G}=\dim V^{G}$ and
${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for any subgroup $P$ of $G$ of odd prime power order and order 2, 4.
By a theorem of Sanchez [Sa], the difference of two Smith equivalent representations lies
in $\overline{PO}(G)$ and the difference of two P-matched Smith equivalent representations lies in
$PO(G)$ .

We define the Laitinen number $a_{G}$ as the number of real conjugacy classes in $G$ rep-
resented by elements of $G$ not of prime power order. The rank of $PO(G)$ is equal to the
maximum $ofO$ and $a_{G}-1$ . Moreover the rank of$\overline{PO}(G)$ is equal to the rank of$PO(G)$ plus
the number of all real conjugacy classes represented by 2-elements of order $\geq 8$ . Now, let
$H$ be a normal subgroup of $G$ . We denote by $PO(G, H)$ the subgroup of $RO(G)$ consisting
ofthe differences $U-V$ ofrepresentations $U$ and $\nabla$ such that $U^{H}\cong\nabla^{H}$ as representations
over $G/H$, and ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for any subgroup $P$ of prime power order. Again, we
note that in [PSo], $PO(G,H)$ is denoted by $IO(G,H)$ . It holds that $PO(G)=PO(G, G)$ .
Let $b_{G/H}$ be the number of all real conjugacy classes in $G/H$ which are images ffom real
conjugacy classes of $G$ represented by elements not ofprime power order by the $su\dot{0}$ection
$Garrow G/H$. Then the rank of $PO(G,H)$ is equal to $a_{G}-b_{G/H}$ (see [PSo]).

Proposition 3.1 (cf. [PSo]). It $holds$ that
$PO(G, G^{nil})\leq LO(G)\leq PO(G)\leq\overline{PO}(G)\leq RO(G)$ .

Note that $G^{nil}= \bigcap_{p}O^{p}(G)$ . Also it is known that

$LO(G)\subseteq CSm(G)\subseteq Sm(G)$

if $G$ is an Oliver gap group.

4. UPPER RESTRICTION

Let $S$ be a set ofprimes dividing $|G|$ and 1, and let denote by $G^{\cap S}$ the normal subgroup
of $G$ defined as

$G^{\cap S}= \bigcap_{L\underline{\triangleleft}G;[G:L]\in S}L$
.
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Theorem 4.1 $([M07a, KMK])$ . Let $G$ be afinite Oliver group. We set $S=\{2,3\}ifa$ Sylow
2-subgroup of $G$ is normal and set $S=(2)$ otherwise. Then it holds that

$CSm(G)\subseteq PO(G, G^{\cap S})$ and $Sm(G)\subseteq\overline{PO}(G, G^{\cap S})$ .
In addition if$G$ is a gap group and $G^{n;l}=G^{\cap s}$ , then it holds that

$LO(G)=CSm(G)=PO(G, G^{nil})$ .
Here $G^{ni/}is$ the minimal subgroup among normal subgroups $N$ of $G$ such that $G/N$ is
nilpotent.

In particular, $a_{G}=b_{G/G^{\cap}}$ yields that $CSm(G)=0$ .
Proposition 4.2 (cf. [PSu08]). $G/G^{\cap S}$ is an elementary abelian group.

5. KNOWN RESULTS

In this section we summarize several known results ([Ju, $M07a,$ $M07b$ , PSo, PSu07,
Su] $)$ . First we treat a non-solvable group. Pawalowski and Solomon [PSo] showed that
$0\neq PO(G, G^{nil})\subseteq CSm(G)$ if $G$ is a non-solvable gap group with $a_{G}\geq 2$ , Pawalowski and
Sumi [PSu07]showed that $0\neq LO(G)\cap CSm(G)$ if $G$ is a non-solvable group with $a_{G}\geq 2$ ,
except $Aut(A_{6}),$ $P\Sigma L(2,27)$ , and Morimoto $[M07a, M07b]$ showed that $Sm(Aut(A_{6}))=0$

and $CSm(P\Sigma L(2,27))\neq 0$ . Combining these results we can state that

Theorem 5.1. For a finite $non- sol\nu able$ group $G,$ $Sm(G)\neq 0$ if and only if $a_{G}\leq 1$ or
$G\cong Aut(A_{6})$ .

We say that an element not ofprime power order is an NPP element. Morimoto showed
the following theorem to get $CSm(P\Sigma L(2,27))\neq 0$ .
Theorem 5.2 (Morimoto). Let $G$ be an $Oli\nu er$ gap group. Suppose that $\sigma(G)$ has a
dihedral subgroup $D_{2pq}$ of order 2$pq$ with distinct primes $p$ and $q$ and $G$ has two real
conjugacy classes of$NPP$ elements contained in $O^{2}(G)$ . Then $CSm(G)\neq 0$ .

To show $LO(G)\cap CSm(G)\neq 0$ for a non-solvable group with $LO(G)\neq 0$ , Pawalowski
and Sumi introduced a basic pair (cf. [PSu07, Su$]$ ). Let $f:Garrow G/G^{n;l}$ be a natural
homomorphism. For two NPP elements $x$ and $y$ of an finite Oliver group $G$ , we call $(x,y)$

a basic pair, if $f(x)=f(y),$ $x$ is not real conjugate to $y$, and one of the following claims is
satisfied:

(1) $x$ and $y$ are elements of some gap subgroup of $G$ .
(2) $|x|$ is even and the involution of $\langle x\rangle$ is conjugate to the involution of $\langle\nu\rangle$ in $G$ .

We denote by $\pi(G)$ the set of all primes dividing the order of $G$ . Note that $\langle x\rangle G^{nil}=$

$(\gamma\rangle G^{nil}$ as $f(x)=f(\gamma)$ . Recall that if $|x|$ is even, then for the involution $c$ of $\langle x\rangle,$ $c\in O^{2}(G)$

or $|\pi(O^{2}(C_{G}(c)))|\geq 2$, then $\langle x\rangle O^{2}(G)$ is a gap group.
Theorem 5.3 ([PSu07]). Ifan Oliver group has a basic pair, it holds $LO(G)\cap CSm(G)\neq$

$0$ .
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Recall that $LO(G/G^{nil})\subseteq LO(G)$ . Furthermore we have

Proposition 5.4. $2LO(G/G^{nil})\subseteq WLO(G)$ and in particular $LO(G/G^{nil})\neq 0$ implies
$CSm(G)\neq 0$ .

Then $LO(G)\cap CSm(G)=0$ implies $LO(G/G^{nil})=0$ . Thus the following proposition
is important.

Proposition 5.5 ([PSu07]). Let $H$ be a nilpotent group with $LO(H)=0$. Then $H$ is
isomorphic to one ofthefollowing groups;

(1) a p-groupfor aprime $p$,

(2) $C_{2}xP$for an oddprime $p$ and a p-group $P$, or
(3) $P\cross C_{3}$ for a 2-group $P$ such that any element is self-conjugate.

Lemma 5.6. If$a_{G}\geq 2$ and $LO(G)=0$ it $holds|\pi(G/G^{nil})\}=1,2$ .

Proof If $|\pi(G/G^{ni/})|\geq 3$ , then $G/G^{ni}$’ is a gap group with $LO(G/G^{nil})\neq 0$, a contrary. If
$|\pi(G/G^{nil})|=0$ , then $G$ is perfect and thus rank $LO(G)=a_{G}-1>0$ , a contrary. $\square$

Theorem 5.7. $IfLO(G)\cap CSm(G)=0$, then $G$ has no element $xwith|\pi(\langle x\rangle)|\geq 3$ .

Proof. We assume that $x$ is an element of $G$ of order $pqr$ such that $p,q,$ $r$ are distinct
primes. It is clear that $a_{G}\geq 4$ . We may assume that $x^{pq}\in G^{nil}$ by Lemma 5.6. Then
$(x^{pq}x^{qr}x^{pr},x^{qr}x^{pr})$ is a basic pair, a contrary. $\square$

Thus $|\pi(\langle c\rangle)|\leq 2$ for each non-trivial element $c\in Z(G)$ .

6. INDUCED MODmES AND $PO(G)$

Let $G$ be a finite group and NPP$(G)$ be the set of all elements of $G$ not of prime power
order. Note that NPP$(G)$ does not contain the identity element. For the real representation
ring $RO(G)$, the real vector space $RO(G)\otimes \mathbb{R}$ is identified with the vector space consisting
of all maps from the set of real conjugacy classes of $G$ to the real number field $\mathbb{R}$ . We
denote by $1_{(g)_{\pm}^{G}}^{G}$ the map defined by $1_{(g)_{\pm}^{G}}^{G}((g)_{\pm}^{G})=1$ and $1_{(g)_{\pm}^{G}}^{G}((a)_{\pm}^{G})=0$ if $a$ is not real
conjugate to $g$ . Then

$RO(G)\otimes \mathbb{R}\cong\langle 1_{(g)_{\neq}^{G}}^{G}|(g)_{\pm}^{G}\subseteq G\rangle$

and
$RO(G)_{\mathcal{P}(G)}\otimes \mathbb{R}\cong\langle 1_{(g)_{\pm}^{G}}^{G}|g\in NPP(G)\rangle$ .

Let $K$ be a subgroup of $G$ . The induced map $Ind_{K}^{G}1_{(k)_{*}^{K}}^{K}$ has a non-zero value at $(g)_{f}^{G}$ only

if $g$ is real conjugate to $k$ in $G$ , i.e. $(g)_{\pm}^{G}=(k)_{\pm}^{G}$ , since

$1nd_{K}^{G}1_{(k)_{\pm}^{K}}^{K}((a)_{\pm}^{G})=$
$\sum_{bK\epsilon G/\kappa,b^{-1}ab\epsilon K}1_{(k)_{f}^{K}}^{K}((b^{-1}ab)_{\pm}^{K})$

.
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We denote by $RO(G)_{p(G)}$ the subset of $RO(G)$ consisting the differences $U-V$ of real
representations $U$ and $\nabla$ such that ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for $P\in P(G)$ . It is clear that

$PO(G)=Ker(Fix^{G}:RO(G)_{P(G)}arrow \mathbb{R})$ .
We have the following commutative diagram.

$RO(K)_{P(K)}\otimes \mathbb{R}$ $arrow(1nd_{K}^{G}RO(K)_{P(K)})\otimes \mathbb{R}arrow^{\subseteq}$ $RO(G)_{\mathcal{P}(G)}\otimes \mathbb{R}$

$\downarrow\simeq$
$\downarrow\underline{\approx}$ $\downarrow\not\cong$

$\langle 1_{(k)_{\pm}^{K}}^{K}|k\in$ NPP$(K)\ranglearrow$ $\langle 1_{(k)_{f}^{G}}^{G}|k\in$ NPP$(K)\rangle$ $arrow^{\subseteq}\langle 1_{(g)_{\pm}^{G}}^{G}|g\in$ NPP$(G)\rangle$

It holds that
$(Ind_{K}^{G}RO(K)_{P(K)})\otimes \mathbb{R}=(1nd_{K}^{G}RO(K))_{\mathcal{P}(G)}\otimes \mathbb{R}$

and then that
$(1nd_{K}^{G}RO(K)_{P(K)})\otimes \mathbb{Q}=(Ind_{K}^{G}RO(K))_{P(G)}\otimes \mathbb{Q}$.

Since an element of $RO(G)$ is a linear combination with rational coefficients of induced
modules of $RO(C)$ for cyclic subgroups $C$ of $G$ , we obtain that

$\sum_{G,(C)c\leq c}(1nd_{C}^{G}RO(C)_{\mathcal{P}(C)})\otimes \mathbb{Q}=RO(G)_{\mathcal{P}(G)}\otimes \mathbb{Q}$
.

Furthermore, noting $Ind_{c}^{G}RO(C)_{P(C)}=0$ for $C\in P(G)$ , it holds that

$g \epsilon NPP(G)(\langle g\rangle)\sum_{G}(1nd_{(g\rangle}^{G}RO(\langle g\rangle)_{P(\langle g))})\otimes \mathbb{Q}=RO(G)_{P(G)}\otimes \mathbb{Q}$

.

If $g$ has order $2p$ for an odd prime $p$, then $RO(\langle g\rangle)_{P(\langle g))})\otimes \mathbb{Q}$ is spamed by
$(2R-R[\langle x^{p}\rangle])\otimes(2R-\eta)$

for all real irreducible modules $\eta$ over $\langle g^{2}\rangle$ and $PO(\langle g\rangle)\otimes \mathbb{Q}$ is spamed by
$(2\mathbb{R}-\mathbb{R}[\langle x^{p}\rangle])\otimes(\eta-\eta’)$

for all non-trivial real irreducible modules $\eta,$ $\eta’$ over $\langle g^{2}\rangle$ . Hence we can investigate $LO(G)$

for a finite non-gap group $G$ with $G/O^{2}(G)$ an elementary abelian 2-group. Letting $C_{2}^{n}$ be
an elementary abelian 2-group of order $2^{n}$ , we obtain the following results.

Theorem 6.1. Let $G$ $:=KxC_{2}^{n},$ $n\geq 2$ be an $Oli\nu er$ group such that $K/O^{2}(K)$ is an
elementary abelian 2-group. Then it holds $MLO(G)\subseteq CSm(G)\subseteq LO(G)$ . Furthermore
if $G$ is a gap group, it holds the equality $CSm(G)=LO(G)$.

We will discuss in the case when $G$ is a non-gap group in Theorem 6.1.

Proposition 6.2. Let $G$ be an $Oli\nu er$ non-gap group such that $[G : O^{2}(G)]=2$ .
Thefollowing $lwo$ claims are equivalent.
(1) $MLO(G)=LO(G)$ .
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(2) Iftwo irrvolutions $x$ and $y$ of $G$ outside of $O^{2}(G)$ are not conjugate then $C_{G}(x)$ or
$C_{G}(y)$ is a 2-group.

The author does not know a group $G$ with $MLO(G)\neq LO(G)$ .

7. NON$-TRIVIAL$ CENTRAL

In this section we consider whether $CSm(G)=0$ or not for an Oliver group $G$ with
$a_{G}\geq 2$ . In the section 5 we know completely it for a non-solvable group $G$ . From now
on we assume that $G$ is an Oliver solvable group with $LO(G)\cap CSm(G)=0$ and $a_{G}\geq 2$ .
Recall that $PO(G, G^{nil})\neq 0$ implies $a_{G}\geq 2$ .
Lemma 7.1. If$Z(G)\neq(1\}then|\pi(G^{nil})|=2$.

Proof. Since $LO(G/G^{nil})=0,$ $G/G^{ni}$’ is isomorphic to $P,$ $C_{2}xP$, or $C_{3}xP_{2}$ , where
$P$ is a p-group and $P_{2}$ is a 2-group. Then for some subgroup $K$ of $G$ , the sequence
$G^{nil}\underline{\triangleleft}K\underline{\triangleleft}G$ such that $|\pi(G/K)|=1$ and $K/G^{nit}$ is cyclic. Thus $|\pi(G^{nil})|\geq 2$ . We assume
that $|\pi(G^{nil})|\geq 3$ . Take distinct primes $p,$ $q,$ $r$ in $\pi(G^{nil})$ . Let $c\in Z(G)$ be an element of
prime order. We may assume that $|c|\neq q,r$ . Take elements $x_{q}$ and $x_{r}$ of $G^{nil}$ of order $q$ and
$r$ respectively. Then $cx_{q}$ and $cx_{r}$ are NPP elements of distinct order. Therefore

$(cx_{q}, cx_{r})\square$

is a basic pair.

Lemma 7.2. $Z(G)$ has no $NPP$ element.

Proof. We suppose that $Z(G)$ has an NPP element $c$ of order $pq$ where $p$ and $q$ are primes.
Then $|\pi(G)|=2$ and $\pi(G)=\pi(\langle c\rangle)=\{p,q\}$ by Theorem 5.7. First we show that $G^{nil}$ is not
a subgroup of $\langle c\rangle$ . Suppose $G^{nil}\leq\langle c\rangle$ . Let $f:Garrow G/\langle c\rangle$ be a canonical epimorphism.
Note that $\pi(G/\langle c\rangle)=$ ($p,q\}$ . Since $f(G)$ is nilpotent, $\alpha\zeta f(G)$) is a Sylow p-subgroup of
$f(G)$ and a Sylow p-subgroup $\alpha(G)_{p}$ of $\alpha(G)$ is normal and its quotient $\alpha(G)/\alpha(G)_{p}$

is cyclic. This is a contrary against $G$ is Oliver.
$\langle c\rangle$ $arrow$ $G$

$arrow^{f}$
$G/\langle c\rangle$

$\uparrow$ $\uparrow$ $\uparrow$

$\langle c\rangle\cap\alpha(G)arrow\alpha(G)arrow\alpha(c/\langle c\rangle)$

$\uparrow$ $\uparrow$ $\uparrow=$

$\langle c\rangle n\alpha(G)_{p}arrow\alpha(G)_{p}arrow\alpha(c/\langle c\rangle)$

Thus we can take an element $x$ of $G^{nit}$ which is not in $\langle c\rangle$ . Since $f$ sends two NPP elements
$xc$ and $c$ to elements of distinct order, $xc$ and $c$ are not real conjugate. It is clear that they
are sent to the same element by $Garrow G/G^{nil}$ . Then $(xc, c)$ is a basic pair, which is a
contrary. Thus $Z(G)$ has no NPP element. ロ

The following can be straightforward checked.
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Lemma 7.3. Let $c\in Z(G)$ be an element oforder a prime $p$ . If $G^{nil}$ has an element $x$ of
order $q^{2}$ for some prime $q\neq p$, then $G$ has a basic pair $(cx, cx^{q})$ .

We define the DressLength(G) as the minimal length $n$ of sequences
$G=G_{0}>G_{1}>G_{2}>\cdots>G_{n}=(1\}$

such that $O^{p_{j}}(G_{j-1})=G_{j}$ with some prime $p_{j}$ for each $j$ . In convenient, we assume
DressLength(G) $=\infty$ ifthere is no sequence as above. For example, DressLength(G) $=\infty$

for a non-solvable group. It is easy to see that DressLength(G) $\geq 3$ if $G$ is an Oliver group
and that DressLength(G) $\geq 3$ if $G$ is a gap group.

Now we recall classical results. A finite group is called a CP group if it has no NPP
elements.

Lemma 7.4 (Higman, cf. [PSo, Lemma 2.5]). Let $H$ be afinite $sol\nu ableCP$ group. Then
one ofthefollowing conclusions holds:

(1) $H$ is a p-groupfor someprime $p$; or
(2) $H=KxC$ is a Frobenius group with kernel $K$ and complement $C$, where $K$ is a

p-group and $C$ is a q-group ofq-rank 1 for two distinctprimes $p$ and $q$; or
(3) $H=KxC>\triangleleft A$ is a 3-step group, in the sense that $KxC$ is a Frobenius group as

in the conclusion (2) with $C$ cyclic, and $Cx$ $A$ is a Frobenius group with kernel $C$

and complement $A$ , a cyclic p-group.
Proposition 7.5 ([Hu, Proposition 22.3 and Remark on p. 193]). $Aut(C_{2^{a}})=C_{2}\cross C_{2^{a-2}}$

where $x\mapsto x^{5}$ is a generator of $C_{2^{a-2}}$ and $x\mapsto x^{-1}$ is a generator of $C_{2}$ . $Aut(C_{p^{a}})=$

$C_{p^{a-1}(p-1)}$ for an oddprime $p$.

With these results we use a Frattini subgroup and a Fitting subgroup and then we obtain
the following results.

Theorem 7.6. Let $G$ be an Oliver so$l\nu able$ group with $a_{G}\geq 2$ and $Z(G)\neq(1\}$ . $lf$

$CSm(G)=0$, then it holds thefollowing.
(1) $Z(G)$ has no $NPP$ element.
(2) If$Z(G)$ is a p-group, an element of $G^{nil}$ not of$p$ power order has prime order.
(3) $|\pi(G)|=2$ .
(4) DressLength(G) $=3,4$.
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