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1. INTRODUCTION

The Smith problem is that two tangential representations are isomorphic or not for a
smooth action on a homotopy sphere with exactly two fixed points. Two real G-modules
U and V are called Smith equivalent if there exists a smooth action of G on a sphere X
such that S¢ = {x,y} for two points x and y at which 7,(X) = U and T,(X) = V as real
G-modules. We will consider a subset S m(G) of the real representation ring RO(G) of G
consisting of the differences U~V of real G-modules U and V¥ which are Smith equivalent.
We also define a subset CSm(G) of RO(G) consisting of the differences U — V € Sm(G)
of real G-modules U and ¥ such that for the sphere T appearing in the notion of Smith
equivalence of U and V satisfies that =¥ is connected for every P € P(G). Moreover, we
assume that 0 € CSm(G) as definition.

In many groups, Smith equivalent modules are not isomorphic. In this paper we discuss
the Smith problem for an Oliver group with non-trivial center. Throughout this paper we
assume a group 1s finite.

2. ToPOLOGICAL VIEWPOINT

We denote by P(G) the family of subgroups of G consisting of the trivial subgroup
of G and all subgroups of G of prime power order, and by .£(G) the family of large
subgroups of G. Here, by a large subgroup of G we mean a subgroup H < G such that
O”(G) < H for some prime p, where OP(G) is the smallest normal subgroup of G such
that |G/OP(G)| = p* for some integer k > 0. A real G-module V is called £(G)-free
if dim V7 = 0 for each H € £L(G), which amounts to saying that dim V?"©® = 0 for
each prime p dividing |G|. Following [PSo], we denote by LO(G) the subgroup of RO(G)
consisting of the differences U — V of two real £(G)-free G-modules U and V" such that
ResS(U) = ResS(V) for every P € P(G).

For two subgroups P < H of G with P € P(G), and a smooth G-manifold X or a real
G-module X, we consider the number

dx(P, H) = dim X” - 2 dim X

2000 Mathematics Subject Classification. 57817, 20C15.
Key words and phrases. real representation, Smith problem, Oliver group.



190

where dim means the dimension of the G-CW complex. Furthermore we define by
dimZ = dimX — dim Y for a virtual real G-module Z = X — Y of RO(G). A smooth

G-manifold X satisfies the gap condition (GC) if dy(P, H) > 0 for every pair (P, H) of
subgroups P < H of G with P € P(G).

The following theorem goes back to [PSo], the Realization Theorem.
Theorem 2.1 ([PSo]). Let G be a finite Oliver gap group. Then LO(G) € CSm(G).

We impose a number of restrictions on a smooth G-manifold, in particular, a real G-
module X. The restrictions are collected in the following conditions, where we con-
sider series P < H < G of subgroups P and H of G always with P € P(G). We say
that a smooth G-manifold X satisfies the weak gap condition (WGC) if the conditions
(WGC1)HWGC4) all hold (cf. [LM], [MP]), and we say that X satisfies the semi-weak
gap condition (SWGC) if the conditions (WGC1) and (WGC2) both hold.

(WGC1) dx(P,H) = 0 forevery P < H < G, P € P(G).

(WGCQC2) If dy(P,H) = 0 for some P < H < G, P € P(G), then [H : P] = 2,
dim X" > dim XX + 1 for every H < K < G, and X is connected.

(WGC3) If dy(P,H) = 0 forsome P < H < G, P € P(G), and [H : P} = 2, then
X" can be oriented in such a way that the map g: X — X* is orientation
preserving for any g € Ng(H).

(WGC4) If dx(P,H) = dx(P,H") = 0 for some P < H, P < H', P € P(G), then the
smallest subgroup (H, H’) of G containing H and H’ is not a large subgroup
of G.

Now, for a finite group G, we define subgroups VLO(G), WLO(G) and MLO(G) of the
free abelian group LO(G) as follows.

VLO(G) ={U -V € LO(G) | U W and V & W both satisfy the gap condition for
some real £L(G)-free G-module W }

WLO(G) ={U -V € LO(G) | Us W and V & W both satisfy the weak gap condition
for some real £(G)-free G-module W'}

MLOG) ={U-VeLO(G)|U&® W and V & W both satisfy the semi-weak gap

condition for some real £(G)-free G-module W }

Note that if P(G) N L(G) = @ then for an L(G)-free real G-modules U and V there is a
real £L(G)-free G-module W such that both U@ W and V @ W satisfy (WGC2), and if G is
an Oliver group then for an .£(G)-free real G-modules U and V there is a real L(G)-free
G-module W such that both U & W and V @ W satisfy (WGC2) and (WGC4).

In general, VLO(G) € WLO(G) € MLO(G) € LO(G) by definitions. But if G is a gap
group, then for every U—V € LO(G), there exists a real L(G)-free G-module W satisfying
the gap condition, such that U & W and V' & W also satisfy the gap condition, and thus
U -V € VLO(G), and hence

VLO(G) = WLO(G) = MLO(G) = LO(G).
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Therefore, the following theorem extends the result in Theorem 2.1 by using Theorem in
[MP].

Theorem 2.2. Let G be a finite Oliver group. Then WLO(G) € CSm(G).

3. ALGEBRAIC VIEWPOINT

We denote by PO(G) the subgroup of RO(G) of G consisting of the differences U — V
of representations U and ¥ such that dim U¢ = dim ¥° and Res$(U) = Res3(V) for
any subgroup P of G of prime power order. We note that in [PSo], PO(G) is denoted
by IO(G, G). Similarly, we denote by PO(G) the subgroup of RO(G) of G consisting
of the differences U — V of representations U and V such that dim U® = dim V° and
ResS(U) = Res$(¥) for any subgroup P of G of odd prime power order and order 2,4.
By a theorem of Sanchez [Sa], the difference of two Smith equivalent representations lies
in PO(G) and the difference of two P-matched Smith equivalent representations lies in
PO(G).

We define the Laitinen number ag as the number of real conjugacy classes in G rep-
resented by elements of G not of prime power order. The rank of PO(G) is equal to the
maximum of 0 and ag — 1. Moreover the rank of PO(G) is equal to the rank of PO(G) plus
the number of all real conjugacy classes represented by 2-elements of order > 8. Now, let
H be a normal subgroup of G. We denote by PO(G, H) the subgroup of RO(G) consisting
of the differences U — V of representations U and ¥ such that U” = V¥ as representations
over G/H, and Res$(U) = Res$ (V) for any subgroup P of prime power order. Again, we
note that in [PSo], PO(G, H) is denoted by I0(G, H). It holds that PO(G) = PO(G, G).
Let bg,x be the number of all real conjugacy classes in G/H which are images from real
conjugacy classes of G represented by elements not of prime power order by the surjection
G — G/H. Then the rank of PO(G, H) is equal to ag — bg,u (see [PSo]).

Proposition 3.1 (cf. [PSo]). It holds that
PO(G,G"™ < LO(G) < PO(G) < PO(G) < RO(G).
Note that G"! = N,0P(G). Also it is known that
LO(G) € CSm(G) € Sm(G)
if G is an Oliver gap group.

4. UPPER RESTRICTION
Let S be a set of primes dividing |G| and 1, and let denote by G™ the normal subgroup
of G defined as
¢s= () L
L<Gi[G:L]eS
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Theorem 4.1 ([M07a, KMKY)). Let G be a finite Oliver group. We set S = {2,3) if a Sylow
2-subgroup of G is normal and set S = {2} otherwise. Then it holds that

CSm(G) € PO(G,G™) and Sm(G) < PO(G,G"™).
In addition if G is a gap group and G™' = G5, then it holds that
LO(G) = CSm(G) = PO(G,G™).

Here G™ is the minimal subgroup among normal subgroups N of G such that G/N is
nilpotent.

In particular, ag = bg/gns yields that CSm(G) = 0.
Proposition 4.2 (cf. [PSu08]). G/G" is an elementary abelian group.

5. KNOWN RESULTS

In this section we summarize several known results ([Ju, M07a, M07b, PSo, PSu07,
Su]). First we treat a non-solvable group. Pawatowski and Solomon [PSo] showed that
0 # PO(G, G"™) ¢ CSm(G) if G is a non-solvable gap group with ag > 2, Pawatowski and
Sumi [PSu07]showed that 0 # LO(G)NCSm(G) if G is a non-solvable group with ag > 2,
except Aut(Ag), PL(2,27), and Morimoto [M07a, MO7b] showed that S m(4ut(Ags)) = 0
and CSm(PZL(2,27)) # 0. Combining these results we can state that

Theorem 5.1. For a finite non-solvable group G, Sm(G) # 0 if and only if ag < 1 or
G = Aut(Ae).

We say that an element not of prime power order is an NPP element. Morimoto showed
the following theorem to get CSm(PZL(2,27)) # 0.

Theorem 5.2 (Morimoto). Let G be an Oliver gap group. Suppose that O*(G) has a
dihedral subgroup D,p, of order 2pq with distinct primes p and q and G has two real
conjugacy classes of NPP elements contained in OX(G). Then CSm(G) # 0.

To show LO(G) N CS m(G) # 0 for a non-solvable group with LO(G) # 0, Pawatowski
and Sumi introduced a basic pair (cf. [PSu07, Su)]). Let /1 G — G/G™ be a natural
homomorphism. For two NPP elements x and y of an finite Oliver group G, we call (x,y)
a basic pair, if f(x) = f(»), x is not real conjugate to y, and one of the following claims is
satisfied:

(1) x and y are elements of some gap subgroup of G.
(2) |x| is even and the involution of (x) is conjugate to the involution of {(y) in G.

We denote by n(G) the set of all primes dividing the order of G. Note that (x)G™! =
()G™ as f(x) = f(y). Recall that if |x| is even, then for the involution ¢ of {x), ¢ € O*(G)
or |1(O*(Cg(c)))| = 2, then (x)O*(G) is a gap group.

Theorem 5.3 ([PSu07]). If an Oliver group has a basic pair, it holds LO(G) N CSm(G) #
0.
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Recall that LO(G/G™) C LO(G). Furthermore we have

Proposition 5.4. 2LO(G/G™) ¢ WLO(G) and in particular LO(G/G"™) # 0 implies
CSm(G) # 0.

Then LO(G) N CSm(G) = 0 implies LO(G/G™) = 0. Thus the following proposition
is important.

Proposition 5.5 ([PSu07]). Let H be a nilpotent group with LO(H) = 0. Then H is
isomorphic to one of the following groups:

(1) a p-group for a prime p,

(2) C, X P for an odd prime p and a p-group P, or

(3) P x C; for a 2-group P such that any element is self-conjugate.

Lemma 5.6. If ag > 2 and LO(G) = 0 it holds |n(G/G")| = 1,2.

Proof. If |m(G/G"")| > 3, then G/G"" is a gap group with LO(G/G"") # 0, a contrary. If
In(G/G")| = 0, then G is perfect and thus rank LO(G) = ag — 1 > 0, a contrary. O

Theorem 5.7. If LO(G) N CSm(G) = 0, then G has no element x with |n({x))| = 3.

Proof. We assume that x is an element of G of order pgr such that p,q,r are distinct
primes. It is clear that ag > 4. We may assume that x?? € G" by Lemma 5.6. Then
(xPix9"xP", x7" xP") is a basic pair, a contrary. O

Thus |7({c))| < 2 for each non-trivial element ¢ € Z(G).

6. INDUCED MODULES AND PO(G)

Let G be a finite group and NPP(G) be the set of all elements of G not of prime power
order. Note that NPP(G) does not contain the identity element. For the real representation
ring RO(G), the real vector space RO(G) ® R is identified with the vector space consisting
of all maps from the set of real conjugacy classes of G to the real number field R. We
denote by IZ)G the map defined by 12)6((g)g) = 1 and lg)c((a)f) = 0 if g is not real
conjugate to gf Then ) :

RO(G)®R = <1gﬁ | (@)F¢ < G)
and

RO(G)pi) ®R = (12)g | g € NPP(G)).
Let K be a subgroup of G. The induced map Ind§ lé),( has a non-zero value at (g)¢ only
if g is real conjugate to k in G, i.e. (g)$ = (k)?, since

Ind 15 (@) = ), 15, ab)l).

bKeG/K
b—labek
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We denote by RO(G)p g, the subset of RO(G) consisting the differences U — V of real
representations U and V such that Res$(U) = ResS(V) for P € P(G). 1t is clear that

PO(G) = Ker(Fix“ : RO(G)p) — R).
We have the following commutative diagram.
RO(K)pgn ® R~ — (Indg RO(K)pi)) ® R ——  RO(G)pc) ®R

g E l’

(1gx | k € NPP(K)) ——> (15,6 | k € NPP(K)) —— (17 | g € NPP(G))
It holds that
(Indg RO(K)px)) ® R = (Indg RO(K))p() ® R
and then that

(Indf RO(K)p() ® Q = (Ind§ RO(K))p) ® Q.
Since an element of RO(G) is a linear combination with rational coefficients of induced
modules of RO(C) for cyclic subgroups C of G, we obtain that

D (1ndg RO(C)p(c)) ® Q = RO(Glpic) @ Q.

©°
C<sG

Furthermore, noting IndZ RO(C)p(c) = 0 for C € P(G), it holds that
D, (Ind§, ROC@)rien) ® Q = ROGlpi) 8 Q.

«@°
geNPP(G)

If g has order 2p for an odd prime p, then RO({(g))p()) ® Q is spanned by
(2R -R[(x")])® (2R - 1)

for all real irreducible modules i over {g) and PO({g)) ® Q is spanned by
QR -R[P)De(n-7)

for all non-trivial real irreducible modules 1, n” over (g?). Hence we can investigate LO(G)
for a finite non-gap group G with G/O*(G) an elementary abelian 2-group. Letting C} be
an elementary abelian 2-group of order 2”, we obtain the following results.

Theorem 6.1. Let G := K x Cj, n > 2 be an Oliver group such that K/|O*(K) is an
elementary abelian 2-group. Then it holds MLO(G) € CSm(G) C LO(G). Furthermore
if G is a gap group, it holds the equality CSm(G) = LO(G).

We will discuss in the case when G is a non-gap group in Theorem 6.1.

Proposition 6.2. Let G be an Oliver non-gap group such that [G : OX(G)] = 2.
The following two claims are equivalent.

(1) MLO(G) = LO(G).
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(2) If wo involutions x and y of G outside of O*(G) are not conjugate then Cg(x) or
Cc(y) is a 2-group.

The author does not know a group G with MLO(G) # LO(G).

7. NON-TRIVIAL CENTRAL

In this section we consider whether CSm(G) = 0 or not for an Oliver group G with
ac = 2. In the section 5 we know completely it for a non-solvable group G. From now
on we assume that G is an Oliver solvable group with LO(G) N CSm(G) = 0 and ag = 2.
Recall that PO(G, G™) # 0 implies ag > 2.

Lemma 7.1. If Z(G) # {1} then |n(G"™")| = 2.

Proof. Since LO(G/G™) = 0, G/G™ is isomorphic to P, C, X P, or C3 X P,, where
P is a p-group and P, is a 2-group. Then for some subgroup K of G, the sequence
G™ 9 K < G such that |n(G/K)| = 1 and K/G"™ is cyclic. Thus |7(G"")| > 2. We assume
that [7(G™)| > 3. Take distinct primes p, g, » in 7(G™). Let ¢ € Z(G) be an element of
prime order. We may assume that |c| # g, r. Take elements x, and x, of G* of order g and
r respectively. Then cx, and cx, are NPP elements of distinct order. Therefore (cx,, cx;)
is a basic pair. O
Lemma 7.2. Z(G) has no NPP element.

Proof. We suppose that Z(G) has an NPP element ¢ of order pg where p and g are primes.
Then |7(G)| = 2 and 7(G) = n({c)) = {p, q} by Theorem 5.7. First we show that G" is not
a subgroup of (c). Suppose G < (c). Let f: G — G/{c) be a canonical epimorphism.
Note that 7(G/{c)) = {p,q}. Since f(G) is nilpotent, O/(f(G)) is a Sylow p-subgroup of
f(G) and a Sylow p-subgroup O%(G), of O%(G) is normal and its quotient O(G)/O0(G),
is cyclic. This is a contrary against G is Oliver.

(c) — G — G/(c)

I I I

NO(G) —— 0UG) —— UG/

I I I

() NOUG), — OUG), —— OUG/{c))

Thus we can take an element x of G™ which is not in {c). Since f sends two NPP elements
xc and c to elements of distinct order, xc and ¢ are not real conjugate. It is clear that they
are sent to the same element by G — G/G"!. Then (xc,¢) is a basic pair, which is a
contrary. Thus Z(G) has no NPP element. o

The following can be straightforward checked.
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Lemma 7.3. Let c € Z(G) be an element of order a prime p. If G™ has an element x of
order q* for some prime q # p, then G has a basic pair (cx, cx9).

We define the DressLength(G) as the minimal length 7 of sequences
G=G0>G1>Gz>-">Gn-‘={1}

such that OP/(G,.;) = G; with some prime p; for each j. In convenient, we assume
DressLength(G) = oo if there is no sequence as above. For example, DressLength(G) = oo
for a non-solvable group. It is easy to see that DressLength(G) > 3 if G is an Oliver group
and that DressLength(G) > 3 if G is a gap group.

Now we recall classical results. A finite group is called a CP group if it has no NPP
elements.

Lemma 7.4 (Higman, cf. [PSo, Lemma 2.5)). Let H be a finite solvable CP group. Then
one of the following conclusions holds:
(1) H is a p-group for some prime p; or
(2) H = K = C is a Frobenius group with kernel K and complement C, where K is a
p-group and C is a q-group of q-rank 1 for two distinct primes p and q, or
(3) H = K= C = A is a 3-step group, in the sense that K = C is a Frobenius group as
in the conclusion (2) with C cyclic, and C = A is a Frobenius group with kernel C
and complement A, a cyclic p-group.

Proposition 7.5 ([Hu, Proposition 22.3 and Remark on p.193]). Aut(C) = C; X Cpaz
where x — x° is a generator of Cpz and x — x7' is a generator of C;. Aut(Cpe) =
Cpa-1(p-1) fOr an odd prime p.

With these results we use a Frattini subgroup and a Fitting subgroup and then we obtain
the following results.

Theorem 7.6. Let G be an Oliver solvable group with ag > 2 and Z(G) # {1}. If
CSm(G) = 0, then it holds the following.

(1) Z(G) has no NPP element.

(2) If Z(G) is a p-group, an element of G™ not of p power order has prime order.

(3) In(G)l = 2.

(4) DressLength(G) = 3, 4.
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