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Abstract

We will survey recent developments in the study of the Takhtajan-Zograf metric

on the Teichm\"uller space. Main topics are the asymtotic behavior of the Takhtajan-

Zograf metric near the boundary of moduli space of Riemann surfaces, which is

the author’s joint work with W.-K. To and L. Weng ([OTW]), and the asymtotic

behavior of the Weil-Petersson metric near the boundary of moduli space of Riemann

surfaces, which is the author’s joint work with S.A. Wolpert ([OW]).

\S 0. Introduction

We consider the Teichm\"uller space $T_{g\rangle n}$ and the associated Teichm\"uller curve $\mathcal{T}_{g,n}$

of Riemann surfaces of type $(g,n)$ (i.e., Riemann surfaces of genus $g$ and with $n>0$

punctures). We will assume that $2g-2+n>0$ , so that each fiber of the holomorphic

projection map $\pi$ : $\mathcal{T}_{g,n}arrow T_{g,n}$ is stable or equivalently, it admits the complete

hyperbolic metric of constant sectional curvature-l. The kemel of the differential

$T\mathcal{T}_{g,n}arrow TT_{g,n}$ forms the sxcalled vertical tangent bundle over $\mathcal{T}_{g,n}$ , which is denoted
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by $T^{V}\mathcal{T}_{g,n}$ . The hyperbolic metrics on the fibers induce naturally a Hermitian metric

on $T^{V}\mathcal{T}_{g)n}$ .
In the study of the family of $\overline{\partial}_{k}$-operators acting on the k-differentials on Riemann

surfaces (i.e., cross-sections of $(T^{V}\mathcal{T}_{g,n})^{-k}|_{\pi^{-1}(s)}arrow\pi^{-1}(s),$ $s\in T_{g_{1}n}$), Takhtajan and

Zograf introduced in [TZl], [TZ2] a K\"ahler metric on $T_{g,n}$ , which is known as the

Takhtajan-Zograf metric. In [TZl], [TZ2], they showed that the Takhtajan-Zograf

metric is invariant under the natural action of the Teichm\"uller modular group $Mod_{g,n}$

and it satisfies the following remarkable identity on $T_{g_{2}n}$ :

$c_{1}( \lambda_{k}, \Vert\cdot\Vert_{k})=\frac{6k^{2}-6k+1}{12\pi^{2}}\omega_{WP}-\frac{1}{9}\omega_{TZ}$ .

Here $\lambda_{k}=\det$ (ind $\overline{\partial}_{k}$ ) $=\wedge^{\max}Ker\overline{\partial}_{k}\otimes(\wedge^{\max}$ Coker $\overline{\partial}_{k})^{-1}$ denotes the determi-

nant line bundle on $T_{g,n},$ $\Vert\cdot\Vert_{k}$ denotes the Quillen metric on $\lambda_{k}$ , and $\omega_{WP},$ $\omega_{TZ}$

denote the K\"ahler form of the Weil-Petersson metric, the Takhtajan-Zograf metric

on $T_{g,n}$ respectively. In [We], Weng studied the Takhtajan-Zograf metric in terms

of Arakelov intersection, and he proved that $\frac{4}{3}\omega_{TZ}$ coincides with the first Chern

form of an associated metrized Takhtajan-Zograf line bundle over the moduli space
$\mathcal{M}_{g_{1}n}=T_{g,n}/Mod_{g,n}$ . Recently, Wolpert [Wo5] gave a natural definition of a Hermi-

tian metric on the Takhtajan-Zograf line bundle whose first Chem form gives $\frac{4}{3}\omega_{TZ}$ .

The first of main topics in this article is to present the asymptotic behavior of

the Takhtajan-Zograf metric near the boundary of $T_{g,n}([OTW|)$ , which we de-

scribe heuristically as follows. Near the boundary of $T_{g,n}$ , the tangent space at any

point in $T_{g,n}$ can be roughly considered as the direct sum of the pinching direc-

tions and the non-pinching directions (that are ‘parallel’ to the boundary). Roughly

speaking, our result shows that the Takhtajan-Zograf metric is smaller than the

Weil-Petersson metric by an additional factor of $1/|\log|t||$ along each pinching tan-

gential direction, i.e. it is essentially of the order of growth $1/|t|^{2}(\log|t|)^{4}$ along the

pinching direction corresponding to a pinching coordinate $t$ . Also, we show that

the Takhtajan-Zograf metric extends continuously along the non-pinching tangen-
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tial directions to the “nodally-depleted Takhtajan-Zograf metrics” on the boundary

Teichm\"uller spaces, which, unlike the case of the Weil-Petersson metric, are only

positive semi-definite on the boundary Teichm\"uller spaces.

The second of main topics in this article is to present a new formula for the asymp-

totic behavior of the Weil-Petersson metric near the boundary of $T_{g,n}$ ([OW]). Masur

[Ma] first found that the Weil-Petersson metric extends continuously along the non-

pinching tangential directions to the (nodally-depleted Weil-Petersson metrics” on

the boundary Teichm\"uller spaces. Furthermore, Yamada [Y] gave an order estimate

for the second term of the asymptotic expansion of the Weil-Petersson metric along

the non-pinching tangential directions. In \S 3, we will succeed to determine the the

second term of the asymptotic expansion of the Weil-Petersson metric along the

non-pinching tangential directions, which is exactly the Takhtajan-Zograf metrics

on the boundary Teichm\"uller spaces. It should be remarked that Mirzakhani [Mi]

proved essentially the same formula in the context of symplectic geometry by the

symplectic reduction technique, which is totally different from our method of the

proof.

\S 1. Notation and The First Theorem

(1.1) For $g\geq 0$ and $n>0$ , we denote by $T_{g,n}$ the Teichm\"uller space of Riemann

surfaces of type $(g.n)$ . Each point of $T_{g_{r}n}$ is a Riemann surface $X$ of type $(g, n)$ ,

i.e., $X=\overline{X}\backslash \{p_{1}. \cdots , p_{n}\}$ , where $X$ is a compact Riemann surface of genus $g$ , and

the punctures $p_{1},$ $\cdots,p_{n}$ of $X$ are $n$ distinct points in $\overline{X}$ . We will always assume

that $2g-2+n>0$ , so that $X$ admits the complete hyperbolic metric of constant

sectional curvature $-1$ . By the uniformization theorem, $X$ can be represented as

a quotient $\mathbb{H}/\Gamma$ of the upper half plane $\mathbb{H}$ $:=\{z\in \mathbb{C} : {\rm Im} z>0\}$ by the natu-

ral action of Fuchsian group $\Gamma\subset$ PSL $($ 2, $\mathbb{R})$ of the first kind. $\Gamma$ is generated by

$2g$ hyperbolic transformations $A_{1},$ $B_{1},$ $\cdots,$ $\mathcal{A}_{g},$ $B_{9}$ and $n$ parabolic transformations
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$P_{1},$ $\cdots,$ $P_{n}$ satisfying the relation

$A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}\cdots A_{g}B_{g}A_{g}^{-1}B_{g}^{-1}P_{1}P_{2}\cdots P_{n}=$ Id.

Let $z_{1},$ $\cdots,$ $z_{n}\in \mathbb{R}\cup\{\infty\}$ be the fixed points of the parabolic transformations
$P_{1},$

$\cdots,$ $P_{n}$ respectively, which are also called cusps. The cusps $z_{1},$ $\cdots,$ $z_{n}$ correspond

to the punctures $p_{1},$ $\cdots,p_{n}$ of $X$ under the projection $\mathbb{H}arrow \mathbb{H}/\Gamma\simeq X$ respectively.

For each $i=1,2,$ $\ldots,$
$n$ , it is well-known that $P_{i}$ generates an infinite cyclic subgroup

of $\Gamma$ , and we can select $\sigma_{i}\in$ PSL $(2, \mathbb{R})$ so that $\sigma_{i}(\infty)=z_{i}$ and $\sigma_{i}^{-1}P_{i}\sigma_{i}$ is the

transformation $z\mapsto z+1$ on $\mathbb{H}$ . For each $i=1,2,$ $\cdots,$ $n$ and $s\in \mathbb{C}$ , the Eisenstein

series $E_{i}(z, s)$ attached to the cusp $z_{i}$ is given by

$E_{i}(z, s)$
$:= \sum_{\gamma\in<P_{i}>\backslash \Gamma}1m(\sigma_{i}^{-1}\gamma z)^{s}$

, $z\in \mathbb{H}$ . (1.1.1)

If ${\rm Re} s>1$ , then the above series is uniformly convergent on compact subsets of $\mathbb{H}$ .

Moreover, $E_{i}(z, s)$ is invariant under $\Gamma$ , and thus it descends to a function on $X$ ,

which we denote by the same symbol. Furthermore, it is well-known that

$\Delta E_{j}=s(s-1)E_{j}$ on $X$ , (1.1.2)

where $\Delta$ denotes the negative hyperbolic Laplacian on $X$ (see e.g. [Ku]).

The Teichm\"uller space $T_{g,n}$ is naturally a complex manifold of dimension $3g-3+n$ .

To describe its tangent and cotangent spaces at a point $X$ , we first denote by $Q(X)$

the space of holomorphic quadratic differentials $\phi=\phi(z)dz^{2}$ on $X$ with finite $L^{1}$

norm, i.e., $\int_{X}|\phi|<\infty$ . Also, we denote by $B(X)$ the space of $L^{\infty}$ measurable

Beltrami differentials $\mu=\mu(z)d\overline{z}/dz$ on $X$ $($ i.e., $||\mu\Vert_{\infty}$ $:=$ ess. $\sup_{z\in X}|\mu(z)|<\infty)$ .
Let $HB(X)$ be the subspace of $B(X)$ consisting of elements of the form $\overline{\phi}/\rho$ for some

$\phi\in Q(X)$ . Here $\rho=\rho(z)dz$ dzZenotes the hyperbolic metric on $X$ . Elements of

$HB(X)$ are called harmonic Beltrami differentials. There is a natural Kodaira-Serre

pairing $\langle,$ $\rangle$ : $B(X)xQ(X)arrow \mathbb{C}$ given by

$\langle\mu,$ $\phi\rangle=/x^{\mu(z)\phi(z)dzd\overline{z}}$ (1.1.3)
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for $\mu\in B(X)$ and $\phi\in Q(X)$ . Let $Q(X)^{\perp}\subset B(X)$ be the annihilator of $Q(X)$ under

the above pairing. Then one has the decomposition $B(X)=HB(X)\oplus Q(X)^{\perp}$ . It

is well-known that one has the following natural isomorphism

$T_{X}T_{g,n}\simeq B(X)/Q(X)^{\perp}\simeq HB(X)$ , and

$T_{X}^{*}T_{g,n}\simeq Q(X)$ (1.1.4)

with the duality between $T_{X}T_{g,n}$ and $T_{X}^{*}T_{g,n}$ given by (1.1.3). It should be remarked

that Bers was responsible for many of the concepts described above (see [Be]).

The Weil-Petersson metric $g^{WP}$ and the Takhtajan-Zograf metric $g^{TZ}$ on $T_{g,n}$ (the

latter being introduced in [TZl] and [TZ2] $)$ are defined as follows (see e.g. [IT],

[Wo2] and the references therein for background materials on $g^{WP}$ ): for $X\in T_{g,n}$

and $\mu,$ $\nu\in HB(X)$ . one has

$g^{WP}(\mu, \nu)=/x^{\mu\overline{\nu}\rho}$
’

$g^{TZ}( \mu, \nu)=\sum_{i=1}^{n}g^{(i)}(\mu, \nu)$ , where

$g^{(i)}(\mu, \nu)=/x^{E_{i}}(., 2)\mu\overline{\nu}\rho$ , $i=1,2,$ $\cdots,$ $n$ (1.1.5)

(see (1.1.1)). It follows from results in [A], [Ch], [Wol], [TZ2], [Ol], [O2] that the

metrics $g^{WP},$ $g^{(i)},$ $g^{TZ}$ are all K\"ahlerian and non-complete. Note that $g^{TZ}$ is well-

defined only when $n>0$ . Moreover, each $g^{(i)}$ is intrinsic to the corresponding cusp

$p_{i}$ in the sense that if an element $\gamma$ in the Teichm\"uller modular group $Mod_{g,n}$ carries

the cusp $p_{i}$ to another cusp $p_{j}$ , then $\gamma$ also carries $g^{(i)}$ to $g^{(j)}$ . To facilitate subsequent

discussion, we will call $g^{(i)}$ the Takhtajan-Zograf cuspidal metric on $T_{g,n}$ associated

to the cusp $z_{i}$ (or the puncture $p_{i}$ ).

The moduli spaoe $\mathcal{M}_{g,n}$ of Riemann surfaces of type $(g, n)$ is obtained as the

quotient of $T_{g.n}$ by the Teichm\"uller modular group $Mod_{g,n}$ , i.e., $\mathcal{M}_{g,n}\simeq T_{g,n}/Mod_{g,n}$

(see e.g. [N]). As such, $\mathcal{M}_{g,n}$ is naturally endowed with the structure of a complex
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V-manifold ([Ba]). The metrics $g^{WP}$ and $g^{TZ}$ (but not each individual $g^{(i)}$ unless

$n=1)$ are invariant under $Mod_{g,n}$ and thus they descend to K\"ahler metrics on (the

smooth points of) $\mathcal{M}_{g,n}$ , which we denote by the same names and symbols.

(1.2) To facilitate ensuing discussion, we consider some related pseudo-metrics on

the associated boundary Teichm\"uller spaces of $T_{g,n}$ .

As in [Ma] (in the case of $T_{g,0}$ ), we denote by $\delta_{\gamma 1}T_{g,n}$ the boundary Teichm\"uller

space of $T_{g,n}$ arising from pinching $m$ distinct points. Take a point $X_{0}\in\delta_{\gamma 1,\cdots,\gamma_{m}}T_{g,n}$ .

Then $X_{0}$ is a Riemann surface with $n$ punctures $p_{1},$ $\cdots,p_{n}$ and $m$ nodes $q_{1},$ $\cdots,$ $q_{m}$ .

Observe that $X_{0}^{o}$ $:=X\backslash \{q_{1}, \cdots, q_{m}\}$ is a non-singular Riemann surface with $n+2m$

punctures. Each node $q_{i}$ corresponds to two punctures on $X_{0}^{o}$ (other than $p_{1},$ $\cdots,p_{n}$ ).

Denote the components of $X_{0}^{o}$ by $S_{\alpha},$ $\alpha=1,2,$
$\ldots,$

$d$ . Each $S_{\alpha}$ is a Riemann surface

of genus $g_{\alpha}$ and with $n_{\alpha}$ punctures, i.e., $S_{\alpha}$ is of type $(g_{\alpha}, n_{\alpha})$ . It will be clear in

(1.3) that we will only need to consider the case where $2g_{\alpha}-2+n_{\alpha}>0$ for each

$\alpha$ , so that each $S_{\alpha}$ also admits the complete hyperbolic metric of constant sectional

curvature $-1$ . It is easy to see that $\sum_{\alpha=1}^{d}(3g_{\alpha}-3+n_{\alpha})+m=3g-3+n$. With

respect to the disjoint union $X_{0}^{o}= \bigcup_{\alpha=1}^{d}S_{\alpha}$ , one easily sees that $\delta_{\gamma_{1},\cdots,\gamma_{m}}T_{g,n}$ is a

product of lower dimensional Teichm\"uller spaces given by

$\delta_{\gamma 1,\cdots,\gamma_{m}g,nn_{1}}T=T_{91},xT_{gn_{2}}2,\cross\cdots xT_{gn}d,d$ (1.2.1)

with each $S_{\alpha}\in T_{g_{\alpha},n_{\alpha}},$ $\alpha=1,2,$ $\cdots,$
$d$ . Recall that the punctures of $S_{\alpha}$ arise from

either the punctures or the nodes of $X_{0}$ , and for simplicity, they will be called old

cusps and new cusps of $S_{\alpha}$ respectively. Denote the number of old cusps (resp. new

cusps) of $S_{\alpha}$ by $n_{\alpha}’$ (resp. $n_{\alpha}^{l\prime}$ ), so that $n_{\alpha}=n_{\alpha}’+n_{\alpha}’’$ . We index the punctures of

$S_{\alpha}$ such that $\{p_{\alpha_{7}i}\}_{1\leq t\leq n_{\alpha}’}$ denotes the set of old cusps, and $\{p_{\alpha,i}\}_{n_{\alpha}’+1\leq i\leq n_{\alpha}}$ denotes

the set of new cusps. For each $\alpha$ and $i$ , we denote by $g^{(\alpha,i)}$ the Takhtajan-Zograf

cuspidal metric on $T_{g_{\alpha},n_{\alpha}}$ with respect to the puncture $p_{\alpha,i}$ (cf. (1.1.5)). Now we

define a pseudo-metric $\hat{g}^{TZ.\alpha}$ on $T_{g_{\alpha},n_{\alpha}}$ by summing the $g^{(\alpha,i)}$ ’s over the old cusps,
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i.e.,

$\hat{g}^{TZ_{2}\alpha}$

$:= \sum_{1\leq i\leq n_{\alpha}’}g^{(\alpha,i)}$
. (1.2.2)

If none of the punctures of $S_{\alpha}$ are old cusps, then $\hat{g}^{TZ,\alpha}$ is simply defined to be zero

identically. As such, $\hat{g}^{TZ,\alpha}$ is positive definite precisely when $S_{\alpha}$ possesses at least

one old cusp. Note that by contrast, the Takhtajan-Zograf metric $g^{TZ,\alpha}$ on $T_{g_{\alpha},n_{\alpha}}$ is

given by $g^{TZ,\alpha}$ $:= \sum_{1\leq i\leq n_{a}}g^{(\alpha,i)}$ , and $g^{TZ,\alpha}$ is always positive definite.

Definition 1.2.1. The nodally depleted Takhtajan-Zografpseudo-metric $\hat{g}^{TZ,(\gamma 1}$

on $\delta_{\gamma_{1},i\gamma_{m}}T_{g,n}$ is defined to be the product pseudo-metric of the $\hat{g}^{TZ,\alpha}$ ’s on the

$T_{g_{a},n_{a}}^{\cdot}s$ , i,e.,

$( \delta_{\gamma 1,\cdots,\gamma_{m}}T_{g,n},\hat{g}^{TZ,(\gamma\cdots\gamma_{n})}1")=\prod_{i=1}^{d}(T_{g_{\alpha},n_{\alpha}},\hat{g}^{TZ,a})$. (1.2.3)

(1.3) Let $\mathcal{M}_{g,n}$ be the moduli space of Riemann surfaces of type $(g, n)$ as in (1.1),

and let $\overline{\mathcal{M}}_{g,n}$ denote the Knudsen-Deligne-Mumford stable curve compactification

of $\mathcal{M}_{g,n}$ ([KM], [Kn]). Like $\mathcal{M}_{g,n},$ $\overline{\mathcal{M}}_{g,n}$ admits a V-manifold structure, which we

describe as follows. Similar description for $\overline{\mathcal{M}}_{g}$ (i.e., when $n=0$) can be found in

[Ma] or [Wo3].

Take a point $X_{0}\in\overline{\mathcal{M}}_{g,n}\backslash \mathcal{M}_{g,n}$ . Then $X_{0}$ is a stable Riemann surface with $n$

punctures $p_{1},$ $\cdots,p_{n}$ and $m$ nodes $q_{1},$ $\cdots,$ $q_{m}$ for some $m>0$ . Thus we may regard

$X_{0}$ as a point in $\delta_{\gamma_{1},\cdots.\gamma_{m}}T_{g,n}$ (cf. (1.2)). Write $X_{0} \backslash \{q_{1}, \cdots , q_{m}\}=\bigcup_{1\leq\alpha\leq d}S_{\alpha}$ and

write $\delta_{\gamma 1,\cdots,\gamma_{m}}T_{g,n}=\prod_{\alpha=1}^{d}T_{g_{\alpha},n_{\alpha}}$ with each component $S_{\alpha}\in T_{g_{\alpha},n_{\alpha}}$ as in (1.2). Note

that since $X_{0}$ is stable, each $S_{\alpha}$ admits the complete hyperbolic metric of constant

sectional curvature $-1$ . Also, for some $0<r<1$ , each node $q_{j}$ in $X_{0}$ admits an
open neighborhood

$N_{j}=\{(z_{j}, w_{j})\in \mathbb{C}^{2} : |z_{j}|, |w_{j}|<r, z_{j}\cdot w_{j}=0\}$ (1.3.1)

so that $N_{j}=N_{j}^{1}\cup N_{j}^{2}$ , where $N_{j}^{1}=\{(z_{j}, 0)\in \mathbb{C}^{2} : |z_{j}|<r\}$ and $N_{j}^{2}=\{(0, w_{j})\in$
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$\mathbb{C}^{2}$ : $|w_{j}|<r\}$ are the coordinate discs in $\mathbb{C}^{2}$ . Without loss of generality, we will

assume that $r$ is independent of $j$ , upon shrinking $r$ if necessary. For each $\alpha$ , we

choose 3$g_{\alpha}-3+n_{\alpha}$ linearly independent Beltrami differentials $\nu_{i}^{(\alpha)},$ $1\leq i\leq 3g_{\alpha}-3+$

$n_{\alpha}$ , which are supported on $S_{\alpha} \backslash \bigcup_{j=1}^{n}N_{j}$ , so that their harmonic projections form a
basis of $T_{S_{\alpha}}T_{g_{\alpha},n_{\alpha}}$ (cf. (1.1.4)). For simplicity, we rewrite $\{v_{i}^{(\alpha)}\}_{1\leq\alpha\leq d,1\leq i\leq 3g_{\alpha}-3+n_{\alpha}}$ as
$\{v_{i}\}_{1\leq t\leq 3g-3+n-m}$ . Then one has an associated local coordinate neighborhood $V$ of
$X_{0}$ in $\delta_{\gamma 1,\cdots,\gamma_{m}}T_{g,n}$ with holomorphic coordinates $\tau=(\tau_{1}, \cdots, \tau_{3g-3+n-m})$ such that
$X_{0}$ corresponds to $0$ . Shrinking and reparametrizing $V$ if necessary, we may assume
$V\simeq\Delta^{3g-3+n-m}$ , where $\Delta=\{z\in \mathbb{C} : |z|<1\}$ denotes the unit disc in $\mathbb{C}$ . For a

point $\tau\in V$ , one has the associated Beltrami differential $\mu(\tau)=\sum_{i=1}^{3g-3+n-m}\tau_{i}v_{i}$

and a quasi-conformal homeomorphism $w^{\mu(\tau)}$ : $X_{0}arrow X_{\tau}$ onto a Riemann surface
$X_{\tau}$ satisfying

$\frac{\partial w^{\mu(\tau)}}{\partial\overline{z}}=\mu(z)\frac{\partial w^{\mu(\tau)}}{\partial z}$ . (1.3.2)

The map $w^{\mu(\tau)}$ is conformal on each $N_{j},$ $j=1,$ $\cdots,$ $m$ , so that we may regard

$N_{j}\subset X_{\tau}$ for each $j$ . Then for each $t=(t_{1}, \cdots, t_{m})$ with each $|t_{j}|<r$ , we obtain

a new Riemann surface $X_{t,\tau}$ for $X_{\tau}$ by removing the disks $\{z_{j}\in N_{j}^{1} : |z_{j}|<|t_{j}|\}$

and $\{w_{j}\in N_{j}^{2} : |w_{j}|<|t_{j}|\}$ and identifying $z_{j}\in N_{j}^{1}$ with $w_{j}=t_{j}/z_{j}\in N_{j}^{2},$ $j=$

$1,$ $\cdots,$ $m$ . Then one obtains a holomorphic family of noded Riemann surfaces $\{X_{t_{Z}\tau}\}$

parametrized by the coordinates $(t, \tau)=(t_{1}, \cdots, t_{m}, \tau_{1}, \cdots, \tau_{3g-3+n-m})$ of $\Delta^{m}(r)x$

$V\simeq\Delta^{m}(r)x\Delta^{3g-3+n-m}$ , where $\Delta^{m}(r)$ denotes the m-fold Cartesian product of

the disc $\Delta(r)=\{z\in \mathbb{C} : |z|<r\}$ in $\mathbb{C}$ . Moreover, the Riemann surfaces $X_{t,\tau}$ with

$(t, \tau)\in(\Delta^{*}(r))^{m}xV$ are of type $(g, n)$ , where $\Delta^{*}(r)=\Delta(r)\backslash \{0\}$ . The coordinates

$t=$ $(t_{1}, \cdots , t_{m})$ will be called pinching coordinates, and $\tau=(t_{1}, \cdots, t_{3g-3+n-m})$ will

be called boundary coordinates. For $1\leq j\leq m$ , let $\alpha_{j}$ denote the simple closed

curve $|z_{j}|=|w_{j}|=|t_{j}|^{\frac{1}{2}}$ on $X_{t_{\dagger}\tau}$ . Shrinking $\Delta^{m}(r)$ and $V$ if necessary, it is known

that the universal cover of $(\Delta^{*}(r))^{m}xV$ is naturally a domain in $T_{g,n}$ and the

corresponding covering transformations are generated by Dehn twist about the $\alpha_{j}’ s$ .

Since Dehn twists are elements of $Mod_{g_{r}n}$ , the $Mod_{g,n}$-invariant metrics $g^{WP}$ and
$g^{TZ}$ descend to metrics on $(\Delta^{*}(r))^{m}\cross V$ , which we denote by the same symbols and
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names. It is well-known that each $X_{0}\in\overline{\mathcal{M}}_{g,n}\backslash \mathcal{M}_{g,n}$ admits an open neighborhood
$\hat{U}$ in $\overline{\mathcal{M}}_{g,n}$ together with a local uniformizing chart $\chi$ : $U\simeq\Delta^{m}(r)xVarrow\hat{U}$ for

some $\Delta^{m}(r)\cross V$ as described above, where $\chi$ is a finite ramified cover. Obviously

the metrics $g^{WP}$ and $g^{TZ}$ on $(\Delta^{*}(r))^{m}xV\subset U$ may also be regarded as extensions

of the pull-back of the corresponding metrics on the smooth points of $\hat{U}\cap \mathcal{M}_{g,n}$ via

the map $\chi$ .

(1.4) Before we state our main result, we first need to make the following definition.

Definition 1.4.1. Let $X_{0}$ be a Riemann surface with $n$ punctures $p_{1},$ $\cdots,p_{n}$ and

$m$ nodes $q_{1},$ $\cdots,$ $q_{m}$ . A node $q_{i}$ is said to be adjacent to punctures (resp. a puncture

$p_{j})$ if the component of $X_{0}\backslash \{q_{1}, \cdots, q_{i-1}, q_{i+1}, \cdots, q_{m}\}$ containing $q_{i}$ also contains at

least one of the $p_{j}$ ’s (resp. the puncture $p_{J}$ ). Otherwise, it is said to be non-adjacent

to punctures (resp. the puncture $p_{j}$ ).

Now we are ready to state the first main result in the following

Theorem 1. For $g\geq 0$ and $n>0$ , let $X_{0}\in\overline{\mathcal{M}}_{g,n}\backslash \mathcal{M}_{g,n}$ be a stable Riemann surface
with $n$ punctures $p_{1},$ $\cdots,p_{n}$ and $m$ nodes $q_{1},$ $\cdots,$ $q_{m}$ arvanged in such a way that $q_{i}$

is adjacent (resp. non-adjacent) to punctures for $1\leq i\leq m’$ $($ resp. $m’+1\leq i\leq m)$ .

Let $\hat{U}$ be an open neighborhood of $X_{0}$ in $\overline{\mathcal{M}}_{g,n}$ , together with a local uniformizing

chart $\psi$ : $U\simeq\Delta^{m}(r)\cross Varrow\hat{U}$ , where $V\simeq\Delta^{3g-3+n-m}$ is a domain in the boundary

Teichmuller space $\delta_{\gamma\iota,\cdots,\gamma_{m}}T_{g,n}$ corresponding to $X_{0}$ and with each $\gamma_{i}$ corresponding

to $q_{i}$ . Let $(s_{1}, \cdots, s_{3g-3+n})=(t_{1}, \cdots, t_{m}, \tau_{1}, \cdots, \tau_{3g-3+n-m})=(t, \tau)$ be the pinching

and boundary coordinates of $U$ , and let the components of the Takhtajan-Zograf

metric $g^{TZ}$ be given by

$g_{i\overline{j}}^{TZ}=g^{TZ}( \frac{\partial}{\partial s_{i}},$ $\frac{\partial}{\partial s_{j}})$ , $1\leq i,j\leq 3g-3+n$ , (1.4.1)

on $U^{*}:=(\Delta^{*}(r))^{m}\cross V\subset U$ . Then the following statements hold:
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(i) For each $1\leq j\leq m$ and any $\epsilon>0$ , one has

$\lim_{(t,\tau)\in U^{*}}\sup_{arrow(0,0)}|t_{j}|^{2}(-\log|t_{j}|)^{4-\epsilon}g_{j\overline{j}}^{TZ}(t, \tau)=0$. (1.4.2)

(ii) For each $1\leq j\leq m’$ and any $\epsilon>0$ , one has

$\lim_{(t_{\dagger}\tau)\in U^{*}}\inf_{arrow(0_{\}0)}|t_{j}|^{2}(-\log|t_{j}|)^{4+\epsilon}g_{j\overline{j}}^{TZ}(t, \tau)=+\infty$. (1.4.3)

(iii) For each $1\leq j,$ $k\leq m$ with $j\neq k$ , one has

$|g_{j\overline{k}}^{TZ}(t, \tau)|=O(\frac{1}{|t_{j}||t_{k}|(\log|t_{j}|)^{3}(\log|t_{k}|)^{3}})$ as $(t, \tau)\in U^{*}arrow(O, 0)$ . (1.4.4)

(iv) For each $j,$ $k\geq m+1$ , one has

$\lim_{(t,\tau)\in U^{r}arrow(0,0)}g_{j\overline{k}}^{TZ}(t, \tau)=\hat{g}_{j\overline{k}}^{TZ,(\gamma 1,\cdots,\gamma_{m})}(0,0)$. (1.4.5)

(v) For each $j\leq m$ and $k\geq m+1$ , one has

$|g_{j\overline{k}}^{TZ}(t, \tau)|=O(\frac{l}{|t_{j}|(-\log|t_{j}|)^{3}})$ as $(t, \tau)\in U^{*}arrow(O, 0)$ . (1.4.6)

Here in (1. 4. 5), $\hat{g}_{j\overline{k}}^{TZ,(\gamma 1}$ denotes the $(j, k)$ -th component of the nodally depleted

Takhtajan-Zograf pseudo-metric on $\delta_{\gamma 1}T_{g,n}$ (cf. Definition 1. 2. 1).

Remark 1.4.2. (i) Theorem 1 (i) is equivalent to the following statement: For each

$1\leq j\leq m$ and any $\epsilon>0$ , there exists a constant $C_{1,\epsilon}>0$ (depending on $\epsilon$ ) such

that

$g_{j\overline{j}}^{TZ}(t, \tau)\leq\frac{C_{l,\epsilon}}{|t_{j}|^{2}(-\log|t_{j}|)^{4-\epsilon}}$ for all $(t, \tau)\in U^{*}$ . (1.4.7)

Similarly, Theorem l(ii) is equivalent to the following statement: For each $1\leq j\leq$

$m’$ and any $\epsilon>0$ , there exists a constant $C_{2,\epsilon}>0$ (depending on $\epsilon$ ) such that

$g_{j\overline{j}}^{T’Z}(t, \tau)\geq\frac{C_{2,\epsilon}}{|t_{j}|^{2}(-\log|t_{j}|)^{4+\epsilon}}$ for all $(t, \tau)\in U^{*}$ . (1.4.8)

(ii) In view of Theorem 1 (i) and (ii), it is natural to ask the following question: Does

the stronger estimate

$g_{j\overline{j}}^{TZi}(t, \tau)\sim\frac{l}{|t_{j}|^{2}(-\log|t_{j}|)^{4}}$ hold for $1\leq j\leq m^{l}$ and $(t,\tau)\in U^{*}$? (1.4.9)
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\S 2. Some Modifications and The Second Theorem

(2.1) In this section, we will present the second theorem. For that, we need a slight

modification of local pinching parameters in \S 1. Let us remember the settings in

(1.3).

The Beltrami differentials (1.3.2) can be modified a small amount so that in terms

of each cusp coordinate the diffeomorphisms $w^{\hat{\mu}(\tau)}$ are simply rotations (Lemma 1.1,

[Wo4] $)$ ; $w^{\hat{\mu}(\tau)}$ is a hyperbolic isometry in a neighborhood of the cusps; $w^{\hat{\mu}(\tau)}$ cannot

be complex analytic in $\tau$ , but is real analytic. We note that for $\tau$ small the $\tau-$

derivatives of $\mu(\tau)$ and $\hat{\mu}(\tau)$ are close. We say that $w^{\hat{\mu}(\tau)}$ preserves cusp coordinates.

The parameterization provides a key ingredient for obtaining simplified estimates

of the degeneration of hyperbolic metrics and an improved expansion for the Weil-

Petersson metric.

We describe a local manifold cover of the compactified moduli space $\overline{\mathcal{M}}_{g,n}$ . The

quasiconformal deformation space of $X_{0}$ in (1.3), De$f(X_{0})$ , is the product of the

Teichm\"uller spaces of the components of $X_{0}$ . As above for $3g-3+n-m=$
$\dim$ De$f(X_{0})$ there is a real analytic family of Beltrami differentials $\hat{\mu}(\tau),$ $\tau$ in a

neighborhood of the origin in $\mathbb{C}^{3g-3+n-m}$ , such that $\tauarrow X_{\tau}=X^{\dot{\mu}(\tau)}$ is a coordinate

parameterization of a neighborhood of $X_{0}$ in $Def(X_{0})$ and the prescribed mappings

$w^{\dot{\mu}(\tau)}$ : $X_{0}arrow X^{\hat{\mu}(\tau)}$ preserve the cusp coordinates at each puncture. For $X_{0}$ with $m$

nodes we prescribe the plumbing data $(N_{j}^{1}, N_{j}^{2}, z_{j}, w_{j}, t_{j}),$ $j=1,$ $\ldots,$ $m$ , for $X^{\hat{\mu}(\tau)}$ .

The parameter $t_{j}$ parameterizes opening the j-th node. For all $t_{j}$ suitably small,

perform the $m$ prescribed plumbings to obtain the family $X_{t,\tau}=X_{t_{1},..,t_{m}}^{\hat{\mu}(\tau.)}$ . The tuple

$(t, \tau)=(t_{1}, \ldots , t_{m}, \tau_{1}, \ldots, \tau_{3g-3+n-m})$ provides real analytic local coordinates, the

hyperbolic metric plumbing coordinates, for the local manifold cover of $\overline{\mathcal{M}}_{g,n}$ at $X_{0}$ ,

[Ma] and [Wo3, Secs. 2.3, 2.4]. The coordinates have a special property: for $\tau$ fixed

the parameterization is holomorphic in $t$ . The property is a basic feature of the

plumbing construction. The family $X_{t.\tau}$ parameterizes the small deformations of

the marked noded surface with punctures $X_{0}$ .
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(2.2) We review the geometry of the local manifold covers. For a complex man-

ifold $M$ the complexification $T^{\mathbb{C}}M$ of the $\mathbb{R}$-tangent bundle is decomposed into

the subspaces of holomorphic and antiholomorphic tangent vectors. A Hermitian

metric $g$ is prescribed on the holomorphic subspace. For a general complex param-

eterization $s=u+iv$ the coordinate $\mathbb{R}$-tangents are expressed as $\frac{\partial}{\partial u}=\frac{\partial}{\partial s}+\frac{\partial}{\partial\overline{s}}$

and $\frac{\partial}{\partial v}=i\frac{\partial}{\partial s}-i\frac{\partial}{\partial\overline{s}}$. For the $X_{t,\tau}$ parameterization in (2.1), the $\tau$-parameters are

not holomorphic while for $\tau$-parameters fixed the t-parameters are holomorphic;

$\{\frac{\partial}{\partial\tau k}+\frac{\partial}{\partial\overline{\tau}_{k}}, i\frac{\partial}{\partial\tau_{k}}-i\frac{\partial}{\partial\overline{\tau}_{k}}, \frac{\partial}{\partial t_{j}}, i\frac{\partial}{\partial t_{j}}\}$ is a basis over $\mathbb{R}$ for the tangent space of the local

manifold cover. For a smooth Riemann surface the dual of the space of holomorphic

tangents is the space of quadratic differentials with at most simple poles at punc-

tures. The following is a modification of Masur’s result [Ma, Prop. 7.1].

Lemma 1. The hyperbolic metric plumbing coordinates $(t, \tau)$ are real analytic and

for $\tau$ fixed the parameterization is holomorphic in $t$ . Provided the modification $\hat{\mu}$

is small, for a neighborhood of the origin there are families in $(t, \tau)$ of regular 2-

differentials $\varphi_{k},$ $\psi_{k},$ $k=1,$ $\ldots,$ $3g-3+n-m$ and $\eta_{j},$ $j=1,$ $\ldots,$ $m$ such that:

(i) Each regular 2-differential has an expansion of the form $\varphi(s, t)=\varphi(s, 0)+O(t)$

locally away from the nodes of $R$ .

(ii) For $X_{t,\tau}$ with $t_{j}\neq 0$ , all $j_{f}\{\varphi_{k}, \psi_{k}, \eta_{j}, i\eta_{j}\}$ forms the dual basis to $\{\frac{\partial\hat{\mu}(\tau)}{\partial\tau_{k}}+$

$\frac{\partial\hat{\mu}(\tau)}{\partial[be]},$ $i \frac{\partial\hat{\mu}(\tau)}{\partial\tau_{k}}-i\frac{\partial\hat{\mu}(\tau)}{\partial\overline{\tau}_{k}},$
$\frac{\partial}{\partial t_{j}}.i\frac{\partial}{\partial t_{j}}\}$ over $\mathbb{R}$ .

(iii) For $X_{t,\tau}$ with $t_{j}=0$ , all $j$ , the $\eta_{j},$ $j=1,$ $\ldots,$
$m$ , are trivial and the $\{\varphi_{k}, \psi_{k}\}$

span the dual of the holomorphic subspace TDef $(X_{0})$ .

(2.3) Now we are ready to state the second main theorem in the following

Theorem 2. For a noded Riemann surface $X_{0}$ with punctures the hyperbolic metric

plumbing coordinates for $X_{t,\tau}$ provide real analytic coordinates for a local manifold
$\omega ver$ neighborhood for $\overline{\mathcal{M}}_{g,n}$ . The pammeterization is holomorphic in $t$ for $\tau$ fixed.
On the local manifold cover the Weil-Petersson metric is formally Hermitian satis-

fying:
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(i) For $t_{j}=0,$ $j=1,$ $\ldots,$ $m$ , the restriction of the metrt$c$ is a smooth Kahler metric,

isometric to the Weil-Petersson product metric for a product of Teichmuller spaces

$\delta_{\gamma 1}T_{g,n}$ .

(ii) For the tangents $\{\frac{\partial}{\partial\tau_{k}}, \frac{\partial}{\partial\tau_{k}}, \frac{\partial}{\Re_{j}}\}$ and the quantity $\sigma=\sum_{j=1}^{m}(\log|t_{j}|)^{-2}$ then:

$g^{WP}( \frac{\partial}{\partial t_{j}},$ $\frac{\partial}{\partial t_{j}})(t, \tau)$ $=$ $\frac{\pi^{3}}{|t_{j}|^{2}(-\log^{3}|t_{j}|)}(1+O(\sigma))$ , (2.3.1)

$g^{WP}( \frac{\partial}{\partial t_{k}},$ $\frac{\partial}{\partial t_{p}})(t,\tau)$ $=O((|t_{k}t_{\ell}|\log^{3}|t_{k}|\log^{3}|t_{\ell}|)^{-1})$ for $k\neq\ell$ , (2.3.2)

$g^{WP}( \frac{\partial}{\partial t_{j}},\iota\iota)(t, \tau)$ $=O((|t_{j}|(-\log^{3}|t_{j}|))^{-1})$ , for $u=\frac{\partial}{\partial s_{k}},$ $\frac{\partial}{\partial\overline{s}_{k}}$ . (2.3.3)

(iii) For $u=\frac{\partial}{\partial\tau_{k}},$ $\frac{\partial}{\partial\tau_{k}}$ , represented at $X_{0_{1}\tau}$ by $\mu_{k}$ and $\mathfrak{v}=\frac{\partial}{\partial\tau_{\ell}},$ $\frac{\partial}{\partial f\ell}$ represented at $X_{0\rangle\tau}$

by $\mu_{\ell}$ then:

$g^{WP}( u, \mathfrak{v})(t, \tau)=g^{WP}(u, \mathfrak{v})(0, \tau)+\frac{4\pi^{4}}{3}\sum_{j=1}^{m}(\log|t_{j}|)^{-2}\langle\mu k,$ $\mu_{\ell}(E_{j,1}+E_{j,2})\rangle_{WP}(0, \tau)$

$+O( \sum_{j=1}^{m}(-\log|t_{j}|)^{-3})$ , (2.3.4)

where the Eisenstein ser es $E_{j,1},$ $E_{j.2}$ are for the pair of punctures representing the

j-th node.

Remark 2.3.1. (i) Theorem 2(iii) is an improvement of Masur’s formula [Ma], i.e.,

the Takhtajan-Zograf metrics corresponding to the nodes appear in the second term.

(ii) It should be noted that Yamada [Y] has proved before that the second term in

(2.3.4) is $O( \sum_{j=1}^{m}(-\log|t_{j}|)^{-2})$ .
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