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It is well established both experimentally and numerically that nonlinear sys-
tems can generate complex spatio-temporal pattems. Characterizing the geometry
of these complex pattems quantitatively is a long-standing challenge. Algebraic
Topology, and in particular Homology, is a classical mathematical tool for the global
analysis of nonlinear spaces and functions [4], which provides very basic topological
(geometrical) information about the patterns, such as the number of components
(pieces) and the number of holes. For three-dimensional morphologies it also pro-
vides the number of voids. Computationally efficient algorithms and software for the
homology computation are developed in the Computational Homology Project (the
software package can be downloaded from the CHomP website [1] $)$ and they allow
us to compute homology of cubical sets and maps, i.e., complex structures obtained
from experimental observation and numerical simulations can be quantified by using
a coherent set of mathematical techniques [2].

In our previous papers [6, 7], we investigated the geometric measures, surface area
$S(\Gamma)$ and curvature of the level set $\Gamma$ for the three-dimensional morphologies obtained
as minimizers in diblock copolymer problem and demonstrate the mechanism behind
the appearance of the double gyroid morphology, i.e., the morphology arising from
the incompatibility can be reasonably considered to have been created in order to
decrease the interfacial regions. In this way, the diblock copolymer problem can be
regarded as the minimization problem, $\min\{F_{\epsilon,\sigma}/\epsilon$ : $| \Omega|^{-1}\int_{\Omega}$ udr $=$ Of $\Omega=[0:L)^{3}\}$ ,
with the free energy functional,

$F_{\epsilon,\sigma}(u)$ $=$ $/_{\Omega}( \frac{\epsilon^{2}}{2}|\nabla u|^{2}+W(u)+\frac{\sigma}{2}|(-\Delta)^{-1/2}(u-\overline{u})|^{2})$ dr (1)

where the notation $\overline{u}=|\Omega|^{-1}\int_{\Omega}$ udr is the space average of the local concentration
$u[5|$ . The phenomenological parameters, $\epsilon$ and $\sigma$ , indicate the interface thickness
and the strength of the chemical bond, respectively. The double well potential,
$W(u)=(u^{2}-1)^{2}/4$ , in the second term has two minimum values, $u\sim+1$ and-l,

数理解析研究所講究録
第 1614巻 2008年 166-171 166



Figure 1: (a) (Of, $\epsilon$)-phase diagram of global minimizers. On the gray broken curve,
mesh network is more stable than double gyroid. (b) Isosurfaces $\Gamma(\overline{u})\equiv\{r\in\Omega$ :
$u(r)=$ Of$\}$ of Double Primitive, Double gyroid, Double Diamond, and Mesh network
morphologies from top-left to bottom-right figures.

in relation to two stable states for the local concentration $u$ . Since the first term
tries to decrease the interfacial regions and the third term tries to promote formation
of the interface, this situation meets the conditions of competition between short-
range activation and long-range inhibition. If the system is as described above, even
though some details may differ, a mesoscale periodic pattern is expected to appear
naturally. The $(\overline{u}, \epsilon)$-phase diagram of global minimizers, with the parameter ratio
fixed to $\sigma/\epsilon=2^{11}(1-\overline{u}^{2})^{-2}$ , is illustrated in Fig. l(a).

The purpose of this article is to present a new viewpoint for understanding
complex dynamics, including morphology transitions, by incorporating topologically
invariant quantities, the so-called homological quantities, into the field of materials
science, and utilizing them as a means of observation. We measure the topology
of a structure by means of its Homology, more specifically, we compute its Betti
numbers. For precise definitions and algorithms for computing Homology see [1, 4].

To obtain the data structure needed in the computations, a topological space
is decomposed into elementary cubes based on rectangular grids. The variable,
$u(r)$ , is represented by $\{u(i,j, k)|1\leq i,j, k\leq N\}$ . Now, we determine the Betti
number $\{\beta_{k}(X^{\pm})=$ rank $H_{k}(X^{\pm})|k=0,$ $\cdots,$ $3\}$ for the cubical sets $X^{-}=\{r\in$
$\Omega|u(r)<\overline{u}\}$ and $X^{+}=\{r\in\Omega|u(r)>\overline{u}\}$ divided on the interface $\Gamma(\overline{u})$ . The three-
dimensional bi-continuous morphologies in Fig.1 (b) can be classified in terms of the
Betti numbers as depicted in Table 1. Note that they have attracted much interest
in the material design for photonic crystals, in which the refractive index changes
periodically. Spatial heterogeneity in optical media affects the propagating manner
of lights, depending on their wavelength. The Euler characteristic $\chi$ can be also
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Table 1: The Betti number set and Space group symmetry for the Primitive, Gyroid,
Diamond, and Mesh network morphologies appear in diblock copolymer problems.

used to infer geometric properties, specifically the Gauss curvature via the Gauss-
Bonnet Theorem. Notice that the Betti numbers provide more detailed topological
information than $\chi=\sum_{k=0}^{3}(-1)^{k}\beta_{k}$ .

Next, we perform by numerical simulations of the morphology transition dynam-
ics seen in a weak separation region based on the created phase diagram. We use
an evolution equation of a gradient system that ensures the Lyapunov function $F_{\epsilon_{2}\sigma}$

will monotonically decrease over time while conserving the average $\overline{u}$ :

$\frac{\partial u}{\partial t}$ $=$ $\Delta(\frac{\delta F_{\epsilon,\sigma}}{\delta u})$ ,

$=$ $\Delta\{-\epsilon^{2}\Delta u-u+u^{3}\}-\sigma(u-\overline{u})$ . (2)

As a first step, we check the transition from unstable hexagons to stable spheres
at parameters $(\overline{u}, \epsilon)=(0.30,4.0\cross 10^{-2})$ . When doing this, we fix the cell side length.
$L\simeq 1.17$ , that numerically gives the global minimizers at the phase boundary
between hexagons and spheres. As shown in Fig.2(b), the number of hexagonal
cylinder domains is $\beta_{0}(X_{\overline{H}})=4$ , while that of bubbles is $\beta_{0}(X_{S}^{-})=16$ . For the
topological identification of morphology transitions, it is more natural to consider
the homology group of $X_{H}^{-}$ relative to $X_{S}^{-}$ . The relative homology $H_{k}(X_{H}^{-}, X_{\overline{s}})$ is
equal to the regular homology of the quotient space $X_{H}^{-}/X_{S}^{-}$ , i.e., the topology of
$X_{H}^{-}$ modulo $X_{\overline{s}}$ . This homology $H_{k}(X_{H}^{-}, X_{\overline{S}})$ measures pipes detected by chain
complexes whose boundaries lie in $X_{S}^{-}[4]$ . In this manner, the first relative Betti
number, i.e., rank of $H_{1}(X_{H}^{-}, X_{\overline{s}})$ , is obtained as $\beta_{1}(X_{H}^{-}, X_{S}^{-})=16$ . This result
confirms that four hexagonal cylinder domains were destabilized to form narrow
necks in their axial directions, and they were divided into 16 spherical domains.

Next, we check the transition from layers to hexagons at the parameters $(\overline{u}, \epsilon)=$

$(0.20,4.0x10^{-2})$ . Unlike the above case of a columnar domain fragmenting into
spherical domains, as shown in Figs.2(c)(d), a perforated layers morphology of
$\beta_{i}(X_{PL}^{-})=(2,18,0,0)$ appears as an intermediate state during morphology tran-
sition, i.e., this transition proceed in two stages: the first is that from layers to
perforated layers and the second is that from perforated layers to hexagons. The
second relative Betti numbers for the first transition is computed as $\beta_{2}(X_{L}^{-}, X_{PL}^{-})=$

$16$ and the first relative Betti numbers for the second transition is computed as
$\beta_{1}(X_{PL}^{-}, X_{H}^{-})=16$ .
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Figure 2: (a) Transition from hexagons to spheres for $(\overline{u}, \epsilon)=(0.30,4.0\cross 10^{-2})$ . left
axis and gray line: surface area $S(\Gamma)$ ; right axis and solid line: Euler characteristic
$\chi(\Gamma)$ . (b) solid line: zeroth Betti number $\beta_{0}(X^{-})$ ; broken line: first Betti number
$\beta_{1}(X^{-})$ ; gray line: second Betti number $\beta_{2}(X^{-})$ . (c,d) Transition from layers to
hexagons for $(t, \epsilon)=(0.20,4.0\cross 10^{-2})$ .

Considering cylindric domains placed in the diagonal direction of the periodic
cube region, $\Omega$ , and assuming $u=-1$ inside the domain, we obtain an energy
density, $\mathcal{F}_{\epsilon,\sigma}$ , at the singular limit as follows:

$\frac{\mathcal{F}_{\epsilon,\sigma}}{\epsilon}$ $=$
$\frac{2\sqrt{2}}{3}\frac{\sqrt{2\sqrt{3}\pi(1-\overline{u})}}{L}+(\frac{\sigma}{\epsilon})\frac{(1-\overline{u})^{2}}{2\sqrt{3}}L^{2}(c(\overline{u})+R(\zeta))$ . (3)

Here the function $c(\overline{u})$ is defined by the fundamental solution of the Laplace operator;
for $R(\zeta)$ , see reference [3]. On the layers-hexagons phase boundary, the interval of
hexagon alignment ( $\sqrt{3}/2$ times the cylinder center-center distance) is almost equal
to $2^{-3/2}$ times the laminar stripe interval. In this situation, the columnar domain
can be placed inside the laminar domain in the $\langle 110\rangle$ direction in two ways: the
two diagonal directions of the rectangle. Therefore, when the laminar interface
is destabilized, eight holes are created in the position on the mesh at the vertical
angle, $\cos^{-1}(1/3)\approx 70.53^{o}$ , at which waves in two directions reinforce each other, i.e.,
perforated layers morphology is being formed as an intermediate state. Therefore, at
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Figure 3: Abstract homology generators are shown in (a) Layers; (b) Perforated
Layers; (c) Hexagons; (d) Layers relative to Perforated Layers; (e) Perforated
Layers relative to Hexagons; (f) Layers relative to Hexagons with $\beta_{2}(X_{L}^{-}, X_{H}^{-})=$

$\beta_{1}(X_{\overline{L}}, X_{H}^{-})=4$ .

the first stage of transition from layers to hexagons, eight holes are created on each
laminar domain and each perforated domain separates into two columnar domains
at the next stage.

Finally, we show the abstract homology generators for the morphologies observed
during the transition from layers to hexagons. As shown in Figs. $3(a)-(c)$ , the gen-
erators of layers are represented by two-dimensional elementary cubes and those of
perforated layers and hexagons by one-dimensional ones. The homology generators
are the basis elements for the Homology group $H_{k}$ , that is, they are the chain com-
plexes that generate $H_{k}$ , and in this way they can be understood as combinations
of elementary cubes. A more complete treatment can be found in the reference [4].
The relative cubical sets for $H_{2}(X_{L}^{-}, X_{PL}^{-})$ and $H_{1}(X_{PL}^{-}, X_{H}^{-})$ are also depicted in
terms of related cubical sets in Figs.3(d)(e). It is worth nothing that if the k-th
relative Betti numbers provide the number of k-dimensional critical events during
morphology transition, a set of generators allows to locate them. At the first tran-
sition from layers to perforated layers, perforation holes are created so as to form a
body-centered cubic structure. The relative homology generators at the subsequent
transition show the same symmetry, in which the perforated layer domains split into
columnar domains. Perforation (resp. splitting) can be regarded as the sign of a
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stable (resp. unstable) manifold of perforated layer morphology.
We demonstrate specific applications of computational homology to characterize

the morphology transition of the diblock copolymer problem. We apply these tech-
niques as a measure of the complexity of numerically simulated three-dimensional
morphologies like perforated layers, hexagons, spheres, etc. These structures arise as
nodal domains of real-valued functions, for instance, concentration fields of two dif-
ferent components. The definitive identification of morphology transition is based on
homological quantities, such as the Betti numbers and the relative homology group
and its generators. Computational homology allows us to distinguish patterns at
different parameter values, detect complicated spatio-temporal dynamics, compare
experimental data with numerical simulations, among other things.
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