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Quadrature rule for Abel’s equations:
uniformly approximating fractional derivatives
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Abstract

An automatic quadrature method is presented for approximating fractional derivative D?f(x)
of a given function. f(z), which is defined by an indefinite integral involving f(z). The present
method interpolates f(z) in terms of the Chebyshev polynomials in the range [0, 1] to approximate
the fractional derivative D? f(z) uniformly for 0 < = < 1, namely the error is bounded independently
of . Some numerical examples demonstrate the performance of the present automatic method.

1 Introduction

Fractional calculus (fractional integral and derivative) [6, 14, 17] has been often used recently in modeling
many physical and engineering problems, see, say (8, 13, 16] and the references therein, see also {1] for
the application in economics. For an interesting history (Leibniz, 30 September 1695) and scientific
applications of fractional calculus, see a review due to Cafagna [4].

Let f(s) be a sufficiently well-bchaved function in [0,1]. The Riemann-Liouville fractional intcgral
I*=9f(s), where 0 < ¢ < 1, is defined by

1 8
e s==———-———-/ t)s—1t)"%dt, 0<s<l,
f(s) YT of()( )
where I'(1 — q) is the gamma function (19]. On the other hand, The fractional derivative D?f (8) in the
Riemann-Liouville version and the Caputo fractional derivative DI f(s) [4, 18] are defined by

D) = ) = [y [0, )
Dif(s) = Il‘q[%f(S)] = Tll'—""c}j /osf’(t)(s —t)"9dt, 0<s<l1, (2)

respectively. Riemann-Liouville fractional derivative D7 f(s) differs from Dif(s) as follows,
Df(s) = f(0)s™%/T(1 - q) + Dif(s). (3)

It is well known [2; p.134], [3, p.8], [5) that D9f(t)/T'(q) gives the solution y(t) of the generalized Abel
equation [12, p.174],

8

/ y(t)(s —t)7 tdt = f(s), 0<qg<l, s>0.
0
If ¢ — 1 is a positive non-integer, then D?f(s) is defined by

dm+1 am

Dif(s) = -

(e f(s)] = — (DT fs)],

dsm+1

where m is the positive integer such that m < g <m+ 1.
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The present method approximates the fractional derivatives D f(s) uniformly for 0 < s < 1, namely
the errors of the approximations are bounded independently of s.
Let J(s; f) be defined by

I ) =P =) Dif(e) = [ FOs -0 (4)
then from (1), (2) and (3) we see that D?f(s) can be written by

Df(s) = {f(0)s™7 + J(s; f)}/T(1 —q).
Approximating f(t), 0 < t < 1, by a sum of the shifted Chebyshev polynomials Tk (2t — 1),

n

f&) =pn(®) = axTu(2t—1), 0<t<1, (5)
k=0

we have an approximation J(s;p,,) to J(s; f) as follows,

765 7) = Ieipn) = [ pale)a =7t ©)

In (5) the prime denotes the summation whose first term is halved. The Chebyshev coefficients ax in (5)
can be determined so that p,(t) may interpolate f(t) at abscissae t; = {14 cos(7j/n)}/2,j=0,...,n,
[20] as follows

20k <= 1/ njk
ar = —= j;o f(t;) cos -
where 6 = 1, (k = 0....,n — 1), é, = 0.5 and the double prime denotes the summation whose first
and last terms are halved, and can be efficiently evaluated by using the FFT [11]. If f(t) is a smooth
function, then the sum of the Chebyshev polynomials (5) converges to f(t) quickly as n — oo [20].
To evaluate J(s;pn) given by (6) we use a polynomial F,,_1(t) of degrec n — 1 to write

/a{p;z(s) _p’n(t)}(s —t) %t = {Fn—-l(s) —Foa(z)Hs — z)l—.q- (7

From (7) we have
T = [ ph0e ~ 070t = [l - o)+ Foma )51 ®

and the approximation ﬁg f(s) to Dif(s) as follows

Dif(s) = {f(0)s™%+ J(5;pn)}/T(1 — q)-

Functions p/,(t) and F,_1(t) of degree n — 1 are also expanded in terms of the shifted Chebyshev
polynomials, see section 2.

This paper is organized as follows. In section 2 we express Fi,—1(t) in (7) by a sum of the Chebyshev
polynomials and show the recurrence relation satisfied by the Chebyshev coefficients. In section 3 we
estimate the error of the approximation to the fractional derivative, in particular to J(s; f). In section 4
numerical cxamples are shown to demonstrate the performance of the present automatic quadrature
method.
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2 Evaluation of F,_,(t)
Differentiating both sides of (7) with respect to = yields

{Ph(s) = PL(@)}(s —2)77

= Fo1(@)(s —2)'" "+ {Fa-1(s) — Foo1(@)}(1 — q)(s — 2) 79,
namely we have
Pn(8) = PL(@) = F_1(2)(s — @) + {Fa-1(s) = Foo1(2)}(1 — q). (9)
To evaluate F,_1(s) in (8) we expand F/,_,(x) in terms of the shifted Chebyshev polynomials
n—2

no1(@) = b Th(22-1), 0<a<1, (10)
k=0

where we have omitted the dependency of by on s. Integrating both sides of (10) gives

n—1

Fans(@) = Faca(s) = 3 2= P (90— 1) - Ty (25 - 1)}, (11)
k=1

where we define bp—1 = by, = 0. On the other hand, by using the relation Tk41(u) + Th—1(u) = 2uTx(u),
-1 < w <1, we have

(—8)Fy () = F,_@){2z-1)-(2s-1)}/2
= -41-712 "{br+1 — 2(25 — 1)by + bi-1}Tk(2z — 1), (12)
k=0

where we set b1 = by. Further by inserting F,_1(z) — Fr—1(s) and (z ~ s)F,_;(z) given by (11) and
(12), respectively and p (x) written by

n—1
p;,,(l') = Zlck Ti(2z - 1), (13)
k=0
into (9) we have
1- 1~
{1_— —k—“'}bk+1 —2(25 — 1) by + {1 + ——Eﬁ}bk_l =4c, 1<k (14)

We can stably compute the recurrence relation (14) in the backward direction with starting values
bn = bn_1 = 0 to obtain by, k =n — 2,...,0. The Chebyshev coefficients cx of p},(z) given by (13) can
be evaluated by the relation [15]

Ck—1 = Ck+1 +4kag, k=nn-1,...,1,

with starting values ¢, = cp41 = 0, where ax are the Chebyshev coefficients of p,(z) in (5).

3 Error estimate

We estimate the error of the approximation to the fractional derivative DY f(s), particularly the error .
of J(8;pn). We shall use the notation that for n >> 1, a(n) ~ b(n) and a(n) < b(n) mean that limy..co
a(n)/b(n) =1 and lim, o a(n)/b(n) < 1, respectively. Let wp+1(¢) be defined by

Wnat(t) = Tasr (2t = 1) = Tp_1 (2t — 1), (15)
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then p,,(t) agrees with f(t) at the zeros of wy+1(t), namely {1+ cos(nj/n)}/2,0 < j < n. Let £, denote
the ellipse in the complex plane z = z + 7y,

i z=(w+wr+2)/4, w=pe, 0<0<2m, (16)

with foci at z = 0,1 and the sum of its major and minor axes equal to p(> 1). We have the following
theorem.

Theorem 3.1 Suppose that f(2) is single-valued and analytic inside and on £, defined by (16) and let

K = max.ce¢, | f(2)|. Then the approzimation J(s;pn) given by (6) uniformly converges to J(s; f) given
by (4) as n — oo as follows,

16K{n(p—1)* + p}p
1=q)(p—1)*(p" —p™™)

Since our goal is to construct an automatic quadrature method, we wish to estimate the error of
the approximation J(s;p,) (8) in terms of the available coefficients ay of p,(t). Suppose that f(2) is a
meromorphic function which has only simple pole at the point z = a = (8+ 87! +2)/4 in an ellipse &,,
1< p <o, where 1 < p < |f] < 0. We have an estimated error E,(f) for the approximation J(s; py)

|J(s; f) — J(s;pn)| < ( =0(mp™), p> 1. (17)

8nL, +2L, 8nL, _ 8rnjan|
1-¢ 1-¢g7 (1-q)(r—1)2

[J(s; F) — J(sipn)| < = En(f), (18)
where r = |8].
Remark. The constant 7 may be estimated from the asymptotic behavior of {ax} [10].

Incidentally, an automatic quadrature of nonadaptive type is constructed from the sequence of the
approximations {J(s;p,)} converging the integral J(s; f), until a stopping criterion is satisfied. It is an
usual and simple way to double the degree n of p,(t) (5) for generating the sequence {J(s;pn)} (8), see
[9]. In order to make an automatic quadrature efficient, however, it is advantageous to have more chance
of checking the stopping criterion than doubling n. To this end, as is shown in [11] we may gencrate the
sequence of {pn}, increasing the degree n more slowly as follows:

n=6,810,...,3x2,4x2,5x2,..., (i=1,2,3,...)

and by using the FFT.

Stopping rule. We computc the sequence of {p,(t)} until E,(f)/T(1 — q), where E,(f) is given by
(18), is less than or equal to the required tolerance € for D7 f(t).

4 Numerical examples

Table 1: Approximations of D/2(s + 0.1)7%% with the required tolerance £ = 107 for 0 < s < 1. The
number n + 1 of function evaluations required to satisfy € is 41.

s approximation | error
0.09 | 3.1300423140508 | 0.35E-10
0.29 | 0.8494962341 923 | 0.63E—10
0.49 | 0.4319913115967 | 0.48E—11
0.69 | 0.2718775997 025 | 0.41E—-10
0.89 | 0.1910270486019 | 0.84E—11

Examples in this section were computed in double precision: the machine precision is 2.22...x 10716,
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Table 2: Approximations for D9(s+a)?"!, 0 < s < 1. The numbers n+1 of function evaluations required
to satisfy the tolerances ¢ = 107% and 10~° are listed in the third and fifth columns, respectively. The
actual maximum errors E,, in magnitude of approximations for 0 < s < 1 are listed in the fourth and
sixth columns.

€=10"5% €=10"°
q a n-+1 E, n+1 E,
0.01 129 6.8E-10 161 3.4E-12
0.1 01 33 1.9E-8 49 2.6E-12
1.0 13 8.8E-10 17 2.9E-13
0.01 97 6.4E-7 161 2.3E-12
0.5 0.1 33 1.3E-8 49 1.7E-12
1.0 13 7.2E-10 17 2.7E-13
0.01 81 2.7E-6 129 1.0E-10
0.9 0.1 33 3.6E-9 49 3.6E-13
1.0 13 3.3E-10 17 9.9E-14

Table 3: Approximations for D%e%(*~1) with the required tolerances ¢ = 10~5 and 10~?

g=10"% e=10"°
q a | n+1 E, n+1 E,
1 9 3.4E-11 13 7.8E-16
01 6 17 8.9E-13 21 24E-15
11 17 3.0E-9 25 5.9E—15
1 9 1.0E-10 13 1.3E-15
0.5 6 17 3.6E-12 21 T7.5E-15
11 21 1.1E-11 25 1.2E-14
1 11 4.9E-13 13 1.1E-14
09 6 17 2.5E-11 21 7.2E-14
11 21 5.4E-11 25 9.0E-14

We compute D f(s) for four types of f(s), where (A) f(s) = (s +a)?7%, (B) f(s) = e**~1), (Q)
f(s) =sinas, and (D) f(s) = s2J,(2v/5) and (E) D/2f(s) where f(s) = 1/(s*+a?). The exact values
of the fractional derivatives of these functions are given, respectively, by

W D= s (9
(B) D%V =257 kijo H,c—(ﬁ-%,
(C)  Disinas=as*™d j; ———u——lf(‘zi)i(gs_y;)
(D) D27, (2vs) = s®79/2 1,4 (2V5),

Table 1 shows the approximations Di/?(s + 0.1)=%3 and actual errors [D/2(s + 0.1)705 — Dy/?(s +
0.1)795| with the required tolerance ¢ = 10~ for s = 0.09 +4/5,% = 0,1,...,4. The number n + 1 of
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Table 4: Approximations for D9sin as with the required tolerances & = 10~% and 10~°

e=10"5 €=10"°
q a | n+1 E, n+1 E,
1 9 4.8E-11 13 4.4E-16
0.1 8 17 1.1E-9 25 5.8E-14
15 25 5.8E-11 33 3.5E--11
1 9 1.5E-10 13 8.9E-16
0.5 8 17 4.6E-9 25 1.1E-13
15 25 2.8E-10 33 1.2E-10
1 11 7.0E-13 13 4.4E-15
09 8 21 6.2E-12 25 2.5E-13
15 25 1.4E-9 33 4.4E-10

Table 5: Approximations for D9,/5%J,(2./8) with the required tolerances € = 107> and 10™°

e =10"% €=10"°
q a | n+1 E, n+1 E,
1.5 97 1.6E-7 1025 2.5E-11
0.1 2.0 9 1.0E-14 11 2.2E-16
2.5 25 5.2E-8 129 7.2E-12
1.5 129 1.1E-6 1025 1.1E-9%
05 2.0 9 3.1E-14 11 3.3E-16
2.5 33 8.6E-8 129 1.1E-10
1.5 161 1.6E-5x | 1537 2.1E—8x
09 20 9 1.5E-13 11 1.9E-15
2.5 33 1.2E-6 161 1.2E—-9x

Asterisk means the failure to satisfy the tolerances €.

function evaluations required is 41. Table 2 also shows the result for the problem (A) with varied values
of ¢ and a, namely the numbers n + 1 required to satisfy the tolerances ¢ = 10~% and 1072 and the
actual maximum crrors E,, defined by

B = max IDf(s,) = Bife)l, sy =i/m i=12...m,

where we choose large m, say, m = 1000. Tables 3~6 show the results for the problems (B)~(E),
respectively.

From Tables 2~6 we see that the present automatic method could approximate successfully the
fractional derivatives (A)~(D) with varied values of ¢ and a and (E) with varied values of a for ¢ = 1/2
except for (D) witha = 1.5 and ¢ = 0.5,0.9 fore = 107%, witha=15and g =0.9 fore = 10~% and with
a = 2.5 and ¢ = 0.9 for € = 10~°. The present method is not suitable for the functions with & singularity
in [0, 1] or singularities of higher-order derivatives. Indeed, as seen from Table 5, the present method
sometimes fails to approximate the fractional derivatives of Bessel functions §%/2J,(24/3) of a = 1.5 and
2.5 since Bessel functions J,(s) of fractional orders a have discontinuous derivatives of higher order at
s =0.
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Table 6: Approximations for D1/2{1/(s? + a?)} with the required tolerances ¢ = 10~ and 10~2

e=10"5 €=10"°
a n+1 E, n-+1 E,
1 17 1.0E-10 21 1.8E-13
1/4 33 1.2E-8 49 1.3E-13
1/16 81 5.2E-9 97 1.8E-11
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