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Abstract
In this article, we first define nonlinear operators wfiich are connected with resolvents of

maximal monotone operators in Banach spaces and then prove fixed point theorems for the
nonlinear operators in smooth strictly convex and reflexive Banach spaces. Further, we prove
duality theorems for two nonlinear mappings in Banach spaces, i.e., a relatively nonexpansive
mapping and a generalized nonexpansive mapping. Finally, motivated by such duality theo-
rems, we define nonlinear operators in Banach spaces which are connected with the conditional
expectations in the probability theory. Then, we obtain orthgonal properties for the nonlinear
operators.
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1 lntroduction
Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ . Let $C$ be a closed

convex subset of $H$ . A mapping $T$ of $C$ into itself is called nonexpansive if 1 Tx-Ty $\Vert\leq\Vert x-y\Vert$

for all $x,$ $y\in C$ . We denote by $F(T)$ the set of fixed points of $T$ . Let $g$ : $Harrow(-\infty,$ $\infty|$ be a
proper convex lower semicontinuous function and consider the convex minimization problem:

$\min\{g(x):x\in H\}$ . (1.1)

For such $g$ , we can define a multivalued operator $\partial g$ on $H$ by

$\partial g(x)=\{x^{*}\in H:g(y)\geq g(x)+\langle x^{*}, y-x\rangle, y\in H\}$

for all $x\in H$ . Such $\partial g$ is said to be the subdifferential of $g$ . A multivalued operator $A\subset HxH$

is called monotone if for $(x_{1}, y_{1}),$ $(x_{2}, y_{2})\in A$ ,

$\langle x_{1}-x_{2},$ $y_{1}-y2\rangle\geq 0$ .
A monotone operator $A\subset HxH$ is called maximal if its graph

$G(A)=\{(x, y):y\in Ax\}$
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is not properly contained in the graph of any other monotone operator. We know that if $A$ is
a maximal monotone operator, then $R(I+\lambda A)=H$ for all $\lambda>0$ . A monotone operator $A$ is
also called m-accretive if $R(I+\lambda A)=H$ for all $\lambda>0$ . So, we can define, for each $\lambda>0$ , the
resolvent $J_{\lambda}$ : $R(I+\lambda A)arrow D(A)$ by $J_{\lambda}=(I+\lambda A)^{-1}$ . We know that $J_{\lambda}$ is a nonexpansive
mapping and for any $\lambda>0,$ $F(J_{\lambda})=A^{-1}0$ , where $A^{-1}0=\{z\in H:0\in Az\}$ .

Let $E$ be a smooth Banach space and let $E^{*}$ be the dual space of $E$ . The function $\phi$ :
$E\cross Earrow R$ is defined by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$

for all $x,$ $y\in E$ , where $J$ is the normalized duality mapping from $E$ into $E^{*}$ . Let $C$ be a
nonempty closed convex subset of $E$ and let $T$ be a mapping from $C$ into itself. We denote by
$F(T)$ the set of fixed points of $T$ . A point $p$ in $C$ is said to be an asymptotic fixed point of $T$

[36] if $C$ contains a sequence $\{x_{n}\}$ which converges weakly to $p$ and $\lim_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0$ .
The set of asymptotic fixed points of $T$ is denoted by $\hat{F}(T)$ . Further, a point $p$ in $C$ is said
to be a generalized asymptotic fixed point of $T[13]$ if $C$ contains a sequence $\{x_{n}\}$ such that
$\{Jx_{n}\}$ converges to $Jp$ in the weak* topology and $\lim_{narrow\infty}\Vert Jx_{n}-JTx_{n}\Vert=0$ . The set of
generalized asymptotic fixed points of $T$ is denoted by $\check{F}(T)$ . A mapping $T:Carrow C$ is called
relatively nonexpansive [29] if $\hat{F}(T)=F(T)\neq\emptyset$ and

$\phi(p, Tx)\leq\phi(p, x)$

for all $x\in C$ and $p\in F(T)$ . Further, a mapping $T$ : $Carrow C$ is called generalized nonexpansive
[9, 10] if $F(T)\neq\emptyset$ and

$\phi(Tx,p)\leq\phi(x,p)$

for all $x\in C$ and $p\in F(T)$ . The class of relatively nonexpansive mappings and the class of
generalized nonexpansive mappings contain the class of nonexpansive mappings $T$ in Hilbert
spaces with $F(T)\neq\emptyset$ .

In this article, motivated by two nonlinear operators of a relatively nonexpansive map-
ping and a generalized nonexpansive mapping, we first define nonlinear operators which are
connected with a relatively nonexpansive mapping and a generalized nonexpansive mapping.
Then, we prove fixed point theorems for the nonlinear operators in smooth strictly convex and
reflexive Banach spaces. Further, we prove duality theorems for two nonlinear mappings in
Banach spaces, i.e., a relatively nonexpansive mapping and a generalized nonexpansive map-
ping. Finally, motivated by such duality theorems, we define nonlinear operators in Banach
spaces which are connected with the conditional expectations in the probability theory. Then,
we obtain orthgonal properties for the nonlinear operators.

2 Preliminaries

Throughout this paper, we assume that a Banach space $E$ with the dual space $E^{*}$ is real.
We denote by $N$ and $R$ the sets of all positive integers and all real numbers, respectively. We
also denote by $\langle x,$ $x^{*}\rangle$ the dual pair of $x\in E$ and $x^{*}\in E^{*}$ . A Banach space $E$ is said to be
strictly convex if li $x+y\Vert<2$ for $x,$ $y\in E$ with $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1$ and $x\neq y$ . A Banach
space $E$ is said to be uniformly convex if for any sequences $\{x_{n}\}$ and $\{y_{n}\}$ in $E$ such that
$||x_{n}\Vert=\Vert y_{n}\Vert=1$ and $\lim_{narrow\infty}\Vert x_{n}+y_{n}\Vert=2,$ $\lim_{narrow\infty}\Vert x_{n}-y_{n}\Vert=0$ holds. A Banach space
$E$ is said to be smooth provided

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$
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exists for each $x,$ $y\in E$ with $\Vert x\Vert=\Vert y\Vert=1$ . Moreover, $E$ is said to have a Fr\’echet differentiable
norm if for each $x\in E$ with $\Vert x\Vert=1$ , this limit is attained uniformly for $y\in E$ with $\Vert y\Vert=1$ .
$E$ is said to have a uniformly G\^ateaux differentiable norm if for each $y\in E$ with $\Vert y\Vert=1$ ,
this limit is attained uniformly for $x\in E$ with $\Vert x\Vert=1$ . Let $E$ be a Banach space. With each
$x\in E$ , we associate the set

$J(x)=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$.

The multivalued operator $J$ : $Earrow E^{*}$ is called the normalized duality mapping of E. Rom the
Hahn-Banach theorem, $Jx\neq\emptyset$ for each $x\in E$ . We know that $E$ is smooth if and only if $J$ is
single-valued. If $E$ is strictly convex, then $J$ is one-to-one, i.e., $x\neq y\Rightarrow J(x)\cap J(y)=\emptyset$ . If $E$

is reflexive, then $J$ is a mapping of $E$ onto $E^{*}$ . So, if $E$ is reflexive, strictly convex and smooth,
then $J$ is single-valued, one-to-one and onto. In this case, the normalized duality mapping
$J_{*}$ from $E^{*}$ into $E$ is the inverse of $J$ , that is, $J_{*}=J^{-1}$ . If $E$ has $a$ Fr\’echet differentiable
norm, then $J$ is norm to norm continuous. If $E$ has a uniformly G\^ateaux differentiable norm,
then $J$ is norm to weak* uniformly continuous on each bounded subset of $E$ ; see [43] for more
details. Let $E$ be $a$ smooth Banach space and let $J$ be the normalized duality mapping of $E$ .
We define the function $\phi$ : $E\cross Earrow R$ by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$

for all $x,$ $y\in E$ . We also define the function $\phi_{*}:E^{*}\cross E^{*}arrow R$ by

$\phi_{*}(x^{*}, y^{*})=\Vert x^{*}\Vert^{2}-2\langle x^{*},$ $J^{-1}y^{*}\rangle+\Vert y^{*}\Vert^{2}$

for all $x^{*},$ $y^{*}\in E^{*}$ . It is easy to see that $(\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y)$ for all $x,$ $y\in E$ . Thus, in
particular, $\phi(x, y)\geq 0$ for all $x,$ $y\in E$ . We also know the following:

$\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z,$ $Jz-Jy\rangle$ (2.1)

for all $x,$ $y,$ $z\in E$ . It is easy to see that

$\phi(x, y)=\phi_{*}(Jy, Jx)$ (2.2)

for all $x,$ $y\in E$ . If $E$ is additionally assumed to be strictly convex, then

$\phi(x, y)=0\Leftrightarrow x=y$ . (2.3)

Let $C$ be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space $E$ . For an arbitrary point $x$ of $E$ , the set

$\{z\in C:\phi(z, x)=\min_{y\in C}\phi(y, x)\}$

is always nonempty and a singletone. Let us define the mapping $\Pi_{C}$ of $E$ onto $C$ by $z=\Pi_{C}x$

for every $x\in E$ , i.e.,
$\phi(\Pi_{C}x, x)=\min_{y\in C}\phi(y, x)$

for every $x\in E$ . Such $\Pi_{C}$ is called the generalized projection of $E$ onto $C$ ; see Alber [1]. The
following lemma is due to Alber $[1|$ and Kamimura and Takahashi [20].

Lemma 2.1 ([1, $20|)$ . Let $C$ be a nonempty closed convex subset of a smooth, strictly convex
and reflenive Banach space $E$ and let $(x, z)\in E\cross C$ . Then, the following hold:
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$(a)z=\Pi_{C}x$ if and only if $\langle y-z,$ $Jx-Jz\rangle\leq 0$ for all $y\in C$ ;
$(b)\phi(z, \Pi_{C}x)+\phi(\Pi_{C}x, x)\leq\phi(z, x)$ .

From this lemma, we can prove the following lemma.

Lemma 2.2. Let $M$ be a nonempty closed linear subspace of a smooth, strictly $\omega nvex$ and
reflexive Banach space $E$ and let $(x, z)\in E\cross M$ Then, $z=\Pi_{M}x$ if and only if

$\langle J(x)-J(z),$ $m\rangle=0$ for all $m\in M$ .

Let $C$ be a nonempty subset of $E$ and let $R$ be a mapping from $E$ onto $C$ . Then $R$ is
said to be a retraction if $R^{2}=R$ . It is known that if $R$ is a retraction from $E$ onto $C$ , then
$F(R)=C$. The mapping $R$ is also said to be sunny if $R(Rx+t(x-Rx))=Rx$ whenever
$x\in E$ and $t\geq 0$ . A nonempty subset $C$ of a smooth Banach space $E$ is said to be a
generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of $E$ if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive retract\’ion)
$R$ from $E$ onto $C$ . The following lemmas were proved by Ibaraki and Takahashi [10].

Lemma 2.3 ([10]). Let $C$ be a nonempty closed subset of of a smooth and strictly convex
Banach space $E$ and let $R$ be a retraction from $E$ onto C. Then, the following are equivalent:

$(a)R$ is sunny and generalized nonexpansive;
$(b)$ $\langle$x–Rx, $Jy-JRx\rangle\leq 0$ for all $(x, y)\in E\cross C$ .

Lemma 2.4 ([10]). Let $C$ be a nonempty closed sunny and generalized nonexpansive retract
of a smooth and strictly convex Banach space E. Then, the sunny generalized nonexpansive
retraction from $E$ onto $C$ is uniquely determined.

Lemma 2.5 ([10]). Let $C$ be a nonempty closed subset of a smooth and strictly convex Banach
space $E$ such that there exists a sunny generalized nonexpansive retmction $R$ from $E$ onto $C$

and let $(x, z)\in Ex$ C. Then, the following hold:

$(a)z=Rx$ if and only if $\langle x-z,$ $Jy-Jz\rangle\leq 0$ for all $y\in C$ ;
$(b)\phi(Rx, z)+\phi(x, Rx)\leq\phi(x, z)$ .

Let $C$ be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space $E$ . For an arbitrary point $x$ of $E$ , the set

$\{z\in C:\Vert z-x\Vert=\min_{y\in C}\Vert y-x\Vert\}$

is always nonempty and a singletone. Let us define the mapping $P_{C}$ of $E$ onto $C$ by $z=P_{C}x$

for every $x\in E$ , i.e.,
$\Vert P_{C}x-x\Vert=\min_{y\in C}\Vert y-x\Vert$

for every $x\in E$ . Such $P_{C}$ is called the metric projection of $E$ onto $C$ ; see [43]. The following
lemma is in [43].

Lemma 2.6 ([43]). Let $C$ be a nonempty closed convex subset of a smooth, $st_{7}\dot{v}ctly\omega nvex$ and
reflexive Banach space $E$ and let $(x, z)\in Ex$ C. Then, $z=P_{C}x$ if and only if $\langle y-z,$ $J(x-z)\rangle\leq$

$0$ for all $y\in C$ .
An operator $A\subset E\cross E^{*}$ with domain $D(A)=\{x\in E:Ax\neq\emptyset\}$ and range $R(A)=\cup\{Ax$ :

$x\in D(A)\}$ is said to be monotone if $\langle x-y,$ $x^{*}-y^{*}\rangle\geq 0$ for any $(x, x^{*}),$ $(y, y^{*})\in A$ . An operator
$A$ is said to be strictly monotone if $\langle x-y,$ $x^{*}-y^{*}\rangle>0$ for any $(x, x^{*}),$ $(y, y^{*})\in A(x\neq y)$ .
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A monotone operator $A$ is said to be maximal if its graph $G(A)=\{(x, x^{*}) : x^{*}\in Ax\}$ is not
properly contained in the graph of any other monotone operator. If $A$ is maximal monotone,
then the set $A^{-1}0=\{u\in E : 0\in Au\}$ is closed and convex (see [44] for more details). Let
$J$ be the normalized duality mapping from $E$ into $E^{*}$ . Then, $J$ is monotone. If $E$ is strictly
convex, then $J$ is one to one and strictly monotone. The following theorems are well-known;
for instance, see [43].

Theorem 2.7. Let $E$ be a refle vive, strrictly convex and smooth Banach space and let $A:Earrow$
$2^{E^{*}}$ be a monotone opemtor. Then $A$ is maximal if and only if $R(J+rA)=E^{*}for$ all $r>0$ .
hrther, if $R(J+A)=E^{*}$ , then $R(J+rA)=E^{*}$ for all $r>0$ .
Theorem 2.8. Let $E$ be a strictly $\omega nvex$ and smooth Banach space and let $x,$ $y\in E.$ If
$\langle x-y,$ $Jx-Jy\rangle=0$ , then $x=y$ .

3 Nonlinear Mappings and Fixed Point Theorems
Let $E$ be $a$ Banach space and let $C$ be a nonempty closed convex subset of $E$ . Then, $C$ has

normal structure if for each bounded closed convex subset of $K$ of $C$ which contains at least
two points, there exists an element $x$ of $K$ which is not $a$ diametral point of $K$ , i.e.,

$\sup\{\Vert x-y\Vert:y\in K\}<\delta(K)$ ,

where $\delta(K)$ is the diameter of $K$ . The following Kirk fixed point theorem [22] for nonexpansive
mappings in a Banach space is well-known; see also Takahashi [43].

Theorem 3.1 (Kirk [22]). Let $E$ be a reflenive Banach space and Let $C$ be a nonempty
bounded closed convex subset of $E$ which has normal structure. Let $T$ be a nonexpansive
mapping of $C$ into itself. Then, $T$ has a fixed point in $C$ .

Recently, Kohsaka and Takahashi [27], and Ibaraki and Takahashi [15] proved fixed point
theorems for nonlinear mappings which are connected with resolvents of maximal monotone
oprators in Banach spaces. Before stating them, we give two nonlinear mappings in Banach
spaces. Let $E$ be a smooth Banach space and let $C$ be a closed convex subset of $E$ . Then,
$T:Carrow C$ is of firmly nonexpansive type [27] if for all $x,$ $y\in E$ ,

$\langle$Tx–Ty, $JTx-JTy\rangle\leq$ $\langle$Tx–Ty, $Jx-Jy\rangle$ .

This means that for $x,$ $y\in C$ ,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)-\phi(Tx, x)-\phi(Ty, y)$ .

Let us give two examples of such mappings. Let $E$ be a Banach space and let $C$ be a closed
convex subset of $E$ . Let $f$ : $CxCarrow R$ be $a$ bifunction satisfying the following conditions:
(Fl) $f(x, x)=0$ for all $x\in C$ ;
(F2) $f(x, y)\leq-f(y, x)$ for all $x,$ $y\in C$ ;
(F3) $f(x, \cdot)$ is lower semicontinuous and convex for all $x\in C$ ;
(F4) $\lim_{t\downarrow 0}f(tz+(1-t)x, y)\leq f(x, y)$ for all $x,$ $y,$ $z\in C$ .
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Theorem 3.2 (Blum and Oettli [2]). Let $E$ be a smooth, strictly convex and reflexive
Banach space and let $C$ be a closed convex subset of E. Let $f$ : $CxCarrow R$ be a bifunction
satisfying $(Fl)-(F4)$ . Then, for $r>0$ and $x\in E$ , there exists $z\in C$ such that

$f(z, y)+ \frac{1}{r}\langle y-z,$ $Jz-Jx\rangle\geq 0$ for all $y\in C$ .

Let $E$ be a smooth, strictly convex, and reflexive Banach space and let $C$ be a closed convex
subset of $E$ . Let $f$ : $C\cross Carrow R$ be $a$ bifunction satisfying (Fl)$-(F4)$ . For any $r>0$ and
$x\in E$ , define the mapping $T_{r}:Earrow C$ as follows:

$T_{r}(x)= \{z\in C:f(z, y)+\frac{1}{r}\langle y-z,$ $Jz-Jx\rangle\geq 0$ for all $y\in C\}$ .

Then, $T_{r}$ satisfies the following condition: for all $x,$ $y\in E$ ,

$\langle T_{r}x-T_{r}y,$ $JT_{r}x-JT_{r}y\rangle\leq\langle T_{r}x-T_{r}y,$ $Jx-Jy\rangle$ .

That is, the mapping $T_{r}$ is of firmly nonexpansive type. In more general, let $E$ be a smooth,
strictly convex and reflexive Banach space and let $A$ : $E\cross E^{*}$ be a maximal monotone operator.
Define the mapping $T:Earrow E$ as follows: For any $r>0$ and $x\in E$ ,

$T_{r}x=(J+rA)^{-1}Jx$ ,

where $J$ is the duality mapping of $E$ . Then, $T_{r}$ satisfies the following:

$\phi(T_{r}x, T_{r}y)+\phi(T_{r}y, T_{r}x)\leq\phi(T_{r}x, y)+\phi(T_{r}y, x)-\phi(T_{r}x, x)-\phi(T_{r}y, y)$ .

That is, the mapping $T_{r}$ is of firmly nonexpansive type.

Theorem 3.3 (Kohsaka and Takahashi [27]). Let $E$ be a smooth, strictly $\omega nvex$ and
refiexive Banach space and let $C$ be a nonempty closed $\omega nvex$ subset of E. Let $T$ be a firmly
nonexpansive type mapping of $C$ into itself. Then, the following are equivalent:

(1) There exists $x\in C$ such that $\{T^{n}x\}$ is bounded;
(2) $F(T)$ is nonempty.

Motivated by the mapping of firmly nonexpansive type, Ibaraki and Takahashi [15] also
defined the following mapping: Let $E$ be $a$ smooth Banach space and let $C$ be a closed convex
subset of $E$ . Then, $T:Carrow C$ is of firmly generalized nonexpansive type [15] if

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(x, Ty)+\phi(y, Tx)-\phi(x, Tx)-\phi(y, Ty),$ $\forall x,$ $y\in C$.

Let us give an example of such a mapping. If $B\subset E^{*}xE$ is a maximal monotone mapping
with domain $D(B)$ and range $R(B)$ , then for $\lambda>0$ and $x\in E^{*}$ , we can define the resolvent
$J_{\lambda}x$ of $B$ as follows:

$J_{\lambda}x=\{y\in E:x\in y+\lambda BJy\}$ .

We know from Ibarak and Takahashi [10] that $J_{\lambda}$ : $Earrow E$ is a single valued mapping. So, we
call $J_{\lambda}$ the generalized resolvent of $B$ for $\lambda>0$ . We also denote the resolvent $J_{\lambda}$ by

$J_{\lambda}=(I+\lambda BJ)^{-1}$ .

We know that $D(J_{\lambda})=R(I+\lambda BJ)$ and $R(J_{\lambda})=D(BJ)$ , and $J_{\lambda}$ is of firmly generalized
nonexpansive type; see [15].
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Theorem 3.4 (Ibaraki and Ibkahashi [15]). Let $E$ be a smooth, strictly $\omega nvex$ and
reflexive Banach space and let $T$ be a firmly genemlized nonexpansive type mapping of $E$ into
itself. Then, the following are equivalent:

(1) There exists $x\in E$ such that $\{T^{n}x\}$ is bounded;
(2) $F(T)$ is nonempty.

4 Duality theorems for Nonlinear Mappings
Let $E$ be a Banach space. Let $C$ be a nonempty closed convex subset of $E$ and let $C$ be a

mapping of $C$ into itself. Then, a point $p$ in $C$ is said to be an asymptotic fixed point of $T$

[36] if $C$ contains a sequence $\{x_{n}\}$ which converges weakly to $p$ and $\lim_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0$ .
The set of asymptotic fixed points of $T$ is denoted by $\hat{F}(T)$ . Further, a point $p$ in $C$ is said
to be a generalized asymptotic fixed point of $T[13]$ if $C$ contains a sequence $\{x_{n}\}$ such that
$\{Jx_{n}\}$ converges to $Jp$ in the weak* topology and $\lim_{narrow\infty}\Vert Jx_{n}-JTx_{n}\Vert=0$ . The set of
generalized asymptotic fixed points of $T$ is denoted by $\check{F}(T)$ . A mapping $T$ : $Carrow C$ is called
relatively nonexpansive [29] if $\hat{F}(T)=F(T)\neq\emptyset$ and

$V(p, Tx)\leq V(p, x)$

for each $x\in C$ and $p\in F(T)$ . Further, a mapping $T:Carrow C$ is called generalized nonexpan-
sive [9, 10] if $F(T)\neq\emptyset$ and

$V(Tx,p)\leq V(x,p)$

for each $x\in C$ and $p\in F(T)$ . Let $E$ be a reflexive, smooth and strictly convex Banach space,
let $J$ be the duality mapping from $E$ into $E^{*}$ and let $T$ be a mapping from $E$ into itself. In
this section, we study the mapping $\tau*$ from $E^{*}$ into itself defined by

$T^{*}x^{*}:=JTJ^{-1_{X^{*}}}$ (4.1)

for each $x^{*}\in E^{*}$ . We first prove the following theorem for such mappings in a Banach space.
Theorem 4.1 ([16]). Let $E$ be a refiexive, smooth and strictly convex Banach space, let $J$

be the duality mapping of $E$ into $E^{*}$ and let $T$ be a mapping of $E$ into itself. Let $\tau*$ be a
mapping defined by (4.1). Then the following hold:

(1) $JF(T)=F(T^{*})$ ;
(2) $J\hat{F}(T)=\check{F}(T^{*})$ ;
(2) $J\check{F}(T)=\hat{F}(T^{*})$ .
For instance, let us show that $JF(T)=F(T^{*})$ . In fact, we have that

$x^{*}\in JF(T)\Leftrightarrow J^{-1}x^{*}\in F(T)$

$\Leftrightarrow TJ^{-1}x^{*}=J^{-1_{X^{*}}}$

$\Leftrightarrow JTJ^{-1}x^{*}=JJ^{-1_{X^{*}}}$

$\Leftrightarrow T^{*}x^{*}=x^{*}$

$\Leftrightarrow x^{*}\in F(T^{*})$ .

This implies that $JF(T)=F(T^{*})$ .
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Let $E$ be a reflexive, smooth and strictly convex Banach space with its dual $E^{*}$ and let $J$

be the duality mapping from $E$ into $E^{*}$ . We consider a mapping $\phi_{*}:E^{*}xE^{*}arrow R$ defined
by

$\phi_{*}(x^{*}, y^{*})=\Vert x^{*}\Vert^{2}-2\langle x^{*},$ $J_{*}y^{*}\rangle+\Vert y^{*}\Vert^{2}$

for each $x^{*},$ $y^{*}\in E^{*}$ , where $J_{*}$ is the duality mapping on $E^{*}$ . From the properties of $J$ , we
know that

$\phi_{*}(x^{*}, y^{*})=\phi(J^{-1}y^{*}, J^{-1}x^{*})$ (4.2)

for each $x^{*},$ $y^{*}\in E^{*}$ . In fact, we have that

$\phi_{*}(x^{*}, y^{*})=\Vert x^{*}\Vert^{2}-2\langle x^{*},$ $J_{*}y^{*}\rangle+\Vert y^{*}\Vert^{2}$

$=\Vert JJ^{-1}x^{*}\Vert^{2}-2\langle JJ^{-1}x^{*},$ $J^{-1}y^{*}\rangle+\Vert JJ^{-1}y^{*}\Vert^{2}$

$=\Vert J^{-1}x^{*}\Vert^{2}-2\langle JJ^{-1}x^{*},$ $J^{-1}y^{*}\rangle+\Vert J^{-1}y^{*}\Vert^{2}$

$=\phi(J^{-1}y^{*}, J^{-1}x^{*})$

for each $x^{*},$ $y^{*}\in E^{*}$ .
Now, we prove the following two theorems for relatively nonexpansive mappings and gener-

alized nonexpansive mappings in a Banach space.

Theorem 4.2 ([16]). Let $E$ be a reflexive, smooth, and strictly $\omega nvex$ Banach space, let $J$

be the duality mapping from $E$ into $E^{*}$ and let $T$ be a relatively nonexpansive mapping form
$E$ into itself. Let $\tau*$ be a mapping defined by (4.1). Then $\tau*$ is genemlized nonexpansive and
$\check{F}(T^{*})=F(T^{*})$ .
Proof Since $T$ is relatively nonexpansive, we have that $\hat{F}(T)=F(T)\neq\emptyset$ . By Lemma 4.1,
we obtain that

$\check{F}(T^{*})=J\hat{F}(T)=JF(T)=F(T^{*})\neq\emptyset$ .
Let $x^{*}\in E^{*}$ and let $p^{*}\in F(T^{*})$ . Then $J^{-1}p^{*}\in F(T)$ . From (4.2), we have that

$\phi_{*}(T^{*}x^{*},p^{*})=\phi(J^{-1}p^{*}, J^{-1}T^{*}x^{*})$

$=\phi(J^{-1}p^{*}, J^{-1}JTJ^{-1}x^{*})$

$=\phi(J^{-1}p^{*}, TJ^{-1}x^{*})$

$\leq\phi(J^{-1}p^{*}, J^{-1}x^{*})=\phi_{*}(x^{*},p^{*})$ .
This completes the proof. $\square$

Theorem 4.3 ([16]). Let $E$ be a reflenive, smooth, and strictly convex Banach space, let $J$

be the duality mapping from $E$ into $E^{*}$ and let $T$ be a genemlized nonexpansive mapping form
$E$ into itself with $\check{F}(T)=F(T)$ . Let $\tau*$ be a mapping defined by (4.1). Then $\tau*$ is relatively
nonexpansive.

Proof. From the assumption of $\check{F}(T)=F(T)\neq\emptyset$ and Lemma 4.1, we obtain that

$\hat{F}(T^{*})=J\check{F}(T)=JF(T)=F(T^{*})\neq\emptyset$ .
Let $x^{*}\in E^{*}$ and let $p^{*}\in F(T^{*})$ . Then $J^{-1}p^{*}\in F(T)$ . From (4.2), we have that

$\phi_{*}(p^{*}, T^{*}x^{*})=\phi(J^{-1}T^{*}x^{*}, J^{-1}p^{*})$

$=\phi(J^{-1}JTJ^{-1}x^{*}, J^{-1}p^{*})$

$=\phi(TJ^{-1}x^{*}, J^{-1}p^{*})$

$\leq\phi(J^{-1}x^{*}, J^{-1}p^{*})=\phi_{*}(p^{*}, x^{*})$ .
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This completes the proof. $\square$

5 Generalized Conditional Expectations

In this section, we start with two theorems proved by Kohsaka and Takahashi [26] which
are connected with generalized nonexpansive mappings in Banach spaces.

Theorem 5.1 ([26]). Let $E$ be a smooth, strictly convex and reflexive Banach space, let $C_{*}$

be a nonempty closed $\omega nvex$ subset of $E^{*}$ and let $n_{c}$. be the genemlized projection of $E^{*}$

onto $C_{*}$ . Then the mapping $R$ defined by $R=J^{-1}\Pi_{C_{*}}J$ is a sunny genemlized nonexpansive
retmction of $E$ onto $J^{-1}C_{*}$ .

Theorem 5.2 ([26]). Let $E$ be a smooth, reflexive and strictly convex Banach space and let
$D$ be a nonempty subset of E. Then, the following conditions are equivalent.

(1) $D$ is a sunny genemlized nonexpansive retmct of $E$ ;
(2) $D$ is a genemlized nonexpansive retmct of $E$ ;
(3) $JD$ is closed and convex.

In this case, $D$ is closed.

Motivated by these theorems, we define the following nonlinear operator: Let $E$ be $a$ reflex-
ive, strictly convex and smooth Banach space and let $J$ be the normalized duality mapping
from $E$ onto $E^{*}$ . Let $Y^{*}$ be a closed linear subspace of the dual space $E^{*}$ of $E$ . Then, the
generalized conditional expectation $E_{Y}$ . with respect to $Y^{*}$ is defined as follows:

$E_{Y}*:=J^{-1}\Pi_{Y^{r}}J$,

where $\Pi_{Y^{r}}$ is the generalized projection from $E^{*}$ onto $Y^{*}$ .
Let $E$ be a normed linear space and let $x,$ $y\in E$ . We say that $x$ is orthogonal to $y$ in the

sense of Birkhoff-James (or simply, $x$ is BJ-orthogonal to $y$ ), denoted by $x\perp y$ if

$\Vert x\Vert\leq\Vert x+\lambda y\Vert$

for all $\lambda\in$ R. We know that for $x,$ $y\in E,$ $x\perp y$ if and only if there exists $f\in J(x)$ with
$\langle y,$ $f\rangle=0$ ; see [43]. In general, $x\perp y$ does not imply $y\perp x$ . An operator $T$ of $E$ into itself
is called left-orthogonal (resp. right-orthogonal) if for each $x\in E,$ $Tx\perp$ (x–Tx) (resp.
$(x-Tx)\perp Tx)$ .

Lemma 5.3. Let $E$ be a normed linear space and let $T$ be an opemtor of $E$ into itself such
that

$T(Tx+\beta(x-Tx))=Tx$ (5.1)

for any $x\in E$ and $\beta\in R$ . Then, the following $\omega nditions$ are equivalent:

(1) $\Vert Tx\Vert\leq\Vert x\Vert$ for all $x\in E$ ;
(2) $T$ is left-orthogonal.
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Proof. We prove (1) $\Rightarrow(2)$ . Since $T(Tx+\beta(x-Tx))=Tx$ for all $x\in E$ and $\beta\in R$ , we have

$\Vert Tx\Vert=\Vert T(Tx+\beta(x-Tx))\Vert$

$\leq\Vert Tx+\beta(x-Tx)\Vert$

for any $x\in E$ and $\beta\in R$ . This implies that for each $x\in E,$ $Tx\perp(x-Tx)$ . Next, we prove
(2) $\Rightarrow(1)$ . Since $T$ is left-orthogonal, we have

$||Tx\Vert\leq\Vert Tx+\lambda(x-Tx)\Vert$

for any $x\in E$ and $\lambda\in R$ . When $\lambda=1$ , we obtain $\Vert Tx\Vert\leq\Vert x\Vert$ . This completes the proof. $\square$

Using Lemma 5.3, we prove the following theorem.

Theorem 5.4 ([8]). Let $E$ be a reflexive, strictly $\omega nvex$ and smooth Banach space. Let $Y^{*}$

be a closed linear subspace of the dual space $E^{*}$ . Then, the genemlized conditional expectation
$E_{Y^{*}}$ with respect to $Y^{*}$ is left-orthogonal, i. e., for any $x\in E$ ,

$E_{Y}*x\perp(x-E_{Y}*x)$ .

Let $Y$ be a nonempty subset of a Banach space $E$ and let $Y^{*}$ be a nonempty subset of the
dual space $E$‘. Then, we define the annihilator $Y_{\perp}^{*}$ of $Y^{*}$ and the annihilator $Y^{\perp}$ of $Y$ as
follows:

$Y_{\perp}^{*}=\{x\in E:f(x)=0$ for all $f\in Y^{*}\}$

and
$Y^{\perp}=\{f\in E^{*}$ : $f(x)=0$ for all $x\in Y\}$ .

Theorem 5.5 ([8]). Let $E$ be a reflexive, strrictly $\omega nvex$ and smooth Banach space and let $I$

be the identity opemtor of $E$ into itself. Let $Y^{*}$ be a closed linear subspace of the dual space $E^{*}$

and let $E_{Y}$ . be the genemlized conditional expectation with respect to $Y^{*}$ . Then, the mapping
$I-E_{Y}$ . is the metric projection of $E$ onto $Y_{\perp}^{*}$ . Conversely, let $Y$ be a closed linear subspace
of $E$ and let $P_{Y}$ be the $met7\dot{n}c$ projection of $E$ onto Y. Then, the mapping $I-P_{Y}$ is the
genemlized $\omega nditional$ expectation $E_{Y}\perp with$ respect to $Y_{f}^{\perp}$ i. e., $I-P_{Y}=E_{Y}\perp$ .

Let $E$ be a normed linear space and let $Y_{1},$ $Y_{2}\subset E$ be closed linear subspaces. If $Y_{1}\cap Y_{2}=\{0\}$

and for any $x\in E$ there exists a unique pair $y_{1}\in Y_{1}$ and $y_{2}\in Y_{2}$ such that

$x=y_{1}+y_{2}$ ,

and any element of $Y_{1}$ is BJ-orthogonal to any element of $Y_{2}$ , i.e., $y1\perp y_{2}$ for any $y_{1}\in Y_{1}$ and
$y2\in Y_{2}$ , then we represent the space $E$ as

$E=Y_{1}\oplus Y_{2}$ and $Y_{1}\perp Y_{2}$ .

For an operator $T$ of $E$ into itself, the kemel of $T$ is denoted by $ker(T)$ , i.e.,

$ker(T)=\{x\in E:Tx=0\}$ .

Using Theorem 5.5, we have the following theorem.
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Theorem 5.6 ([8]). Let $E$ be a strictly convex, reflexive and smooth Banach space and let
$Y^{*}$ be a closed linear subspace of the dual space $E^{*}$ of $E$ such that for any $y_{1},$ $y_{2}\in J^{-1}Y^{*}$ ,
$y1+y_{2}\in J^{-1}Y^{*}$ . Then, $J^{-1}Y^{*}$ is a closed linear subspace of $E$ and the genemlized conditional
expectation $E_{Y}$ . with respect to $Y^{*}$ is a norm one linear projection from $E$ to $J^{-1}Y^{*}$ . $R\iota rther$,
the following hold:

(1) $E=J^{-1}Y^{*}\oplus ker(E_{Y}\cdot)$ and $J^{-1}Y^{*}\perp ker(E_{Y}\cdot)$ ;
(2) $I-E_{Y^{r}}$ is the metric projection of $E$ onto $ker(E_{Y^{r}})$ .
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