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Abstract

In this article, we first define nonlinear operators which are connected with resolvents of
maximal monotone operators in Banach spaces and then prove fixed point theorems for the
nonlinear operators in smooth strictly convex and reflexive Banach spaces. Further, we prove
duality theorems for two nonlinear mappings in Banach spaces, i.e., a relatively nonexpansive
mapping and a generalized nonexpansive mapping. Finally, motivated by such duality theo-
rems, we define nonlinear operators in Banach spaces which are connected with the conditional
expectations in the probability theory. Then, we obtain orthgonal properties for the nonlinear
operators.
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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a closed
convex subset of H. A mapping T of C into itself is called nonexpansive if | Tz —Ty| < |lz—y||
for all z,y € C. We denote by F(T') the set of fixed points of 7. Let g : H — (—o00, 00| be a
proper convex lower semicontinuous function and consider the convex minimization problem:

min{g(z): z € H}. (1.1)
For such g, we can define a multivalued operator 8g on H by
9g9(z) ={z" € H:g(y) > g(z) + (z*,y — x),y € H}

for all z € H. Such 9g is said to be the subdifferential of g. A multivalued operator A ¢ H x H
is called monotone if for (z1,y1), (z2,y2) € A,

(1 — z2, 41 —y2) = 0.
A monotone operator A C H x H is called maximal if its graph

G(A) = {(z,y) : y € Az}



45

is not properly contained in the graph of any other monotone operator. We know that if A is
a maximal monotone operator, then R(I + AA) = H for all A > 0. A monotone operator A is
also called m-accretive if R(I + AA) = H for all A > 0. So, we can define, for each A > 0, the
resolvent Jy : R(I + AA) — D(A) by Jx = (I + AA)~1. We know that J is a nonexpansive
mapping and for any A > 0, F(J,) = A™10, where A710 = {z € H : 0 € Az}

Let E be a smooth Banach space and let E* be the dual space of E. The function ¢ :
E x E — R is defined by

¢z, y) = |l=]|* - 2(z, Jy) + |ly|I®

for all z,y € E, where J is the normalized duality mapping from E into E*. Let C be a
nonempty closed convex subset of E and let T be a mapping from C into itself. We denote by
F(T') the set of fixed points of 7. A point p in C is said to be an asymptotic fixed point of T
[36] if C contains a sequence {z,} which converges weakly to p and lim,_, ||z, — T'zy|| = 0.
The set of asymptotic fixed points of T is denoted by F’(T) Further, a point p in C is said
to be a generalized asymptotic fixed point of T [13] if C contains a sequence {z,} such that
{Jz,} converges to Jp in the weak™ topology and lim, ., ||[JZn — JTZy|| = 0. The set of
generalized asymptotic fixed points of T is denoted by F'(T"). A mapping T : C — C is called
relatively nonexpansive [29] if F(T) = F(T) # 0 and

¢(p, Tz) < ¢(p, z)

for all z € C and p € F(T). Further, a mapping T : C — C is called generalized nonexpansive
[9, 10] if F(T) # 0 and
#(Tz,p) < ¢(z,p)

for all x € C and p € F(T). The class of relatively nonexpansive mappings and the class of
generalized nonexpansive mappings contain the class of nonexpansive mappings 7' in Hilbert
spaces with F(T') # 0.

In this article, motivated by two nonlinear operators of a relatively nonexpansive map-
ping and a generalized nonexpansive mapping, we first define nonlinear operators which are
connected with a relatively nonexpansive mapping and a generalized nonexpansive mapping.
Then, we prove fixed point theorems for the nonlinear operators in smooth strictly convex and
reflexive Banach spaces. Further, we prove duality theorems for two nonlinear mappings in
Banach spaces, i.e., a relatively nonexpansive mapping and a generalized nonexpansive map-
ping. Finally, motivated by such duality theorems, we define nonlinear operators in Banach
spaces which are connected with the conditional expectations in the probability theory. Then,
we obtain orthgonal properties for the nonlinear operators.

2 Preliminaries

Throughout this paper, we assume that a Banach space E with the dual space E* is real.
We denote by N and R the sets of all positive integers and all real numbers, respectively. We
also denote by (z,z*) the dual pair of z € E and z* € E*. A Banach space FE is said to be
strictly convex if ||z + y|| < 2 for z,y € E with |z|| < 1, |lyll £ 1 and x # y. A Banach
space E is said to be uniformly convex if for any sequences {z,} and {y»} in E such that
lznll = llynll = 1 and limp— oo [|Zn + Ynll = 2, limp o0 ||Zn — yn|l = 0 holds. A Banach space
F is said to be smooth provided

o 2+ tyll = 2]
t—0 t
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exists for each z, y € E with ||z|| = |ly|| = 1. Moreover, E is said to have a Fréchet differentiable
norm if for each z € E with ||z|| = 1, this limit is attained uniformly for y € E with ||y|| = 1.
E is said to have a uniformly Gateaux differentiable norm if for each y € E with |ly|] = 1,

this limit is attained uniformly for £ € E with ||z|| = 1. Let E be a Banach space. With each
x € E, we associate the set

J(z) = {z" € E" : (z,2") = |lz|* = ||z*|*}.

The multivalued operator JJ : E — E* is called the normalized duality mapping of E. From the
Hahn-Banach theorem, Jz # @ for each z € E. We know that E is smooth if and only if J is
single-valued. If E is strictly convex, then J is one-to-one, i.e., z # y = J(z)NJ(y) = 0. f E
is reflexive, then J is a mapping of E onto E*. So, if E is reflexive, strictly convex and smooth,
then J is single-valued, one-to-one and onto. In this case, the normalized duality mapping
J« from E* into E is the inverse of J, that is, J, = J~!. If E has a Fréchet differentiable
norm, then J is norm to norm continuous. If E has a uniformly Géteaux differentiable norm,
then J is norm to weak” uniformly continuous on each bounded subset of E; see [43] for more
details. Let E' be a smooth Banach space and let J be the normalized duality mapping of E.
We define the function ¢ : £ x E — R by

o(z,y) = ||zlf* - 2(z, Jy) + ||y}
for all z,y € E. We also define the function ¢, : E* x E* — R by
éu(z*,y") = ll2*|1? — 2(c*, T 'y*) + |ly*||?

for all z*,y* € E*. It is easy to see that (||| — ||y]|)? < é(z,y) for all z,y € E. Thus, in
particular, ¢(z,y) > 0 for all z,y € E. We also know the following:

oz, y) = d(z,2) + d(2,y) + 2{(z — 2z, Jz — Jy) (2.1)
for all z,y,z € E. It is easy to see that
¢(z,y) = ¢«(Jy, J) (2.2)

for all z,y € E. If E is additionally assumed to be strictly convex, then

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. For an arbitrary point z of F, the set

{z € C: ¢(z,2) = min ¢(y, 2)}

is always nonempty and a singletone. Let us define the mapping Ilc of E onto C by z = IIcx
for every z € E, i.e.,

¢(Ilcz, z) = min ¢(y, z)
for every x € E. Such Il¢ is called the generalized projection of E onto C; see Alber [1]. The
following lemma is due to Alber [1] and Kamimura and Takahashi [20].

Lemma 2.1 ([1, 20]). Let C be a nonempty closed convez subset of a smooth, strictly conver
and reflexive Banach space E and let (z,2) € E x C. Then, the following hold:



47

(a) z =Ilcx if and only if (y — z,Jx — Jz) <0 for ally € C;
(b) ¢(z,lcz) + o(Ilcz, z) < ¢(z, ).

From this lemma, we can prove the following lemma.

Lemma 2.2. Let M be a nonempty closed linear subspace of a smooth, strictly convexr and
reflezive Banach space E and let (x,z) € E x M Then, z = Hpx if and only if

(J(x) — J(z),m) =0 for all m € M.

Let C be a nonempty subset of F and let R be a mapping from E onto C. Then R is
said to be a retraction if R? = R. It is known that if R is a retraction from E onto C, then
F(R) = C. The mapping R is also said to be sunny if R(Rz + t(z — Rz)) = Rz whenever
z € F and t > 0. A nonempty subset C of a smooth Banach space E is said to be a
generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive retraction)
R from E onto C. The following lemmas were proved by Ibaraki and Takahashi [10].

Lemma 2.3 ([10]). Let C be a nonempty closed subset of of a smooth and strictly convex
Banach space E and let R be a retraction from E onto C. Then, the following are equivalent:

(a) R is sunny and generalized nonexpansive;

(b) (x — Rz,Jy — JRx) <0 for all (z,y) € ExC.

Lemma 2.4 ([10]). Let C be a nonempty closed sunny and generalized nonexpansive retract
of a smooth and strictly convex Banach space E. Then, the sunny generalized nonezpansive
retraction from E onto C is uniquely determined.

Lemma 2.5 ([10]). Let C be a nonempty closed subset of a smooth and strictly convez Banach
space E such that there exists a sunny generalized nonexpansive retraction R from E onto C
and let (xz,2) € E x C. Then, the following hold:

(a) z= Rx if and only if (x — 2z, Jy — Jz) <0 for ally € C;
(5) $(Rz,2) + 6(=, Rz) < ¢(z,2).

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. For an arbitrary point x of F, the set

{z€ 0|l —al| = minlly - =I}

is always nonempty and a singletone. Let us define the mapping P¢ of E onto C by 2 = Pox
for every x € E, i.e.,
Pz — z|| = mi -
IPoz — z|| = min iy — z|

for every z € E. Such Py is called the metric projection of E onto C; see [43]. The following
lemma is in [43].

Lemma 2.6 ([43]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E and let (x,z) € ExC. Then, z = Pcx if and only if (y—2, J(z—2)) <
0 forallye C.

An operator A C E x E* with domain D(A) = {z € E : Az # (0} and range R(A) = U{Azx :
z € D(A)} is said to be monotone if (z—y, z*—y*) > 0 for any (z,z*), (y,y*) € A. An operator
A is said to be strictly monotone if (x — y,z* — y*) > 0 for any (z,z*), (y,¥*) € A (x # y).
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A monotone operator A is said to be maximal if its graph G(A) = {(z,z*) : * € Az} is not
properly contained in the graph of any other monotone operator. If A is maximal monotone,
then the set A='0 = {u € E : 0 € Au} is closed and convex (see [44] for more details). Let
J be the normalized duality mapping from F into E*. Then, J is monotone. If E is strictly
convex, then J is one to one and strictly monotone. The following theorems are well-known:
for instance, see [43].

Theorem 2.7. Let E be a reflexive, strictly convex and smooth Banach space and let A: E —
2" be a monotone operator. Then A is mazimal if and only if R(J+rA) = E* for all T > 0.
Further, if R(J + A) = E*, then R(J +rA) = E* for allr > 0.

Theorem 2.8. Let E be a strictly conver and smooth Banach space and let x,y € E. If
(z —y,Jr— Jy) =0, thenx = y.

3 Nonlinear Mappings and Fixed Point Theorems

Let E be a Banach space and let C be a nonempty closed convex subset of E. Then, C has
normal structure if for each bounded closed convex subset of K of C which contains at least
two points, there exists an element xz of K which is not a diametral point of K, i.e.,

sup{llz -yl : y € K} < 6(K),

where §(K) is the diameter of K. The following Kirk fixed point theorem [22] for nonexpansive
mappings in a Banach space is well-known; see also Takahashi [43].

Theorem 3.1 (Kirk [22]). Let E be a reflexive Banach space and Let C be a nonempty
bounded closed convex subset of E which has normal structure. Let T be a nonezpansive
mapping of C into itself. Then, T has a fired point in C.

Recently, Kohsaka and Takahashi [27], and Ibaraki and Takahashi [15] proved fixed point
theorems for nonlinear mappings which are connected with resolvents of maximal monotone
oprators in Banach spaces. Before stating them, we give two nonlinear mappings in Banach
spaces. Let E be a smooth Banach space and let C be a closed convex subset of E. Then,
T : C — C is of firmly nonexpansive type [27] if for all z,y € E,

(Tx — Ty, JTz — JTy) < (Tx — Ty, Jz — Jy).
This means that for z,y € C,

¢(T'z,Ty) + ¢(Ty, Tz) < ¢(Tz,y) + ¢(Ty, z) — ¢(Tx,x) — ¢(Ty, y).

Let us give two examples of such mappings. Let E be a Banach space and let C be a closed
convex subset of E. Let f : C x C — R be a bifunction satisfying the following conditions:

(F1) f(z,z) =0 for all z € C;

(F2) f(z,y) < —f(y, ) for all z,y € C;

(F3) f(z,-) is lower semicontinuous and convex for all z € C;
(F4) lim¢jo f(tz+ (1 — t)z,y) < f(z,y) for all z,y,z € C.
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Theorem 3.2 (Blum and Oettli [2]). Let E be a smooth, strictly convez and reflexive
Banach space and let C be a closed convexr subset of E. Let f : C x C — R be a bifunction
satisfying (F1)-(F4). Then, forr > 0 and x € E, there exists z € C such that

flz,y) + %(y—z,Jz-—Jz) >0forallyeC.

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a closed convex
subset of E. Let f: C x C — R be a bifunction satisfying (F1)-(F4). For any r > 0 and
z € E, define the mapping 7). : E — C as follows:

T (z) = {zeC:f(z,y)—l—%(y—z,Jz—Ja:) ZOforallyEC’}.

Then, T, satisfies the following condition: for all z,y € E,
(Trx — Try, JTrz — JT,y) < (Trz — Try, Jx — Jy).

That is, the mapping T, is of firmly nonexpansive type. In more general, let E be a smooth,
strictly convex and reflexive Banach space and let A : E'x E* be a maximal monotone operator.
Define the mapping T : E — E as follows: For any r > 0 and z € E,

Trx = (J +rA)~ Jz,
where J is the duality mapping of E. Then, T, satisfies the following:
Tz, Try) + o(Try, Trz) < ¢(Trx,y) + (Try, x) — o(Trz, x) — $(Try, Y)-

That is, the mapping 7} is of firmly nonexpansive type.

Theorem 3.3 (Kohsaka and Takahashi [27]). Let E be a smooth, strictly conver and
reflexive Banach space and let C be a nonempty closed conver subset of E. Let T be a firmly
nonezpansive type mapping of C into itself. Then, the following are equivalent:

(1) There exists x € C such that {T™x} is bounded;
(2) F(T) is nonempty.

Motivated by the mapping of firmly nonexpansive type, Ibaraki and Takahashi [15] also
defined the following mapping: Let E be a smooth Banach space and let C' be a closed convex
subset of E. Then, T : C — C is of firmly generalized nonexpansive type [15] if

¢(Tz,Ty) + ¢(Ty,Tz) < ¢(x, Ty) + ¢(y, Tx) — ¢(x, Tz) — $(y,Ty), Vz,y € C.

Let us give an example of such a mapping. If B C E* x E is a maximal monotone mapping
with domain D(B) and range R(B), then for A > 0 and z € E*, we can define the resolvent

Jrx of B as follows:
JHhrx={ye E:ze€y+ ABJy}.

We know from Ibarak and Takahashi [10] that Jy : E — F is a single valued mapping. So, we
call Jy the generalized resolvent of B for A > 0. We also denote the resolvent J) by

Jx= (I +ABJ)"L.

We know that D(J)) = R(I + ABJ) and R(Jy) = D(BJ), and J, is of firmly generalized
nonexpansive type; see [15].
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Theorem 3.4 (Ibaraki and Takahashi [15])). Let E be a smooth, strictly convez and
reflerive Banach space and let T be a firmly generalized nonexpansive type mapping of E into
itself. Then, the following are equivalent:

(1) There exists x € E such that {T™z} is bounded;
(2) F(T) is nonempty.

4 Duality theorems for Nonlinear Mappings

Let E be a Banach space. Let C be a nonempty closed convex subset of E and let C be a
mapping of C into itself. Then, a point p in C is said to be an asymptotic fixed point of T
[36] if C' contains a sequence {z,} which converges weakly to p and lim,—,« [|Zn, — Tz,|| = O.
The set of asymptotic fixed points of T is denoted by F(T). Further, a point p in C is said
to be a generalized asymptotic fixed point of T' [13] if C contains a sequence {z,} such that
{Jz,} converges to Jp in the weak® topology and lim,_.. ||JZ, — JTz,|| = 0. The set of
generalized asymptotic fixed points of T is denoted by F(T). A mapping T : C — C is called
relatively nonexpansive [29] if F(T) = F(T) # § and

V(p,Tz) < V(p,x)

for each z € C and p € F(T). Further, a mapping T : C — C is called generalized nonexpan-
sive [9, 10] if F(T) # @ and
V(Tz,p) < V(z,p)

for each z € C and p € F(T). Let E be a reflexive, smooth and strictly convex Banach space,
let J be the duality mapping from E into E* and let T be a mapping from E into itself. In
this section, we study the mapping T* from E* into itself defined by

T*z* = JTJ 'z* (4.1)
for each z* € E*. We first prove the following theorem for such mappings in a Banach space.

Theorem 4.1 ([16]). Let E be a reflexive, smooth and strictly convex Banach space, let J
be the duality mapping of E into E* and let T be a mapping of E into itself. Let T* be a
mapping defined by (4.1). Then the following hold:

(1) JF(T) = F(T*);
(2) JE(T) = F(T*);
(2) JE(T) = F(T*).
For instance, let us show that JF(T) = F(T*). In fact, we have that

z* € JF(T) & J 'z* € F(T)
e TJ g = J g
& JTJ g = JJ 1"
o Tz =z~
&t e F(T).

This implies that JF(T') = F(T*).
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Let E be a reflexive, smooth and strictly convex Banach space with its dual E* and let J
be the duality mapping from FE into E*. We consider a mapping ¢« : E* x E* — R defined
by

Gu(z*,y*) = |lz*|* - 2(e™, Juy*) + |ly*||?
for each z*,y* € E*, where J, is the duality mapping on E*. From the properties of J, we
know that

o (2%, ") = #(Jy*, T e) (4.2)
for each z*,y* € E*. In fact, we have that
du(@®,y*) = llz*||* = 2(z*, Juy") + ly*||
= 7T P ~ 2(J T e, Ty ) + | JT |2
= I 2|2 = 2(J T e, T hy) + T |
= ¢(J 71y, I zY)
for each z*,y* € E*.

Now, we prove the following two theorems for relatively nonexpansive mappings and gener-
alized nonexpansive mappings in a Banach space.

Theorem 4.2 ([16]). Let E be a reflexive, smooth, and strictly convex Banach space, let J
be the duality mapping from FE into E* and let T be a relatively nonexpansive mapping form
E into itself. Let T* be a mapping defined by (4.1). Then T* is generalized nonexpansive and
F(T*) = F(T*).

Proof. Since T is relatively nonexpansive, we have that F(T) = F(T) # 0. By Lemma 4.1,
we obtain that 5 o
F({T*)=JF(T)=JF(T)=F(T*) #0.

Let * € E* and let p* € F(T*). Then J~!p* € F(T). From (4.2), we have that
bu(T*z*,p*) = $(J~1p*, J1T*z*)
= ¢(J 1p*, JYITT 12*)
= o(J 7", T a")
< @(J7p", I THe") = ¢u(z”,p).
This completes the proof. O

Theorem 4.3 ([16]). Let E be a reflerive, smooth, and strictly conver Banach space, let J
be the duality mapping from E into E* and let T be a generalized nonexpansive mapping form
E into itself with F(T) = F(T). Let T* be a mapping defined by (4.1). Then T* is relatively
nONEeTPansive.

Proof. From the assumption of F(T) = F(T) # @ and Lemma 4.1, we obtain that
F(T*y = JF(T) = JF(T) = F(T*) # 0.
Let z* € E* and let p* € F(T*). Then J™!p* € F(T). From (4.2), we have that
qﬁ*(p*,T*a:*) — (f)(J—’lT*ZL‘*, J—_lp*)
= ¢(JHITT t*, T 1p*)
— ¢(TJ—1:E*, J—lp*)
< ¢(J 72, TTIp) = ¢ (p”, 7).
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This completes the proof. O

5 Generalized Conditional Expectations

In this section, we start with two theorems proved by Kohsaka and Takahashi [26] which
are connected with generalized nonexpansive mappings in Banach spaces.

Theorem 5.1 ([26]). Let E be a smooth, strictly convex and reflexive Banach space, let C.,
be a nonempty closed conver subset of E* and let Ilc, be the generalized projection of E*
onto C,. Then the mapping R defined by R = J Tic,J is a sunny generalized nonerpansive
retraction of E onto J~1C,.

Theorem 5.2 ([26]). Let E be a smooth, reflexive and strictly convexr Banach space and let
D be a nonempty subset of E. Then, the following conditions are equivalent.

(1) D is a sunny generalized nonezpansive retract of E;
(2) D is a generalized nonezpansive retract of E;
(8) JD is closed and conver.

In this case, D is closed.

Motivated by these theorems, we define the following nonlinear operator: Let E be a reflex-
ive, strictly convex and smooth Banach space and let J be the normalized duality mapping
from E onto E*. Let Y* be a closed linear subspace of the dual space E* of E. Then, the
generalized conditional expectation Ey~ with respect to Y* is defined as follows:

Ey. := J My.J,

where Ily« is the generalized projection from E* onto Y*.
Let E be a normed linear space and let z,y € E. We say that x is orthogonal to y in the
scnse of Birkhoff-James (or simply, z is BJ-orthogonal to y), denoted by z L y if

=l < llz + Ayl

for all A € R. We know that for z,y € E, z 1 y if and only if there exists f € J(z) with
(y, f) = 05 see [43]. In general, x L y does not imply y L z. An operator T of E into itself
is called left-orthogonal (resp. right-orthogonal) if for each z € E, Tx L (z — Txz) (resp.
(x —Tzx) L Tx).

Lemma 5.3. Let E be a normed linear space and let T be an operator of E into itself such
that

T(Tx+ B(x—Tx)) =Tx (5.1)

for any x € E and B € R. Then, the following conditions are equivalent:

(1) |Tz|| < ||z|| for all z € E;
(2) T is left-orthogonal.
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Proof. We prove (1) = (2). Since T(Tz + 3(x — Txz)) = Tz for all z € E and 8 € R, we have

|Tz|| = | T(Tz + B(z — Tz))|
< Tz + Bz — T)

for any z € E and 8 € R. This implies that for each z € F, Tz L (z — Tx). Next, we prove
(2) = (1). Since T is left-orthogonal, we have

ITz| < || Tz + XMz — Tz)||

for any x € E and A € R. When )\ = 1, we obtain ||Tz| < ||z||. This completes the proof. O
Using Lemma 5.3, we prove the following theorem.

Theorem 5.4 ([8]). Let E be a reflexive, strictly convex and smooth Banach space. Let Y™
be a closed linear subspace of the dual space E*. Then, the generalized conditional expectation
Ey. with respect to Y* is left-orthogonal, i.e., for any x € E,

Ey.xz | (x — Ey+x).

Let Y be a nonempty subset of a Banach space F and let Y* be a nonempty subset of the
dual space E*. Then, we define the annihilator Y} of Y* and the annihilator Y+ of Y as
follows:

Y={z€FE:f(z)=0forall feY"}

and
Yt={feE*: f(x)=0forallz €Y}

Theorem 5.5 ([8]). Let E be a reflexive, strictly convex and smooth Banach space and let I
be the identity operator of E into itself. Let Y™ be a closed linear subspace of the dual space E*
and let Ey- be the generalized conditional expectation with respect to Y*. Then, the mapping
I — Ey« is the metric projection of E onto Y. Conversely, letY be a closed linear subspace
of E and let Py be the metric projection of E onto Y. Then, the mapping I — Py 1is the
generalized conditional expectation Ey 1 with respect to YL, i.e., | — Py = Ey..

Let E be a normed linear space and let Y;, Y2 C E be closed linear subspaces. If Y1NY2 = {0}
and for any x € E there exists a unique pair y; € Y; and y2 € Ys such that

T =1y + Y2,

and any element of Y; is BJ-orthogonal to any element of Y5, i.e., y; L y2 for any y; € Y7 and
y2 € Y, then we represent the space E as

E=Y1®Y;and Y7 1L Y5.
For an operator T of E into itself, the kernel of T is denoted by ker(T), i.e.,
ker(T) = {z € E: Tz = 0}.

Using Theorem 5.5, we have the following theorem.
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Theorem 5.6 ([8]). Let E be a strictly convez, reflexive and smooth Banach space and let
Y™ be a closed linear subspace of the dual space E* of E such that for any y1,y2 € J~1Y™,
y1+y2 € J7Y*. Then, J71Y™* is a closed linear subspace of E and the generalized conditional
ezpectation Ey. with respect to Y™ is a norm one linear projection from E to J~'Y*. Further,
the following hold:

(1) E=J"'Y* @ ker(Ey.) and J~'Y* 1 ker(Ey-.);
(2) I — Ey-. is the metric projection of E onto ker(Ey-).
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