Lorentz空間のJames定数について

新潟工科大学工学部 三谷 健一 (Ken-Ichi Mitani)
新潟大学理学部 斎藤 吉助 (Kichi-Suke Saito)

1 序文

バナッハ空間においてvon Neumann-Jordan定数やJames定数などの様々なバナッハ空間の幾何学的定数が存在する [1, 2]. これらはバナッハ空間の幾何学的構造を調べる上で重要であり, 不動点理論などに関連して急速な発展を遂げている.

定義 1 ([2]) X をバナッハ空間とする. このとき James 定数 $J(X)$ を以下のように定義する:

$$J(X) = \sup \{ \min \{ \|x+y\|, \|x-y\| \} : x, y \in X, \|x\| = \|y\| = 1 \}.$$

命題 1 ([2]) (i) 任意のバナッハ空間 X に対して $\sqrt{2} \leq J(X) \leq 2$.
(ii) X がヒルベルト空間ならば $J(X) = \sqrt{2}$.
(iii) $J(X) < 2$ であることと X がuniformly non-square であることは同値である. 即ち, ある $\delta > 0$ に対して

$$\| (x-y)/2 \| > 1-\delta, \|x\| = \|y\| = 1 \Rightarrow \|(x+y)/2\| \leq 1-\delta$$

である.
(iv) $1 \leq p \leq \infty, 1/p + 1/q = 1, \dim L_p \geq 2$ とする. このとき

$$J(L_p) = \max \{ 2^{1/p}, 2^{1/q} \}.$$

12000 Mathematics Subject Classification. 46B20.

Keywords. James constant, Lorentz sequence spaces, absolute normalized norm

本講演では、absolute normalizedノルムに関するよく知られた結果を用いて、2次元Lorentz数列空間のdual normを与え、さらに2次元Lorentz数列空間の双対空間におけるJames定数の値の結果を述べる。

2 Absolute normalized norm

\mathbb{R}^{2}上のノルム$\| \cdot \|$がabsoluteであるとは、任意の$(x, y) \in \mathbb{R}^{2}$に対して

$$\|(x, y)\| = \|(|x|, |y|)\|$$

が成り立つときと言う。また、$\| \cdot \|$がnormalizedであるとは、

$$\|(1, 0)\| = \|(0, 1)\| = 1$$

であるとき言う。ℓ_{p}ノルムは最も基本的な例である:

$$\|(x, y)\|_{p} = \begin{cases} (|x|^{p} + |y|^{p})^{1/p}, & \text{if } 1 \leq p < \infty, \\ \max\{|x|, |y|\}, & \text{if } p = \infty. \end{cases}$$

AN_{2}を\mathbb{R}^{2}上のabsolute normalized norm全体とする。任意の$\| \cdot \| \in AN_{2}$に対して

$$\psi(t) = \|(1 - t, t)\|$$

とおくと、ψは区間$[0, 1]$上連続凸関数で$\psi(0) = \psi(1) = 1$かつ$max\{1-t, t\} \leq \psi(t) \leq 1$を満たす。このような関数全体を$\Psi_{2}$とする。また、任意の$\psi \in \Psi_{2}$に対して

$$\|(x, y)\|_{\psi} = \begin{cases} (|x| + |y|)\psi\left(\frac{|y|}{|x| + |y|}\right), & \text{if } (x, y) \neq (0, 0), \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$$
とすると, $\|\cdot\| \in AN_2$ かつ (1) を満たす. したがって AN_2 と Ψ_2 は 1 対 1 に対応する. たとえば, $\|\cdot\|_p$ ノルムに対応する Ψ_2 の中の関数を ψ_p とすると,

$$
\psi_p(t) = \begin{cases}
((1-t)^p + t)^{1/p}, & \text{if } 1 \leq p < \infty, \\
\max\{1-t, t\}, & \text{if } p = \infty.
\end{cases}
$$

さらに $\|\cdot\|_\psi$ の dual norm を考える. $\psi \in \Psi_2$ に対して, $\|\cdot\|^*_{\psi} = \|\cdot\|_\psi$ の dual norm とする. すなわち,

$$
\|x\|^*_{\psi} = \sup\{|\langle x, y \rangle|: y \in \mathbb{R}^2, \|y\|_{\psi} = 1\} \quad x \in \mathbb{R}^2.
$$

このとき $\|\cdot\|^*_{\psi} \in AN_2$ であり, 対応する Ψ_2 の中の関数 ψ^* は

$$
\psi^*(t) = \sup_{0 \leq s \leq 1} \frac{(1-s)(1-t) + st}{\psi(s)} \quad (0 \leq t \leq 1)
$$
である ([4]). 明らかに, $1 \leq p \leq \infty, 1/q + 1/p = 1$ のとき $\psi_p^* = \psi_q$ が成り立つ.

3 Lorentz 空間の dual norm

定義 2 $0 < \omega < 1, 1 \leq q < \infty$ とする. このとき 2 次元 Lorentz 数列空間 $d^{(2)}(\omega, q)$ であるとは, 次のノルムを持つ \mathbb{R}^2 を言う:

$$
\|(x, y)\|_{\omega, q} = (x^{*q} + \omega y^{*q})^{1/q},
$$
ここで $x^* = \max\{|x|, |y|\}$, $y^* = \min\{|x|, |y|\}$ である.

今, $d^{(2)}(\omega, q)$ の双対空間を考える. $q = 1$ については $d^{(2)}(\omega, 1)^*$ は次のノルムによって与えられた 2 次元 Marcinkiewicz 空間 m_ω であることが知られている ([3]).

$$
\|(x, y)\|_{m_\omega} = \max\left\{x^*, \frac{x^* + y^*}{1 + \omega}\right\}.
$$
本章では, すべての q に関して dual norm を決定する.

明らかに $\|(x, y)\|_{\omega, q}$ は \mathbb{R}^2 上 absolute normalized ノルムである, 即ち, $\|\cdot\|_{\omega, q} \in AN_2$. また $\|\cdot\|_{\omega, q}$ は次の意味で対称である, 即ちすべての $(x, y) \in \mathbb{R}^2$ において
\[(x, y)_{\omega, q} = (y, x)_{\omega, q}.\] このとき、\(\| \cdot \|_{\omega, q}\) に対応する \(\psi_{2}\) の中の関数 \(\psi_{\omega, q}\) は次のように与えられる:

\[
\psi_{\omega, q}(t) = \begin{cases} (1-t)^q + \omega t^q)^{1/q}, & \text{if } 0 \leq t \leq 1/2, \\ (t^q + \omega(1-t)^q)^{1/q}, & \text{if } 1/2 \leq t \leq 1. \end{cases}
\]

\(d^{(2)}(\omega, q)\) の dual norm \(\| \cdot \|_{\omega, q}^*\) を得るために \(\psi_{\omega, q}^*\) を求める。

定理 1 ([7]) 0 < \(\omega < 1\) とする。

(i) \(1 < q \leq \infty\) のとき

\[
\psi_{\omega, q}^*(t) = \begin{cases} ((1-t)^q + \omega t^q)^{1/q}, & \text{if } 0 \leq t \leq \frac{\omega}{1+\omega}, \\ (1+\omega)^{1/p-1}, & \text{if } \frac{\omega}{1+\omega} \leq t \leq \frac{1}{1+\omega}, \\ (t^q + \omega(1-t)^q)^{1/q}, & \text{if } \frac{1}{1+\omega} \leq t \leq 1, \end{cases}
\]

ここで \(1/p + 1/q = 1\)。

(ii) \(q = 1\) のとき

\[
\psi_{\omega, 1}^*(t) = \begin{cases} 1-t, & \text{if } 0 \leq t < \frac{\omega}{1+\omega}, \\ \frac{1}{1+\omega}, & \text{if } \frac{\omega}{1+\omega} \leq t < \frac{1}{1+\omega}, \\ t, & \text{if } \frac{1}{1+\omega} \leq t \leq 1. \end{cases}
\]

さらに

\[
\| (x, y) \|_{\omega, q}^* = \| (x, y) \|_{\psi_{\omega, q}^*} = (|x| + |y|) \psi_{\omega, q}^* (\frac{|y|}{|x| + |y|})
\]

より次が得られる。

定理 2 ([7]) 0 < \(\omega < 1\) とする。

(i) \(1 < q \leq \infty\) のとき

\[
\| (x, y) \|_{\omega, q}^* = \begin{cases} |x|^p + \omega^{1-p} |y|^p)^{1/p} & \text{if } \omega|x| \geq |y|, \\ (1+\omega)^{1/p-1} (|x| + |y|) & \text{if } \omega|x| \leq |y| \leq \omega^{-1}|x|, \\ (|y|^p + \omega^{1-p} |x|^p)^{1/p} & \text{if } \omega^{-1}|x| \leq |y|. \end{cases}
\]
(ii) $q = 1$ のとき

$$
\|(x,y)\|_{n,1}^* = \begin{cases}
\max\{|x|,\omega^{-1}|y|\} & \text{if } \omega|x| \geq |y|, \\
\frac{1}{1+\omega}(|x| + |y|) & \text{if } \omega|x| \leq |y| \leq \omega^{-1}|x|, \\
\max\{\omega^{-1}|x|,|y|\} & \text{if } \omega^{-1}|x| \leq |y|.
\end{cases}
$$

即ち $\|(x,y)\|_{n,1}^* = \|(x,y)\|_{m,\omega}$.

4 $d^{(2)}(\omega, q)^*$ の James 定数

Kato-Maligranda [3] は $d^{(2)}(\omega, q)$ における James 定数を考察し, $q \geq 2$ のとき次のように計算した。

定理 3 ([3]) $q \geq 2$ とする. このとき

$$J(d^{(2)}(\omega, q)) = 2\left(\frac{1}{1+\omega}\right)^{1/q}.$$

$1 \leq q < 2$ のとき Mitani-Saito-Suzuki [6] によって次のように与えられた。

定理 4 ([6]) $1 \leq q < 2$ とする. (i) $0 < \omega \leq (\sqrt{2} - 1)^{2-q}$ のとき

$$J(d^{(2)}(\omega, q)) = 2\left(\frac{1}{1+\omega}\right)^{1/q}. $$

(ii) $(\sqrt{2} - 1)^{2-q} < \omega < 1$ のとき次を満たす一意の解 s_0 $(0 < s_0 < \omega^{1/(2-q)})$ が存在する:

$$(1 + s_0)^{q-1}(1 - \omega s_0^{q-1}) = \omega(1 - s_0)^{q-1}(1 + \omega s_0^{q-1}).$$

(ii-a) $(\sqrt{2} - 1)^{2-q} < \omega \leq \sqrt{2^q} - 1$ のとき

$$J(d^{(2)}(\omega, q)) = \max\left\{\left(\frac{2(1 + s_0)^{q-1}}{1 + \omega s_0^{q-1}}\right)^{1/q}, 2\left(\frac{1}{1+\omega}\right)^{1/q}\right\}. $$

(ii-b) $\sqrt{2^q} - 1 < \omega < 1$ のとき

$$J(d^{(2)}(\omega, q)) = \left(\frac{2(1 + s_0)^{q-1}}{1 + \omega s_0^{q-1}}\right)^{1/q}. $$
定理 5 ([5]) \(\psi \in \Psi_2 \) が \(t = 1/2 \) で対称とする。このとき

\[
J(\| \cdot \|_\psi) = \max_{0 \leq t \leq 1/2} \frac{2 - 2t}{\psi(t)} \psi\left(\frac{1}{2 - 2t}\right).
\]

特に \(\psi = \psi_{\omega, q}^* \) のとき

\[
J(d^{(2)}(\omega, q)^*) = J(\| \cdot \|_{\psi_{\omega, q}^*}) = \max_{0 \leq t \leq 1/2} \frac{2 - 2t}{\psi_{\omega, q}^*(t)} \psi_{\omega, q}^*\left(\frac{1}{2 - 2t}\right),
\]

上式において、最大値を求ることにより \(d^{(2)}(\omega, q)^* \) の James 定数を計算することができる。

定理 6 ([7]) \(1 < q < 2, \, 1/p + 1/q = 1 \) とする。 (i). \(0 < \omega \leq (\sqrt{2} - 1)^{2-q} \) のとき

\[
J(\psi_{\omega, q}^*) = 2\left(\frac{1}{1 + \omega}\right)^{1/q}.
\]

(ii). Let \((\sqrt{2} - 1)^{2-q} < \omega < 1\)。このとき一意の解 \(s_1 \) が存在し,

\[
(1 + s_1)^{p-1}(1 - \omega^{1-p}s_1^{p-1}) = \omega^{1-p}(1 - s_1)^{p-1}(1 + \omega^{1-p}s_1^{p-1}), \quad \omega^{2-1/q} < s_1 \leq \omega.
\]

(ii-a) \((\sqrt{2} - 1)^{2-q} < \omega \leq \sqrt{2}^q - 1 \) ならば

\[
J(d^{(2)}(\omega, q)^*) = \max\left\{2\left(\frac{1}{1 + \omega}\right)^{1/q}, \left(\frac{2(1 + s_1)^{p-1}}{1 + \omega^{1-p}s_1^{p-1}}\right)^{1/p}\right\}.
\]

(ii-b) \(\sqrt{2}^q - 1 < \omega < 1 \) ならば

\[
J(d^{(2)}(\omega, q)^*) = \left(\frac{2(1 + s_1)^{p-1}}{1 + \omega^{1-p}s_1^{p-1}}\right)^{1/p}.
\]

定理 7 ([7]) (i) \(0 < \omega < \sqrt{2} - 1 \) のとき

\[
J(d^{(2)}(\omega, 1)^*) = \frac{2}{1 + \omega}.
\]

(ii) \(\sqrt{2} - 1 \leq \omega < 1 \) のとき

\[
J(d^{(2)}(\omega, 1)^*) = 1 + \omega.
\]
参考文献

