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1 Introduction
We are interested in bifurcation structure of stationary solution for a 3-component
reaction-diffusion system with a conservation law in the following:

$\{\begin{array}{l}\frac{\partial u}{\partial t}=\nabla\cdot(D_{u}\nabla u)+f(u, t|)+\delta w,\frac{\partial c}{\partial t}=\nabla\cdot(D_{1},\nabla v)+g(u, v),\frac{\partial u1}{\partial t}=\Delta(D_{u},u))-f(u, v)-\delta w,\end{array}$ (1.1)

where the functions $f(u, v)$ and $g(u, v)$ are chosen in such forms that the local
oscillator

$\frac{du}{dt}=f(u, t^{1})_{\}$ $\frac{d\iota)}{dt}=g(u.v)$ (1.2)

can undergo the supercritical Hopf bifurcation. Obviously, the total amount of
$|\iota+u|$ is conserved under homogeneous Neumann (no-flux) boundary condition
and some natural and appropriate conditions.

In [9], thev propose this system to understand the periodic oscillation of
the body of the plasmodium of the true slime inold: Physarum polycephalum.
In fact, the svstem describes the time-evolution of $(u, v, w)$ , which may obtain
some spatio-temporal oscillation solutions. We explain the mechanism heuris-
ticallv in the following: We note that if $w$ does not exist, then the system is a
coupled oscillators system with diffusion coupling. This system has temporallv
oscillation solutions, but does not have any spatially structural solution. It is
sure that this system is not appropriate for the model system just as it is, but
the bodv of the plasmodium of Physarum polycephalum can be separated in the
two parts: one is a sponge part, the other is a tubular part. The characteristic
property is that the diffusion rates are quite different between the former part
and the latter part. Na,$melv$’ the diffusion coefficient of tubular pa,rt is quite
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larger than the one of sponge part. This is why they have considered the new
variable $w$ , which means the tubular part and the diffusion coefficient of $w$ is
much larger than those of $t_{\backslash }$. $\neg\downarrow.’$ . Here $u$ stands for the sponge part, and $L^{1}$ rep-
resents the effect of the other ingredients, which let the desirable oscillations
occur. Our objective is that we understand how many structural varieties this
system has from the viewpoint of bifurcation of stationary solutions. Note that
$D_{\iota\iota},$ $D_{\iota},$ $\ll D_{1L}$, should hold in order to describe the behavior of plasmodium.

In biological experiment, for example, if you watch a circular plasmodium
propagating on a flat ager surface, you can observe an anti-phase oscillation be-
tween the peripheral region and the rear of the plasmodium. Such an oscillation
pattern is called peripheml phase inversion. In [9], they impose the assumption
that $D_{u}$ and $\delta$ depend on the space variable and reproduce the peripheral
phase inversion by numerical simulation. This is very interesting for us too,
and we have noticed that the original system with constant coefficients is
also a mathematically attractive object. This is because this system has the
mass conservation law, so that a kind of $\zeta(degree$ of freedom” of solutions may
be less than the usua13-component system, which undergoes wave bifnrcations.
Therefore, in this study, we assume that all the coefficients are constant.
We investigate behavior of solution orbit of the system near the Hopf bifurca-
tion point of the origin. Especially, wave instability is our interest. The wave
instability breaks both spatial and temporal symmetries of a homogeneous state
while the (uniform) Hopf bifurcation does only temporal symmetry [6, 10]. In

$[$6], it is said that the wave instabilitv occurs when a homogeneous state becomes
unstable by a pair of purelv imaginary eigenvalues with spatially non-uniform
eigenfunctions.

We consider the svstem on an interval $\Omega=[0,1]$ with homogeneous Neumann
boundary condition and suppose that $D_{?A}=D_{1},$ $=\epsilon,$ $D_{w}=1$ . We adopt the $\lambda-\omega$

system as a simple local oscillator. Therefore we study the following equations:

$\{\begin{array}{l}\frac{\partial u}{\acute{c}Jt}=\epsilon\frac{\partial^{2}\uparrow x}{c9_{1_{!}^{2}}\prime}+\lambda u-\omega\iota)+\delta ul-u(u^{2}+t)2)_{:}\frac{\partial v}{\partial t}=C\frac{\partial_{\text{し^{}1}}^{2,}}{\partial x^{2}}+\omega u+\lambda_{tf}^{l}-v(u^{2}+v^{2}),\frac{\partial u)}{\partial t}=\frac{\partial^{2}u1}{\partial x^{2}}-\lambda,|x+\omega t^{1}-\delta\uparrow 1’+\prime tA(1l^{2}+v^{2}).\end{array}$ (1.3)

We can prove mathematically rigorously that the wave instability can occur
under natural and appropriate conditions for this system. We will state the
main statement of our theorem in the next section. Moreover, in \S 3, we will
show some graphs and figures obtained by numerical simulation in which we
observe the Hopf critical points’ behavior for each Fourier mode and observe the
behavior of solutions near the bifurcation points at which two Fourier modes
are made unstable at the same time. We especially notice that this system has a
preferable cluster size of svnchronization of oscillations, which tends to smaller
and snialler as $\epsilon$ goes to $0$ . It may be interesting that, if the effect by which
the synchronized oscillation occurs is too much, then the synchronized cluster
is vaiiishing and a kind of homogenization happens.
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We are also interested in spontaneous switching behavior in coupled oscil-
lator systems constructed with P. polycephalum[7, 8]. In this biological system,
an oscillatory element corresponds to each partial body in the plasinodium. In
[8], they reported that a ring of three oscillators showed spontaneous switch-
ing aniong three typical oscillatory states, rotating(R), partial in-phase $(PI)$ and
partial anti-phase $(PA)$ . The existence of these three oscillatory patterns is guar-
anteed by the symmetric Hopf bifurcation theory[4]. However, to understand
the spontaneous switching behavior among them, it is necessary to study the
further bifurcation structure of them. Recentlv, Ito and Nishiura studied the bi-
furcation scenario leading to intermittent switching for three repulsively coupled
Stuart-Landau equations[5]. Although the number of the dimensions for their
model is 6, it can be reduced to 5. It could be one of the simplest models which
shows switching behavior among three or more oscillatory states. We want to
consider a more appropriate model for a model of the plasmodium. Then we
study the coupled oscillator system with a conservation law as a toy model. We
will show a partial result of this attempt in Appendix.

2 The linearized eigenvalue problem
The equations (1.3) can be written in matrix form as follows:

$\frac{\partial[\gamma}{\partial t}=(D\frac{\partial^{2}}{\partial x^{2}}+\Lambda)U+F(U)$ , (2.1)

where $U=(\cdot u_{:}\iota. \cdot u))$ ,

$D=(\epsilon 00$ $0\epsilon 0$ $001$ , $\Lambda=(\begin{array}{lll}\lambda -\omega \delta\omega \lambda 0-\lambda \omega^{|} -\delta\end{array}),$ $F(U)=(^{-u(t)}22$ . (2.2)

Remark 1. It is not necessary for the results in this section that $\Omega$ is an
interval. It is allowed $\Omega$ to be N-dimensional bounded domain for $N\geq 1$ .

We study the linearized system:

$\{\begin{array}{l}\frac{\partial[\gamma}{\partial t}=D\Delta U+\Lambda U in \Omega,\partial U\overline{\partial\nu}\end{array}$

$=0$ on $\partial\Omega$ ,
(2.3)

where $U=(\iota\iota.’|_{1}?\angle))$ . Now we recall the eigenvalue problem of Laplacian with
homogeneous Neumann boundarv condition [1].

$\{\begin{array}{l}\Delta\psi_{n}=-A:_{n}^{2}.\psi_{n}.,\frac{\partial\psi_{7t}1}{\partial\nu}=0 on \partial\Omega.\end{array}$ (2.4)

where $0=k_{0}^{2}<k_{1}^{2}\leq k_{2}^{2}\ldots$ . If $\Omega=[0,1]$ , then we obtain $k_{n}=n\pi$ .
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For anv integer $n$ , the equations (2.3) admits solutions of the form $U_{n}(x, t)=$

$T_{71}^{n’}/.e^{\mu_{\eta}}{}^{t}\psi_{71}l.(x)$ , where $l_{n}^{r}$ . $\in \mathbb{R}^{3}$ . By substitution, we have the eigenvalue problem

$L_{n}I^{\gamma_{?I}}$ . $=\mu,V_{n}$ , (2.5)

where the matrix $L_{n}$ . $=\Lambda-k_{n}^{2}D$ is given by

$L_{n}=(\omega$ $\lambda-\epsilon k_{n}^{2}-\omega\omega$ $-\delta-k_{n}^{2}0\delta$ . (2.6)

It is obvious that the eigenvalues of $L_{0}=\Lambda$ is identical to that of the local
oscillator:

$\mu_{0}=0$ , $\frac{1}{2}(2\lambda-\delta\pm\sqrt{\delta^{2}-4\omega^{2}})$ .

Next, we consider the case of $n\neq 0$ . The characteristic polynomial $\varphi_{n}$. of $L_{n}$

is cubic:
$\prime Y’’?t(\mu)=\mu^{3}-trL_{nf}\iota^{2}+c_{n}\mu-\det L_{n_{1}}$

where

$trL_{n}=2\lambda-\delta-(1+2\epsilon)k_{n}^{2}.$
’

$c_{n}=(\overline{\wedge\vee}2+2\epsilon)k_{71}^{4}+2(\delta\epsilon-\epsilon\lambda-\lambda)k_{n}^{2}+\lambda^{2}+\omega^{2}-\delta\lambda$,
$\det L_{?1}=-k_{?l}^{2}\{c2k_{n}^{4}+(\delta\epsilon^{2}-2\epsilon\lambda)k_{n}^{2}+\lambda^{2}+\omega^{2}-\delta\epsilon\lambda\}$.

It is not impossible to express the solutions of $\varphi_{n}(\mu)=0$ explicitly, but it is not
suitable for bifurcation analysis. So we take a qualitative approach. We give a
sufficient condition for the existence of a pair of complex conjugate eigenvalues
of $L_{n}$ and its real part becomes positive for some $n$ .

We use Gershgorin’s theorem[2]:

Theorem 1. Every eigenvalues of an $n\cross n$ matrix $A=(a_{ij})$ is contained in
at least one of the Gershgorin circles

$C_{i}=\{z\in \mathbb{C};|_{\overline{A}},$ $-a_{ii}| \leq\sum_{j\neq i}^{n}|a_{ij}|\}$ $(i=1, . . . , ?\iota)$ . (2.7)

Theorem 2. Let $D_{1},$ $D_{2},$
$\ldots$ , $D_{k}$ be the disjoint components of the Gershgorin

circles. Let $D_{i}$ be the union of $n_{i}$ of the circles (so that $\sum n_{i}=\cdot n$). Then $D_{i}$

contains exactly $n_{i}$ eigenvalues of $A$ .

The Gershgorin circles for $L_{n}$ are

$C_{1}^{?t}=\{\approx\in \mathbb{C};|z-(\lambda-\epsilon k_{n}^{2})|\leq\omega+\delta\}$ ,

$C_{2}^{n}=\{\sim\gamma\in \mathbb{C};|z-(\lambda-\epsilon k_{n}^{2})|\leq\omega\}$ ,

$C_{3}^{n}=\{\approx\in \mathbb{C};|_{\sim}^{\sim}-(-\delta-k_{??}^{2})|\leq\lambda+\omega\}$ .

Since we assume that $\lambda,$ $\omega$ and $\delta$ are nonnegative, we can omit the absolute value
signs.
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Lemma 1. If $C_{3}^{?1}\subset\{\approx\in \mathbb{C};{\rm Re}\approx<0\}$ and $C_{1}^{n}\cap C_{3}^{7t}=\emptyset$ , then $L_{n}$ has at least
one negative real eigenvalue.

Proof. Obviously, $C_{2}^{rl}’\subset C_{1}^{7?}$ holds. If $C_{1}^{n}\cap C_{3}^{n}=\emptyset,\cdot$ then the disjoint components
of the union of the Gershgorin circles of $L_{n}$ consist of two circles. One contains
two circles and the other contains only $C_{3}^{n}$ . As we assunie $C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<$

$0\}$ , the eigenvalue contained in $C_{3}^{n}$ must be negative real value. $\square$

Lemma 2. $C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<0\}$ and $C_{1}^{?l}\cap C_{3}^{n}=\emptyset$ if and only if
$\lambda+\omega<\delta+k_{n}^{2}$ (2.8)
$2\omega<(1-\epsilon)k_{n}^{2}$ (2.9)

Proof. The proof is straightforward. $C_{3}^{n}\subset\{\prime’\vee\sim\in \mathbb{C};{\rm Re} z<0\}$ if and only if

$-\delta-k_{n}^{2}+\lambda+\omega<0$ .

Hence we obtain $\lambda+\omega<\delta+k_{n}^{2}$ .
$C_{1}^{n}\cap C_{3}^{n}=\emptyset$ if and only if

$-\delta-k_{n}^{2}+\lambda+\omega<\lambda-\epsilon k_{n}^{2}-\omega-\delta$.

This is equivalent to $2\omega<(1-\epsilon)k_{n}^{2}$ . 口

If (2.8) and (2.9) are satisfied, then $L_{\iota}$ has at least one negative eigenvalue
in $C_{3}^{n}$ノ and the other eigenvalues are in $C_{1}^{n}$ .

Next, we consider the extremal values of $\varphi_{n}(\mu)$ . If the minimal value is
positive, then $\varphi_{n}(\mu)=0$ has a pair of complex conjugate roots.

$\frac{d_{\forall^{\gamma}n}\prime}{d_{l^{1}}}=3\mu^{2}-2(trL_{n})\mu+c_{7?}$

$=3\mu^{2}+2(\delta-2\lambda+(1+2\epsilon)k_{7l}^{2})\mu$

$+(\epsilon^{2}+2^{c})k_{?t}^{4}+2(\epsilon_{\vee}\lambda-\lambda)k_{\eta}^{2}+\lambda^{2}+\omega^{2}-\delta\lambda$ .

The discriininant of $d\varphi_{n}/d\mu,$ $\Delta_{1}$ , is given by

$\Delta_{1}=(1-\epsilon)^{2}k_{?1}^{4}+2(1-\zeta\cdot)(\delta+\lambda)k_{n}^{2}+\delta^{2}+\lambda^{2}-\delta\lambda-3\omega^{2}$ .

The condition (2.9) gives

$\Delta_{1}>4\omega^{2}+2(1-\epsilon)(\delta+\lambda)k_{?1}^{2}$.
$+(\overline{)}^{2}+\lambda^{2}-2\delta\lambda+\delta\lambda-3\omega^{2}$

$=\omega^{2}+2(1-\epsilon)(\delta+\lambda)k_{7t}^{2}+(\delta-\lambda)^{2}+\delta\lambda>0$ .

Hence $d\varphi_{n}/d\mu=0$ has two distinct real roots $\mu_{\pm}$ :

$\mu\pm=\frac{1}{3}(trL_{n}$. $\pm\Delta^{\frac{1}{12}})$ .
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In other words, $\varphi_{n}(\mu)$ has the maximal and minimal values. Here remark that

$\Delta_{1}<\{(1-\epsilon)k_{71}^{2}+\delta+\lambda\}^{2}$ (2.10)

The minimal value $\varphi_{n}(\mu_{+})$ is given by

$\varphi_{n}.(\mu_{+})=-\det L_{n}+\frac{c_{n}}{3}trL_{n}-\frac{2}{27}(trL_{n})^{3_{-\frac{2}{27}\Delta_{1}^{2}}^{2}}$ .

The inequality (2.10) gives

$(r \bigcap_{71}.(l^{\iota_{+}})>-\det_{l}L_{7?}$. $+ \frac{c_{n}}{3}$ tr$L_{n}- \frac{2}{27}($ tr$L_{n})^{3}- \frac{2}{27}\{(1-\epsilon)k_{n}^{2}+\delta+\lambda\}^{3}$

$= \frac{1}{3}\{(1-\epsilon)(2\omega^{2}-\delta\lambda)k_{?l}^{2}-\delta\lambda^{2}-\delta^{2}\lambda+(2\lambda-\delta)\omega^{2}\}$

$= \frac{1}{3}[\{2\lambda-\delta+2(1-\epsilon)k_{n}^{2}\}\omega^{2}-\delta\lambda\{\delta+\lambda+(1-\epsilon)k_{n}^{2}\}]$ .

Regard the right-hand side as a quadratic function of $\omega$ . Assume

$2\lambda-\delta+2(1-\epsilon)k_{n}^{2}>0$ . (2.11)

Let
$\dot{(}\tilde{v}_{0}=\sqrt{\frac{\delta\lambda\{\delta+\lambda+(1-\Gamma)\lambda_{n}^{\eta}2\}}{2\lambda-\delta+2(1-C)k_{n}^{2}}}$.

If $\omega>\tilde{\omega}_{0}$ , then $\varphi_{n}(\mu_{+})>0$ . $\varphi_{n}(\mu)=0$ has a pair of complex conjugate roots.
Especially, $\tilde{\omega}_{0}$ is a monotonically decreasing function with respect to $k_{n}$ . If the
inequality holds for $n=1$ , then $\varphi_{71}.(/x)=0$ has a pair of complex conjugate
roots for any $n\geq 1$ .

Let $\mu 1,n’\mu 2,?1$ and $\mu_{3,n}$ be three eigenvalues of $L_{n}$ . Suppose $\mu 1,n$ . $<0$ and
$\mu 2,n=\mu\overline{3},n$ . The coefficient $c_{n}$ . in $\varphi_{?1}(\mu)$ satisfies

$c_{n}= \mu 1.n\mu 2,?1^{++\mu_{3,n}\mu_{1,n}}\mu_{2_{;}}\int|1\cdot\mu 3_{:}n$

$=2\mu 1_{1}n({\rm Re}\mu 2,n)+|\mu 2,n|^{2}$ .

Since we have $\mu_{1,n}<0,$ $c_{n}<0$ implies ${\rm Re}\mu 2,$ . $>0$ . We give a sufficient
condition for $c_{n}<0$ . Regard $c_{n}$ as a quadratic function of $k_{n}^{2}$ and consider its
discriminant $\Delta_{2}$ .

$\Delta_{2}=(\delta\epsilon_{\vee}-\overline{4}\lambda-\lambda)^{2}-(\epsilon^{2}+2\epsilon)(\lambda^{2}+\omega^{2}-\delta\lambda)$

$=-(\epsilon^{2}+2^{c})\omega^{2}+\delta^{2}\epsilon^{2}+\lambda^{2}-\delta\lambda\epsilon^{2}$ .

Let
$\omega_{1}^{Q}\sim=\frac{\tilde{c}^{2}(\delta^{2}-\delta\lambda)+\lambda^{2}}{cC2+2_{\llcorner}^{c}}$ .

If $\llcorner c>0$ is sufficiently small, we can choose $\omega^{2}<\omega_{1}^{2}$ . Then we obtain $\Delta_{2}>0$

and the quadratic equation

$c_{n}(\xi)\equiv(c2+2\epsilon)\xi^{2}+2(\delta\epsilon_{\vee}-\overline{\vdash}\lambda-\lambda)\xi+\lambda^{2}+\omega^{2}-\delta\lambda=0$
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has two distinct real roots:

$\xi\pm=\frac{1}{\epsilon^{2}+2\epsilon}(-\delta^{C}+\epsilon\lambda+\lambda\pm\Delta^{\frac{1}{22}})$ .

If $\xi_{-}<k_{n}^{2}<\xi+$ for $n\in \mathbb{N}$ , then $c_{71}$. $<0$ . Hence we get ${\rm Re}\mu_{2.??}$ . $>0$ under the
assumption. It is easy to check that $\xi_{+}-\xi_{-}$ is monotonically decreasing with
respect to small $\epsilon$ and $\xi_{+}-\xi_{-}arrow\infty$ as $\underline{c}_{-}\backslash 0$ . In addition,

$\xi_{-}=\frac{\lambda^{2}+\omega^{2}-\delta\lambda}{-(\delta\epsilon-\epsilon\lambda-\lambda)+\Delta_{2}^{1}\tau}arrow\frac{\lambda^{2}+\omega^{2}-\delta\lambda}{2\lambda}$ as $\epsilonarrow 0$ .

Furthermore, we can get $\xi+arrow\infty$ as $\epsilonarrow 0$ . Therefore $\xi_{-}<k_{n}^{2}<\xi+$ can be
realized for sufficiently small $\epsilon$ .

Therefore we get the following theorem:

Theorem 3. Let $\lambda,$ $\omega_{Z}.\delta>0$ and $0<\vee c<1$ . If the following four inequalities
hold for an integer $n$ . then $L_{n}$ has a negative eigenvalue and a pair of complex
conjugate eigenvalues:

$\lambda+\omega<\delta+k_{??}^{2}$ (2.12)
$2\omega<(1-\epsilon)k_{?t}^{2}$ (2.13)

$2\lambda-\delta+2(1-\overline{\vee})k_{n}^{2}>0$ (2.14)

$\sqrt{\frac{\delta\lambda\{\delta+\lambda+(1-\epsilon)k_{n}^{2}\}}{2\lambda-\delta+2(1_{\vee}-C)k_{7l}^{2}}}<\omega$ (2.15)

Furthermore. under the above assumptions, if $\llcorner-\wedge$ is sufficiently small, then $L_{n}$

has a pair of complex conjugate eigenvalues with positive real part.

Remark 2. If the inequalities hold for $n=1$ , then $L_{n}$ has a negative eigenvalue
and a pair of complex conjugate eigenvalues for $n\geq 1$ . Especially, it should be
noted that even if the real part of 0-mode eigenvalue is negative $(2\lambda<\delta)$ , then
that of n-mode can be positive for some $n\geq 1$ . This implies that the wave
instability occurs mathematically rigorously.

Remark 3. If $D_{u}=D_{v}=D_{w}=d>0$ , the problem is very easy. The
eigenvalues of $L_{n}$ are $gi\iota en$ by

$\mu_{n}=-dk_{n}^{2}$ , $\frac{1}{2}(2\lambda-\delta-2dk_{n}^{2}\pm\sqrt{\delta^{2}-4\omega^{2}})$ .

According to the monotonicity of the eigenvalues of Laplacian, 0-mode is the
most unstable. Therefore. in this case, wave instability does not occur as th, $e$

first bifzircation.
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3 Numerical simulations
In this section, we brieHy show the results obtained by numerical simulation.
The system (1.3) with zero-flux boundary condition was solved numerically in:one spatial dimension using a explicit finite difference method. To calculate the
eigenvalues of each matrix $L_{?t}$ , we einployed the QR method.

We have already known that the eigenvalues of $L_{n}$ are one negative and a
pair of complex conjugate. Therefore we focus on the real parts of the complex
eigenvalues } $l_{7t}$ to study the bifurcation structure.

Figure 1 shows each Hopf bifurcation curve $({\rm Re}\mu_{n}=0)$ for corresponding
Fourier mode in the parameter space $(\delta, \lambda)$ for some fixed $\epsilon$ . Here $\vee c$ is the
diffusion coefficient of $\uparrow A$ and $\uparrow.’$ . Small $\epsilon$ leads to spatially non-uniform Hopf
bifurcation, that is, wave instability. If $\overline{--}$ is chosen smaller, then the higher
Fourier mode becomes unstable as the first bifurcation. Hence it can be said
that fast diffusion of $tL^{I}$ plays an important role for the emergence of the wave
instability in (1.3). As shown in Figure 1, each of Hopf bifurcation curves can
intersect. These intersections imply wave-wave interactions.

Figure 2 shows the behavior of the most unstable mode number as $\epsilonarrow 0$ .
The parameters are chosen so that ${\rm Re}\mu_{0}=0$ . At $\vee c=1$ , 0-mode eigenvalue is the
most unstable. However. the most unstable mode number changes successively
as $\llcorner c$ approaches to zero.

Figure 3 shovvs stable standing wave solutions. The 2-mode standing wave
solution is very similar to peripheral phase inversion behavior of plasmodium.
Of course, standing waves with different wave-length can be observed for corre-
sponding parameters. Furthermore, spatio-temporal patterns arising from the
interaction between wave instabilities of different modes can be observed.
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Figure 1: Hopf bifurcation curves in $(\delta, \lambda)$ -plane. Parameter: $\epsilon=0.01(left),\epsilon=$

0.0001 (right).

4 Discussion, Conclusion, and Future works

In the system (1.3), the wave instability plavs a central and crucial role for
pattern formation. It turned out the pattern like peripheral phase inversion to
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Figure 2: The most unstable mode number increases as $\epsilonarrow 0$ .The parameters
are $(\lambda, \omega, \delta)=(0.5,1,1)$ .The horizontal line indicates $\log_{10}\epsilon$ and the vertical
line does the mode number which has the most positive eigenvalue for fixed $\epsilon$ .
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Figure 3: Stable standing wave solutions. The left is 2-mode oscillation for
$(\lambda. \omega, \delta.\epsilon)=(0.005,1,1, 0.001)$ . The right is 3-mode oscillation for $(\lambda, \omega. \delta, \epsilon)=$

(0.0004. 1, 1, 0.000003)

be naturally included in the system. In addition, the system can exhibit many
other spatio-temporal structures. Therefore, from the viewpoint of our study,
we can interpret the work in [9] as follows: To understand the behavior of the
plasmodium system mathematically, they crushed the structures in which the
solution did not behave like the plasmodium system of Physarum polycephalum.
by considering spatially dependence of coefficients naturally. As a result, they
succeeded to construct the mathematical model which was better to reproduce
behavior of the plasmodium system cleverly.

In this study, $D_{u}=D_{v}$ is assumed. If $D_{u}\neq D_{v}$ , the Turing instability might
be caused. In [10], they study the pattern formation arising from the interaction
between Turing and wave instability in 3-component oscillatory reaction diffu-
sion system. Their svstem does not satisfy any conservation law. In the future,
we would like to consider that how different the structure of bifurcations is ? On
the other hand, the homogenization of the synchronized oscillation cluster size,
which has been already mentioned in \S 1, is another mathematically interesting
problem. We try to make this be a mathematical result.
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time

Figure 4: Mode interaction between l-mode and 2-mode.

A Three oscillators system with D3 symmetry
Equations. In this section we study a coupled oscillator system with three
oscillators in ring, as in Figure 5. We consider the following system:

$\{\begin{array}{l}\frac{du_{i}}{d_{l}t}=\lambda u_{i}-\omega v_{i}+\delta w_{i}-(\cdot u_{i}-\alpha v_{i})(u_{i}^{2}+ \text{り} i2)+\epsilon(u_{i+1}+u_{i-1}-2u_{i}),\frac{d_{t_{i}})}{dt}=\omega u_{i}+\lambda_{t)}i-(\alpha u_{i}+v_{i})(u_{i}^{2}+v_{i}^{2})+r(v_{i+1}+v_{i-1}-2v_{i}),\frac{d,u1i}{rlt}=-\lambda u_{i}+\omega v_{i}-\delta w_{i}+(u_{i}-\alpha v_{i})(u_{i}^{2}+v_{i}^{2})+D_{u},(w_{i+1}+w_{i-1}-2w_{i}),\end{array}$

$($ A. 1 $)$

where $i=0_{:}1,2$ and the indices are taken $mod 3$ . The coupling strengths
$\vee c$ and $D$ are non-negative. Let the ratio between two coupling strengths be
$r=\epsilon/D_{w}$ . Assume $D_{w}=1$ throughout this paper. The parameter $\alpha$ is an
amplitude dependency on phase velocity. We will consider the two-parameter
bifurcation in $(r, \alpha)$ . If $r$ is near 1, as we shall see later, the svstem shows
in-phase oscillation$(L^{T_{0}}=U_{1}=[T_{2})$ . However, if $r$ becomes sufficiently small,
nonuniform oscillation occurs. Then local oscillators $(u_{i}, \tau_{i})$ are coupled very
weakly or are not coupled directly, and the fast diffusive variables $w_{i}$ mediate
the coupling between local oscillators. It corresponds to the situation in which
each cell of plasmodium is coupled by the tube.

The individual oscillators are denoted by column vector $U_{i}=(u_{i,i}\tau)$ . $u_{i})^{t}$ .
Then the system (A.1) is written in matrix form as follows:

$\frac{d}{dt}[.\gamma_{i}=\Lambda U_{i}+F(U_{i})+K([\Gamma_{i+1}+U_{i-1}-2l^{\gamma_{i}})$ , (A 2)

where the matrix $\Lambda$ and the function $F$ are given by (2.2) and $K=$ diag $(\epsilon_{\hat{c}}, D_{w})$

is a diagonal matrix.
Obviously, the sum $\sum(u_{i}+\cdot w_{i})$ is conserved throughout the time-evolution.

We assume $\sum(u_{i}+u|i)=0$ . Then (A.1) has a trivial equilibrium point $lJ_{0}=$

$U_{1}=U_{2}=0$ .
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Figure 5: A ring of three oscillators.

Hopf bifurcation of trivial equilibrium point. First, we consider the Hopf
bifurcation of trivial equilibrium point. We are assuming that the coupling of
oscillators is symmetric, that is, invariant under interchanging the oscillators.
Therefore the entire system has D3 symmetry. Theorem 4.1 from Chap.XVIII
in [4] provides a list of possible oscillatory patterns. When the system (A.1)
undergoes the Hopf bifurcation, either of the following two cases occurs:

1. The Hopf critical eigenvaolnes arise from the matrix $\Lambda$ , and in-phase oscil-
lation occurs.

2. The Hopf critical eigenvalues arise from the matrix $\Lambda-3K$ , and it gives rise
to three branches of symmetry-breaking oscillations: rotating(R), partial
in-phase $(PI)$ and partial anti-phase $(P\mathcal{A})$ .

Because the matrices $\Lambda$ and $\Lambda-3K$ correspond to $L_{0}$ and $L_{1}$ defined by (2.6)
with $k_{1}^{2}=3$ , we can applv Theorem 3 in \S 2. Therefore, if $\epsilon$ is sufficiently small,
the second case does occur. In this case, each oscillator is inactive, that is, each
oscillator does not have limit cycle when there is no coupling.

Inactive case. Next. we consider the inactive case $(2\lambda<\delta)$ . The parameters
are set as

$\lambda=0.01$ , $\omega=1.0$ , $\delta=0.025$ .

We follow the branches of periodic solutions by using of AUTO. Figure 6 is a two-
parameter bifurcation diagram. In region $E$ , trivial equilibrium point is stable.
It undergoes the Hopf bifurcation at $r\approx O.00291$ and three branches of solutions
occur. $R$ is stable while $PI$ and $PA$ are unstable. This Hopf bifurcation points
are irrelevant to $\alpha$ . On the curve shown in figure, rotating solutions undergo
torus bifurcation. In region $N$ , the system shows non-periodic oscillations. Note
that this diagram is incomplete. Figure 6 shows only bifurcations of rotating
solution. However, as shown in [5], secondary Hopf bifurcation of partial anti-
phase could be important. In fact, it is possible to observe the coexistence
of periodic and non-periodic oscillation in region $R$ near the torus bifurcation
curve. It might be caused by secondary Hopf bifurcation of $PA$ or $PI$. Figure
7 shows a time series of rotating solution for $\alpha=0.0$ and Figure 8 is that of
unstable $PA$ and $PI$. Figure 9 shows a non-periodic orbit for $\alpha=2.0$ .
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Figure 6: A two-parameter bifurcation diagram for $(\lambda, \omega, \delta)=(0.01_{\backslash ,\prime}1.0, 0.025)$ .
In region $E$ , trivial equilibrium point is stable. The vertical line near $r=0.00291$
is the Hopf bifurcation points. In most part of region $R_{\tau}$ the rotating solutions
are stable. On the curve shown in figure, it undergoes torus bifurcation. In
region $N$ , the system shows non-periodic oscillations.

tlme

$u_{0}-$ $u_{1}-$ $\cup 2-$

Figure 7: Tinle series of a stable rotating solution for $(\lambda, \omega_{:}\delta, \alpha)$ $=$

$(0.01,1.0,0.025,0.0)$ . The values of $u_{0},$ $u_{1}$ and $u_{2}$ are indicated. The period
of each oscillator is $T\approx 6.3$ and the phase difference is about 2.1.

$u_{0}-$ $u_{1}-$ $u_{Z}-$ $u_{0}-$ $u_{1}\cdot-\cdot-\cdot$ $u_{2}-$

Figure 8: Time series of unstable solutions for $(\lambda, \omega, \delta, \alpha)=(0.01,1.0$ , 0.025, 0.0 $)$ .
The vahies of $u_{0},$ $u_{1}$ and $u_{2}$ are indicated. Left:partial-anti-phase. Right:partial
in-phase. In this figure, $u_{2}$ and $u_{3}$ are in-phase.
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Figure 9: Tinie series of a non-periodic orbit for $(\lambda, \omega, \delta, \alpha)$ $=$

(0.01, 1.0, 0.025, 2.0). The standard Euclidean norms of vectors $U_{0},$ $U_{1}$ and $U_{2}$

are indicated.

$u_{0}-$ $u_{1}-$ $u_{2}-$

Figure 10: Time series of solutions for $(\lambda, \omega, \delta, \alpha)=(0.04,1.0$ , 0.025, 0.0 $)$ . The
values of $u_{0},$ $u_{1}$ and $u_{2}$ are indicated. Left: an orbit tends to the synchronized
state for $r=0.1$ . Right: rotating solution for $r=0.002$ .

Active(self-oscillating) case. Next, we consider the active case $(2\lambda>\delta)$ ,
that is, each element has a limit cycle even if there is no coupling. The param-
eters are set as

$\lambda=0.04$ , $\omega=1.0$ , $\delta=0.025$ .

In this case, if 7 is large, each oscillator tends to in-phase synchronization. For
exainple, if we fix $r=1$ and increase $\lambda$ from $0$ , the first case of D3 symmetric
Hopf bifurcation occurs at $\lambda=\delta/2$ . Or, as shown in [3], if the coupling matrix
$K$ is proportional to the identity matrix and the local oscillator gives periodic
solution, then the uniform oscillation is stable. As $r$ decreases, the svnchronous
state loses its stabilitv. Figure 10 shows some orbits observed in active case. If
a $=0$ , the stable in-phase synchronized state loses its stability at $r\approx 0.0036$ .
This critical value decreases as the parameter $\alpha$ increases. Figure 11 shows
the bifurcation points of synchronized state. It is obtained by following the
synchronized solution for each fixed value of $\alpha$ by AUTO.
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Figure 11: The bifurcation points of synchronized state in $(7^{}, \alpha)$-plane.

Conclusion We have presented a partial result of the bifurcation structure
of three-oscillator system with conservation law. In inactive case, three non-
uniform oscillatory patterns bifurcate at the Hopf bifurcation point. It is de-
rived from the group theoretical bifurcation theory as shown in [4] and is also
understood as an analogy of the symmetry-breaking induced by wave instabil-
$it\backslash \gamma$ in our reaction-diffusion system with conservation law. Further bifurcations
of these patterns lead to non-periodic oscillation. However, a more detailed
analysis is necessary.

It is expected that the result similar to the case of three repulsively cou-
pled Stuart-Landau equations studied in [5] is obtained. However, our result is
incomplete. To understand the switching behaviour in the biological coupled
oscillator system, we might have to propose a more appropriate mathematical
model. It seeins that, however, the character that the variable with fast diffusion
mediates the coupling is essential.
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